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Accurate prediction of a scalar advected by a turbulent flow is needed for various applications. In

the framework of large-eddy simulation (LES), an accurate subgrid-scale (SGS) model for the

subgrid-scale scalar flux has to be used. In this work, the performance of various dynamic SGS

models is first evaluated by a priori tests through the concept of optimal estimator. Direct numerical

simulation (DNS) in homogeneous isotropic turbulence is performed on 5123 grid points. Filtered

quantities are extracted from the DNS data using a box or a spectral cut-off filter. The models’

accuracy is then evaluated in term of structural and functional performances, i.e., the model

capacity to locally approximate the SGS unknown term and to reproduce its energetic action,

respectively. It is shown that the Clark model has the best set of parameters to describe the SGS

scalar flux. However, the classic dynamic procedure usually applied to compute the model

coefficient leads to a large error. A new dynamic procedure is thus proposed to reduce this error.

The results show that the new dynamic model leads to a good accuracy, which is not expectable

from a model based only on the parameters of the classic dynamic Smagorinsky model. To better

evaluate the improvement of the new dynamic procedure, a posteriori (large-eddy simulation) tests

are performed for three different Schmidt numbers. It is shown that the new model allows to

improve substantially the prediction of various scalar statistics. VC 2011 American Institute of
Physics. [doi:10.1063/1.3657090]

I. INTRODUCTION

Various applications need to solve a scalar equation

simultaneously to the governing flow equations. In these

applications, the scalar can represent the temperature field or

the concentration of chemical species in combustion, mixing,

or heat transfer studies. Due to the large range of motion

scales in turbulent flows, the direct numerical simulation

(DNS) of realistic applications is not yet available because

of the important computational cost. To overcome this limi-

tation, the large-eddy simulation (LES) technique proposes

to explicitly solve only the large scales of the flow and to

model the smallest scales. This separation between resolved

large scales and modeled small scales is performed by a fil-

tering operation,

�f ð~x; tÞ ¼
ð

f ð~y; tÞGð~x�~yÞ d~y; (1)

to obtain the large-scale resolved field, �f , from the turbulent

field, f, with G the filter kernel. This filtering operation

applied to the flow equations leads to subgrid-scale (SGS)

terms which have to be modeled. While many SGS models

have been designed to close the filtered Navier-Stokes equa-

tions for incompressible flows,1–3 the corresponding problem

for the scalar equation has not yet been fully addressed. For

example, recent works4,5 have shown a dependence of the

SGS scalar modeling with the molecular Schmidt number,

Sc¼ �/D, where � and D represent the molecular viscosity

and the molecular diffusivity, respectively. The filtered

transport equation for a passive scalar, Z, in incompressible

flow is given by

@ �Z

@t
þ �ui

@ �Z

@xi
¼ D

@2 �Z

@x2
i

� @Ti

@xi
; (2)

where Ti ¼ uiZ � �ui
�Z is the SGS scalar flux, which has to be

modeled to perform LES. An eddy diffusivity, DT, is com-

monly introduced to model the SGS scalar flux as

Ti ¼ DT@ �Z=@xi. In the simplest models, the eddy diffusivity

is defined from the eddy viscosity, �T, through a constant

eddy Schmidt number,6,7 ScT¼ �T/DT� 0.6. However, Moin

et al.8 introduce a Smagorinsky-type model with a dynamic

procedure to compute the model coefficient. They show that

the dynamic procedure greatly improves the results of the

simulations and leads to a non-constant value of ScT, since

the eddy diffusivity depends on the molecular Schmidt num-

ber and on the local turbulence level of the flow. Even if a

correct dissipation level is modeled, the Smagorinsky-type

models are generally known to have a weak correlation

between the model and the SGS term.9 To overcome this

behavior, the concept of the Clark model consists in adding a

gradient model (GM) to the Smagorinsky-type model to

obtain both the relatively accurate representation of the SGS

term by the gradient model and a proper dissipation provided

by the Smagorinsky-type model.9 A dynamic procedure can

then be applied to define a dynamic Clark model (DCM).10

In this work, we first study the performance of the

dynamic Smagorinsky-type model (DSM) and the dynamic

Clark model in term of structural and functional performan-

ces through a priori tests. It is shown that the dynamic Clark

model is the best candidate to model Ti. However, a gap per-

sists between the measured performance and the optimal per-

formance expected for this model. To improve the results of
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the Clark model, a new dynamic procedure is proposed. The

new dynamic Clark model (NDCM) is then tested in a poste-
riori (LES) tests. From the LES performed, it is shown that

the new model substantially improves the prediction of vari-

ous scalar statistics in comparison with the dynamic

Smagorinsky-type and the classic dynamic Clark model.

II. NUMERICAL METHOD

In the first part of this work, a priori tests are performed.

The data are extracted from DNS of forced homogeneous

isotropic turbulence. A pseudo-spectral code with second-

order explicit Runge-Kutta time-advancement is used. The

viscous terms are treated exactly. The simulation domain is

discretized using 5123 grid points on a domain of length 2p.

A classic 3/2 rule is used for dealiasing the non-linear con-

vection term, and statistical stationarity is achieved using a

forcing term.11 The scalar equation is advanced simultane-

ously using an identical numerical scheme. The scalar field

is initialized between 0 and 1 according to the procedure pro-

posed by Eswaran and Pope.12 To be sure to simulate all the

dissipative scales of the turbulence,13 parameters are chosen

such that kmaxg> 1.5 and kmaxgB> 1.5, where kmax is the

maximal wavenumber in the box, and g and gB are the Kol-

mogorov and Batchelor scales, respectively. The Schmidt

number is taken equal to 1.0 and the Reynolds number based

on the Taylor microscale is around 180 at the stationary

state. The code and the flow configuration are similar to pre-

vious works where the modeling of the SGS scalar variance

and the SGS scalar dissipation rate14–16 were studied.

In a priori tests, the DNS data are filtered in space to

emulate LES quantities. Two different filters are used. The

box filter is first used to replicate the implicit filter associated

with discretization methods often used in LES of engineering

flow, such as centered finite difference scheme17 or finite

volume method.18 The spectral cut-off filter is also used to

reproduce the behavior of the spectral method employed in

this work. Several filter sizes have been used chosen as

2 � �D=Dx � 16, where �D is the filter width and Dx is the

DNS mesh size. Figure 1 shows the scalar variance spectrum

with the location of the filters in the wavenumber space.

III. MEASUREMENTS OF THE MODELS
PERFORMANCE

First, the DNS data are used to measure the performance

of SGS scalar flux models. The most commonly used model

is the DSM proposed by Moin et al.8 In this model, the eddy

diffusivity is defined similarly to the Smagorinsky eddy vis-

cosity model.19 The SGS scalar flux is thus defined as

Ti ¼ uiZ � �ui
�Z ¼ Cd

�D2 �Sj j @
�Z

@xi
; (3)

where �Sj j ¼ 2�Sij
�Sij

� �1=2
, with �Sij ¼ 1=2 @�ui=@xj þ @�uj=@xi

� �
the filtered strain rate tensor. The model coefficient Cd is

determined dynamically using the Germano identity.20,21

This procedure uses a test filter, noted �̂, defined similarly to

the first one. The test filter width, noted D̂, is taken such as

D̂ ¼ 2�D. As first step, the dynamic procedure consists to

apply the test filter to Eq. (3) leading to

cuiZ � c�ui
�Z ¼ Cd

�D2
d
�Sj j @

�Z

@xi
; (4)

assuming that the coefficient Cd varies slowly in space. The

second step is to assume the same model coefficient when

the model (2) is written for the combination of both filters,

noted �̂�, leading to

cuiZ � �̂ui
�̂Z ¼ Cd

�̂D
2 �̂S
��� ��� @ �̂Z

@xi
; (5)

where �̂D is the width of the filter given by the composition of

both filters. Vreman et al.10 show �̂D ¼
ffiffiffi
5
p

�D for a Gaussian

filter. They also explain that the combination of two box fil-

ters is a “trapezoid” filter. However, it can be well approxi-

mated by a box filter with the same relation than above. The

spectral cut-off filter being idempotent, there is �̂D ¼ D̂. How-

ever, �̂D ¼ D̂ is often assumed independently of the filter

used. The influence of this assumption when a box filter is

used will be investigated below when the performance of the

dynamic Smagorinsky-type model will be measured. Finally,

subtracting Eq. (4) from Eq. (5) provides

Li ¼ CdMi; (6)

with

Li ¼ c�ui
�Z � b�ui

�̂Z (7)

and

Mi ¼ �̂D
2 �̂S
��� ��� @ �̂Z

@xi
� �D2

d
�Sj j @

�Z

@xi
: (8)

Assuming that the coefficient is constant over homogeneous

directions, Cd is then obtained with a least-squares averaging

procedure21

Cd ¼
hLiMii
hMiMii

; (9)

where the brackets indicate a statistical average over homo-

geneous directions of the flow. Note that, in the case of
FIG. 1. Scalar variance spectrum, EZ(k), with the location of the filters used

in this work.
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homogeneous isotropic turbulence, Cd is constant in the

whole domain. The dynamic Smagorinsky-type model is

very popular since the few number of needed parameters

makes it easy to implement, and since the dynamic computa-

tion of the model coefficient highly improves the accuracy in

shear flow regions by reducing the over-dissipation. How-

ever, it is known that SGS models only based on an eddy dif-

fusivity assumption lead to weak correlations between the

model and the SGS term.9 To improve the model, it has been

proposed to combine the Smagorinsky-type model with a

more accurate representation of the SGS term.9 This

approach defines the Clark model written as

Ti ¼ uiZ � �ui
�Z ¼

�D2

12

@�ui

@xj

@ �Z

@xj
þ Cc

�D2 �Sj j @
�Z

@xi
: (10)

The first term of the right-hand-side (RHS) defines the gradi-

ent model. This model is known to lead to very high correla-

tions with the SGS term but not to provide enough energy

transfer between grid scales and subgrid-scales. This leads to

unstable simulations when this model is used without an

additional eddy-diffusivity part.10 In Eq. (10), Cc is the

model coefficient. Adapting the Germano procedure, Cc can

be determined from the following relation:

Li ¼ CcMi þ Hi; (11)

where Li and Mi are always defined by Eq. (7) and Eq. (8),

respectively, and where Hi is a new term coming from the

gradient part of the model,

Hi ¼
�̂D

2

12

@ �̂ui

@xj

@ �̂Z

@xj
�

�D2

12

d@�ui

@xj

@ �Z

@xj
: (12)

Assuming that the coefficient is constant over homogeneous

directions, Cc is also obtained with a least-squares averaging

procedure

Cc ¼
hðLi � HiÞMii
hMiMii

: (13)

The DCM is thus defined.

To better understand the advantage of using the DCM

instead of the DSM, the performance of each model is meas-

ured from a priori tests. As already explained a box and a

spectral cut-off filters are used to reproduce the behavior of

centered finite differences and of spectral methods, respec-

tively. The models’ performances are analyzed in terms of

structural and functional performances.3 The structural per-

formance is defined as the model ability to describe locally

the SGS unknown term appearing in the resolved equation.

For the scalar, the SGS unknown term is the divergence of

the SGS scalar flux, @Ti/@xi, appearing in the scalar transport

equation (2). In the framework of optimal estimation

theory,22 the models structural performance is first evaluated

using the notion of an optimal estimator recently introduced

by Moreau et al.23 in the LES context. The starting point of

this idea is to define the quadratic error,

�Q ¼ h f � g /ð Þð Þ2i; (14)

as the relevant error to consider in LES.24 In this definition, f
is the SGS term to model and g is a model of f based on a

given set of variables /. The brackets indicate a statistical

average over a suitable ensemble. The concept of optimal es-

timator forecasts that any model g built on the set of varia-

bles / will lead to a quadratic error higher than a minimal

value. This minimal value is achieved when the model g is

equal to hf j/i, the expectation of the exact quantity f condi-

tioned with the set of variables /. The quantity h f j/i is then

defined as the optimal estimator of f for the set of variable /.

The error based on this optimal estimator, noted �irr , is

defined such as

�irr ¼ h f � hf j/ið Þ2i � �Q: (15)

It is called the irreducible error since no model using only /
as set of variables can lead to a smaller error. The optimal es-

timator theory allows to provide various informations on the

SGS models used in LES. First we can evaluate the quadratic

error of each model to see which one gives the best results in

modelling the SGS unknown term. The most suitable set of

variables to model the SGS term can also be determined by

comparing the irreducible error of different models. The set

of variables with the smallest irreducible error will be the

best candidate to design a model. Finally, the improvement

possibility of a given model can be determined. Indeed, if

the quadratic error of a given model is much higher than its

irreducible part, improvement can be expected (by modifica-

tion of the coefficient computation, for example). This con-

cept has already been used to improve the modeling of SGS

quantities needed for LES of combustion.14,15

Figure 2 shows the evolution with the filter width of the

normalized quadratic and irreducible errors of DSM and

DCM on the modeling of @Ti/@xi, for the box and the spectral

cut-off filter. In the following, the error computations are

always normalized by the statistical variance of the exact

SGS term. For DSM, the set of variables used to compute the

irreducible error is @
@xi

�Sj j @ �Z
@xi

� �n o
, whereas the DCM set of

variables is @
@xi

@�ui

@xj

@ �Z
@xj

� �
; @@xi

�Sj j @ �Z
@xi

� �n o
. On this figure, the

errors of the GM defined only with the first term of the RHS

in Eq. (10) is also added for comparison. For this model, the

set of variables is @
@xi

@�ui

@xj

@ �Z
@xj

� �n o
. First conclusions can then

be addressed. As expected, for both filter used, the quadratic

error of the structural models (DCM and GM) are smaller

than DSM quadratic error, showing that these models have

better structural performances. Moreover, the DCM and GM

quadratic errors are smaller than the DSM irreducible error.

This shows that the improvement of the structural perform-

ance of DSM cannot be expected without adding new quanti-

ties in its set of variables. Finally, since the DCM irreducible

error is the smallest one, it appears that the DCM set of vari-

ables is the best candidate to model @Ti/@xi. However, the

DCM quadratic error is significantly larger than its associ-

ated irreducible error, in particular, for large filter sizes.

These results show that a better model can potentially be
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formulated with the same set of variables, but that a substan-

tial improvement is needed to achieve this goal. Note that, in

the case of the box filter (Fig. 2(a)), the quadratic errors of

the dynamic models are computed for the exact value

�̂D ¼
ffiffiffi
5
p

�D and for the commonly used approximation �̂D ¼ D̂.

It is thus shown that the approximation �̂D ¼ D̂ leads to an

important deterioration of the structural performance of the

dynamic models with an important growth of the quadratic

errors.

The models performances are now evaluated in term of

functional performance. The functional performance repre-

sents the ability of the model to reproduce the action of the

SGS term on the transported quantity (here, the scalar field)

and not the term itself.3 In the scalar case, the action of the

SGS term is to allow the transfer between the resolved scalar

“energy,” �Z2, and the SGS scalar variance, ZZ � �Z �Z. From

the transport equation of �Z2,

@ �Z2

@t
þ �ui

@ �Z2

@xi
¼ D

@2 �Z2

@x2
i

� 2D
@ �Z

@xi

@ �Z

@xi
� 2

@ �ZTi

@xi
þ 2Ti

@ �Z

@xi
;

(16)

it appears that this transfer is controlled by the SGS scalar

dissipation, Ti@ �Z=@xi. The functional performance will thus

be defined as the model capacity to accurately evaluate this

term. To estimate the models functional performance,

the optimal estimation theory can be used. The quadratic and

the irreducible errors are now defined for the modeling of the

SGS scalar dissipation, Ti@ �Z=@xi. Figure 3 shows the evolu-

tion with the filter width of these quadratic and irreducible

errors. Since the DCM irreducible error is still the smallest

error, the DCM set of variables appears as the best candidate

to evaluate the SGS scalar dissipation. However, the DCM

quadratic error can be very important and even higher than

the DSM quadratic error when a spectral cut-off filter is

used. This shows a poor functional performance for DCM.

This confirms that an efficient model can potentially be for-

mulated with the DCM variables set, whereas it cannot be

expected with the DSM model. As expected, the GM per-

formance is deteriorated with the filter width growth. Indeed,

the gradient model was defined from the first term of a Tay-

lor series expansion used to approximate the filtering opera-

tion.25 However, for high filter sizes, the other terms are no

more negligible.

The functional performance is also studied from the evo-

lution of the mean SGS scalar dissipation, hTi@ �Z=@xii. Figure

4 shows the results for the box and spectral cut-off filters.

The mean SGS scalar dissipation, hTi@ �Z=@xii, is negative

showing that the transfers are from the large (resolved) scales

to the small ones. First, it is shown that GM under-predicts

the magnitude of hTi@ �Z=@xii in comparison with the DNS

results. This is the well-known problem for this model.

Indeed, this model is known to not provide enough dissipa-

tion, leading to unstable simulations.26 Conversely, the other

models are too dissipative with an over-prediction of the

magnitude of hTi@ �Z=@xii. DCM is even more dissipative than

DSM. It confirms that the DCM functional performance is

weak. Note that for the box filter, Figures 3(a) and 4(a) also

show the results when the approximation �̂D ¼ D̂ is done to

compute the dynamic coefficient. Again, it is shown that this

approximation deteriorates the dynamic models performance

with a growth of the quadratic error associated to a large

over-prediction of the magnitude of hTi@ �Z=@xii. These results

show the importance of using �̂D ¼
ffiffiffi
5
p

�D for the dynamic

procedure when a box filter is used. In the following, the

dynamic procedure using �̂D ¼ D̂ for the box filter will no

more be considered.

FIG. 2. Evolution of the quadratic errors

(solid line) of the models on the predic-

tion of @Ti/@xi and their associated irre-

ducible errors (dotted line) with the filter

width. For the box filter, the results are

shown for the dynamic procedure using
�̂D ¼

ffiffiffi
5
p

�D (solid symbols) and using
�̂D ¼ D̂ (open symbols).

FIG. 3. Evolution of the quadratic errors

(solid line) of the models on the predic-

tion of Ti@ �Z=@xi and their associated ir-

reducible errors (dotted line) with the

filter width. For the box filter, the results

are shown for the dynamic procedure

using �̂D ¼
ffiffiffi
5
p

�D (solid symbols) and

using �̂D ¼ D̂ (open symbols).
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This analyze based on the concept of optimal estimator

theory allows to show that the irreducible error of DSM is

generally higher than the quadratic error of the other models

for both functional and structural performances (Figs. 2 and

3). Since the irreducible error represents the smallest possi-

ble error for a given set of parameters, this shows that an

improvement of the modeling performance for the

Smagorinsky-type model cannot be expected. Conversely,

the irreducible error of DCM is the smallest irreducible error.

However, the DCM quadratic error can be significantly

larger than its irreducible part for both functional and struc-

tural performances. This shows that an improvement of the

modeling performance can be obtained by revisiting the pro-

cedure used to define the dynamic Clark model. Section IV

will be thus devoted to the formulation of a new dynamic

procedure for this model.

IV. A NEW DYNAMIC PROCEDURE FOR THE CLARK
MODEL

A. A dynamic procedure based on Taylor series
expansions

The starting point of the new dynamic procedure is a

Taylor series expansion of the filtering operation. This

approach has already been used by several authors to derive

the gradient model9 or to improve the modeling of the SGS

scalar variance.14 Here, the method to give an expansion for

fg as function of �f and �g (where f and g are quantities

describing flow fields) is briefly recalled (see Bedford and

Yeo25 for details).

In spectral space, the filtering operation is

��f ð~kÞ ¼ �Gð~kÞ�f ð~kÞ; (17)

where �f ð~kÞ is the Fourier transform of f ð~xÞ and ~k is the wave

vector. Considering a Gaussian filter, the kernel of this filter

is given in spectral space by

�Gð~kÞ ¼ exp �
�D2

24
k2

� 	
; (18)

which can be expanded as Taylor series (writing only the

first term),

�Gð~kÞ ¼ 1�
�D2

24
k2 þOð�D4Þ: (19)

Thus, the filtering operation (17) can be rewritten as

��f ð~kÞ ¼ �f ð~kÞ �
�D2

24
k2 �f ð~kÞ þ Oð�D4Þ: (20)

Writing now the Laplacian operator Lðf Þ ¼ @2f=@x2
i , the

inverse Fourier transform of Eq. (20) leads to

�f ¼ f þ
�D2

24
Lðf Þ þ Oð�D4Þ: (21)

Moreover, with similar considerations, the Taylor series

expansion of the function f can be written in spectral space as

�f ð~kÞ ¼ ��f ð~kÞ þ
�D2

24
k2��f ð~kÞ þ Oð�D4Þ: (22)

This allows to write

f ¼ �f �
�D2

24
Lð�f Þ þ Oð�D4Þ; (23)

in the physical space.

Now, writing Eq. (21) for the product function fg,

fg ¼ fgþ
�D2

24
LðfgÞ þ Oð�D4Þ; (24)

and using the Eq. (23) to replace f and g allows to write

fg ¼ �f �gþ
�D2

12

@�f

@xj

@�g

@xj
þOð�D4Þ: (25)

If only the first term of the RHS is considered, the gradient

model is obtained. This development has been done for the

Gaussian filter but it is also valid for the box filter. In fact, it

can be proven that all symmetric, non-negative filters can be

written as a convergent Taylor series.27 However, note that

the Taylor series expansion of the spectral cut-off filter leads

to divergent series because of its non-localness.3 For this rea-

son, it will be important to validate the model based on these

relations when a spectral cut-off filter is used.

Now, instead of neglecting the other higher order terms,

we propose to model these terms by Cc/ð�D; �f ; �gÞ, where Cc

is a coefficient to define. Equation (25) is then written as

FIG. 4. Evolution of the mean SGS sca-

lar dissipation, hTi@ �Z=@xii, with the fil-

ter width. For the box filter, the results

are shown for the dynamic procedure

using �̂D ¼
ffiffiffi
5
p

�D (solid symbols) and

using �̂D ¼ D̂ (open symbols).
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fg� �f �g ¼
�D2

12

@�f

@xj

@�g

@xj
þ Ccuð�D; �f ; �gÞ: (26)

This formulation is equivalent to a Clark model where u is

the model used to stabilize the gradient model. Thus the

Clark model of the SGS scalar flux, Eq. (10), can be written,

choosing f¼ ui, g¼Z and u being the Smagorinsky-type

model.

Since the previous operations depend only of the filter,

the same consideration can now be done at the test filter

level, leading to

bfg� f̂ ĝ ¼ D̂2

12

@ f̂

@xj

@ĝ

@xj
þ CcuðD̂; f̂ ; ĝÞ; (27)

assuming the same coefficient, Cc, and the same functional

form, u, to model the higher order terms. Taking f ¼ �ui,

g ¼ �Z, and u being the Smagorinsky-type model, Eq. (27)

writes as

c�ui
�Z � �̂ui

�̂Z ¼ D̂2

12

@ �̂ui

@xj

@ �̂Z

@xj
þ CcD̂

2 �̂S
��� ��� @ �̂Z

@xi
: (28)

This defines a relation between the Leonard-type term,c�ui
�Z � �̂ui

�̂Z, and other quantities available in LES. This rela-

tion can thus be used to compute the model coefficient Cc.

Assuming Cc constant over homogeneous directions, it can

be evaluated from a least-squares approximation according

to Lilly’s method.21 The new dynamic procedure is now

defined as

Cc ¼
hðLi � KiÞNii
hNiNii

; (29)

where Li is the Leonard-type term, Eq. (7), Ki ¼ D̂2

12
@ �̂ui

@xj

@ �̂Z
@xj

and

Ni ¼ D̂2 �̂S
��� ��� @ �̂Z

@xi
. This defines the new proposed dynamic Clark

model, referred as NDCM in the following. Note that this

new dynamic procedure is easy to implement from the clas-

sic dynamic procedure (13), because it corresponds only to

the suppression of the second term of the RHS in Eq. (8) and

Eq. (12).

B. Relation between Germano’s identity
and the proposed dynamic procedure

The classic dynamic procedure recalled by Eq. (4) to (8)

(for the Smagorinsky model) is based on the Germano’s

identity,

c�ui
�Z � b�ui

�̂Z ¼ cuiZ � �̂ui
�̂Z � cuiZ � c�ui

�Z
� �

: (30)

This relation (30) being exact, it is important to show that

the new proposed dynamic procedure stays consistent with

this identity. The two terms of the right-hand-side of

Eq. (30) are thus evaluated from the Taylor series expansions

(26) and (27). Writing the Taylor series expansion of the bar

filter for the term cuiZ by taking f¼ ui and g¼Z in Eq. (26)

leads first to

cuiZ ¼ c�ui
�Z þ

�D2

12

d@ui

@xj

@ �Z

@xj
þ Ccûð�D; ui; �ZÞ: (31)

This first relation leads to an evaluation of the second term

of the right-hand-side of Eq. (30), cuiZ � c�ui
�Z. Note that the

same result will be obtained with the first step of the classic

dynamic procedure. Now, in the relation (31), replacing the

term c�ui
�Z by the Taylor series expansion of the test filter

(Eq. (27) with f ¼ �ui and g ¼ �Z) leads to

cuiZ ¼ �̂ui
�̂Z þ D̂2

12

@ �̂ui

@xj

@ �̂Z

@xj
þ CcuðD̂; �̂ui; �̂ZÞ þ

�D2

12

d@ui

@xj

@ �Z

@xj

þ Ccûð�D; ui; �ZÞ: (32)

This relation leads thus to an evaluation of the first term of

the right-hand-side of Eq. (30), cuiZ � �̂ui
�̂Z. Thus, by subtract-

ing Eq. (31) from Eq. (32) and by taking u as the

Smagorinksy-type model, the relation (28) defining the new

proposed dynamic procedure is found. In other words, the

classic and the new proposed dynamic procedures for the

Clark model differ only from the evaluation of the termcuiZ � �̂ui
�̂Z in the Germano’s identity. Indeed, for the classic

dynamic procedure, this term is evaluated with the assump-

tion that the Clark model can be used with the same model

coefficient for the filter given by the combination of bar and

test filters. Conversely, for the proposed dynamic procedure,

this term is evaluated by using Taylor series expansions for

both filters successively.

For completeness, a comparison between the coeffi-

cients computed from the classic and the new proposed

dynamic procedure is performed. These coefficients are also

compared with an “exact” coefficient computed from the

DNS data. Indeed, from Eq. (10) and using a least-squares

approximation, a “exact” coefficient can be defined as

Cc ¼
hðTi � QiÞPii
hPiPii

; (33)

where Qi ¼ �D2

12
@�ui

@xj

@ �Z
@xj

and Pi ¼ �D2 �Sj j @ �Z
@xi

. Figure 5 shows the

evolution of these coefficients with the filter width. As

expected, the “exact” coefficient is not constant with the fil-

ter width even in such simple flow. This shows that a

dynamic procedure is required for accurate predictions. Fig-

ure 5 shows also that the new proposed dynamic procedure

leads to better agreement with the “exact” coefficient.

Indeed, this procedure allows to decrease the large over-

prediction of the coefficient magnitude due to the classic

dynamic procedure. Better performance can thus be expected

for NDCM.

C. Performance of the NDCM

The NDCM performances are now measured and com-

pared with the dynamic Smagorinsky-type and the dynamic

Clark models. To ensure that the model performance is not

dependent on the filter kernel, the performances are meas-

ured for the box and spectral cut-off filters. Indeed, as
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already written, the Taylor series expansion is formally valid

for box and Gaussian filters but not for spectral cut-off filter.

It is then important to valid the new dynamic procedure for

this filter. Again, the optimal estimation analysis is per-

formed to evaluate the capacity of the new model to accu-

rately predict the divergence of the SGS scalar flux, @Ti/@xi,

and the SGS scalar dissipation, Ti@ �Z=@xi. Figures 6 and 7

show the comparison of the model errors. Note that NDCM

and DCM have the same irreducible errors because these

models are based on the same set of variables. The NDCM

quadratic errors are the smallest quadratic errors in all the

cases, showing the improvement allowed by the new

dynamic procedure. In particular, the NDCM quadratic error

on the SGS scalar dissipation for the spectral cut-off filter is

much smaller than the DCM one (Fig. 7(b)). This shows an

important improvement of the functional performance of the

Clark model. Moreover, in all the cases, the NDCM quad-

ratic errors stay close to their irreducible errors, showing that

an improvement of the model cannot be performed without

adding new variables. Finally, the NDCM quadratic errors

are smaller than the DSM irreducible errors for both the SGS

scalar flux and the SGS scalar dissipation. This means that

any improvement of the Smagorinsky model (without new

variable) will reach the structural and functional performan-

ces of NDCM.

The functional performance can also been studied at a

global view. Figure 8 shows the evolution of the mean SGS

scalar dissipation with the filter width. The improvement of

the functional performance of the model implies a decreasing

of the important over-prediction of the SGS scalar dissipa-

tion magnitude observed with DCM. Thus, the global SGS

scalar dissipation predicted by the new model (NDCM) stays

close to the DNS results, whereas DCM is even more dissi-

pative than DSM.

V. A POSTERIORI (LES) TESTS

A. Description of the LES test case

The new model for Ti has been implemented and is

now tested by performing LES. In this test case, only the

scalar is solved by LES. The velocity field is still solved by

DNS. Thus, at each time step, the velocity field is extrapo-

lated from the DNS to the LES mesh in spectral space. This

spectral extrapolation is equivalent to a spectral cut-off fil-

ter. The resulting filtered velocity field is then used to

advance the filtered scalar field. The advantage of this pro-

cedure is that no SGS model is needed for the Navier-

Stokes equations and there is then no modeling error on the

velocity field used in the filtered scalar equation. Thus,

when the LES data are compared with the filtered DNS

data, the difference will be only due to the model used for

the SGS scalar flux.

The numerical methods and the flow configuration are

similar to the ones described in Sec. II. The velocity field is

still resolved on 5123 grid points. Two LES meshes are used

to investigate the performance of the models: 643 and 323

grid points. Moreover, to instigate the models performance

as a function of the molecular Schmidt number, two other

types of LES are performed for Sc¼ 0.2 and Sc¼ 5.0 on a

mesh composed by 643 grid points. In all the LES, the initial

scalar field is obtained by spectral extrapolation of the initial

DNS scalar field to the LES mesh. Various LES are per-

formed using DSM, DCM, and NDCM as SGS model. All

these LES will be compared with the results of a 5123 grid

points DNS, except for the case with Sc¼ 5.0. Indeed, in this

case, the Batchelor scale is too small to be able to perform a

DNS with a mesh composed by 5123 grid points. The results

will be thus compared with a well-resolved 5123 grid points

LES using NDCM as SGS scalar flux model for this case.

FIG. 5. Evolution of the Clark model

coefficients with the filter width. The

coefficients are evaluated from the clas-

sic dynamic procedure, Eq. (13), the

new proposed dynamic procedure, Eq.

(29), and from the DNS field, Eq. (33).

FIG. 6. Evolution of the quadratic errors

(solid line) of the models on the predic-

tion of @Ti/@xi and their associated irre-

ducible errors (dotted line) with the filter

width.
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Note, however, that this well-resolved LES is denoted as

“DNS” below for convenience. Since spectral method is

used in these tests, the implicit filtering is equivalent to a

spectral cut-off filter. The LES results will be then compared

with the DNS filtered results using a spectral cut-off filter.

Note that the LES cases solved on 643 and 323 grid points,

for Sc¼ 1.0, are compared with the same DNS database.

Only the width in the filtering operation of the DNS data is

changed in these cases. As already explained, this is a severe

test case since the Taylor series expansions, which are the

starting point of the new procedure, are formally valid only

for symmetric and non-negative filters.

B. LES results

To first compare the LES performed, Figure 9 shows the

time evolution of the LES resolved scalar variance,

h �Z02i ¼ h �Z �Zi � h �Zih �Zi. The LES resolved scalar variance is

compared with the variance of the filtered scalar computing

from a spectral cut-off filtering of the DNS data. Moreover,

DNS (no-filtered) scalar variance, hZ02i¼ hZ2i� hZi2, is also

shown. The filtered DNS scalar variance is always smaller

than the DNS (no-filtered) scalar variance because the fluctu-

ations smaller than the filter width are not taken into account.

The gap between the filtered DNS scalar variance and the

DNS scalar variance is thus higher for higher filter width

(Figs. 9(a) and 9(b)) but also for higher Schmidt number

because the range of small scales is broader with a smaller

Batchelor scale (Figs. 9(a) and 9(d)). Conversely, the differ-

ence between the filtered DNS scalar variance and the DNS

scalar variance is not visible for the case with Sc¼ 0.2

because the Batchelor scale is larger for this case and the part

due to subfilter scales is negligible (Fig. 9(c)). The DCM

resolved scalar variance is always strongly smaller than the

filtered DNS scalar variance. This is because DCM over-

predicts the transfer between the resolved scales and the sub-

grid scales. This behavior was already found in the a priori
tests, when the over-dissipation of DCM for a spectral cut-off

filter was observed. As expected, the new dynamic procedure

(NDCM) allows to correct this behavior with a weaker over-

prediction of the decreasing of the resolved scalar variance.

Finally, NDCM leads generally to similar or better agreement

with the filtered DNS than DSM. In particular, DSM predicts

a large over-dissipation similar to DCM for the some cases:

Sc¼ 1.0 and Sc¼ 5.0 with 643 grid points.

For further analysis, the scalar variance spectrum (Fig-

ure 10) and the scalar probability density function (PDF, Fig-

ure 11) are computed at t¼ 0.1. This time corresponds

roughly to a mixing state close to the equipartition of the sca-

lar value on a range from 0 to 1 for the DNS results (see Fig-

ure 11). As shown by Fig. 10, DSM and DCM under-predict

the scalar variance spectrum at the smallest resolved scales

(highest resolved wave numbers), whereas NDCM stays

close to the DNS at all the resolved scales. For DCM, this is

due to the over-prediction of the global SGS scalar dissipa-

tion, whereas for DSM, this is probably due to an incorrect

prediction of the local SGS scalar dissipation. Indeed, for

some cases (Sc¼ 1.0 on 323 grid points, for example), the

global SGS scalar dissipation predicted by DSM is similar to

the global SGS scalar dissipation predicted by NDCM with

the same variance decrease (Fig. 9(b)). However, the a priori
tests had shown a weak local functional performance for

DSM with a large quadratic error on the prediction of the

SGS scalar dissipation in comparison with NDCM (Fig. 7).

This is what is found again in these a posteriori tests with

the comparison of the scalar variance spectrum. Note that

FIG. 7. Evolution of the quadratic errors

(solid line) of the models on the predic-

tion of Ti@ �Z=@xi and their associated ir-

reducible errors (dotted line) with the

filter width.

FIG. 8. Evolution of the mean SGS sca-

lar dissipation, hTi@ �Z=@xii, with the fil-

ter width.
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this point underlines that a comparison of global SGS scalar

dissipations in a priori tests is not enough to understand the

model performance, and that measurements of local perform-

ance (as performed with the quadratic errors analysis) are

also needed. The SGS scalar flux model performance will

have consequences on the local mixing prediction as it can

be observed with the scalar PDF (Figure 11). Thus, the over-

prediction of the SGS scalar dissipation due to DCM and

DSM implies an over-prediction of the mixing. As conse-

quences, the part of unmixed fluid, �Z � 0 or �Z � 1, is under-

predicted with smaller PDF values than the filtered DNS,

whereas the part of fully mixed fluid, �Z � 0:5, is over-

predicted with higher PDF values than the filtered DNS.

NDCM also over-predicts the mixing, but the over-

FIG. 9. Evolution of the LES resolved

scalar variance, h �Z02i, with time. The fil-

tered and no-filtered DNS scalar varian-

ces are also shown for comparison.

FIG. 10. Scalar variance spectrum, EZ(k)

at t¼ 0.1.
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prediction is weaker. In particular, the part of unmixed fluid

is better predicted than with DCM and DSM.

Finally, the influence of the SGS scalar flux model on

the time correlation of the LES resolved scalar can be stud-

ied. Indeed, subgrid-scales contribute to temporal decorrela-

tion of the resolved scales. The SGS model has thus to lead

to a correct temporal decorrelation to reproduce correct

subgrid scales effects.28 The time auto-correlation of the

LES resolved scalar is defined as

Cð �ZÞðtÞ ¼
h �Z0ð~x; t0Þ �Z0ð~x; tÞi

h �Z02ð~x; t0Þih �Z02ð~x; tÞið Þ1=2
; (34)

FIG. 11. PDFof the LES resolved scalar

at t¼ 0.1. The PDF of the DNS filtered

scalar is also shown for comparison.

FIG. 12. Time correlation of the LES

resolved scalar, Cð �ZÞ, computed by Eq.

(34). The correlation computed from the

filtered and no-filtered DNS scalar is

also shown for comparison.
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where �Z0 is the scalar fluctuation field. Figure 12 shows the

evolution of Cð �ZÞ for the different LES. The correlation has

been computed taking t0¼ 0.1, i.e., when the scalar field is

close to the equipartition of the scalar value on a range from

0 to 1. The time correlation for filtered and no-filtered DNS

data is also shown for comparison. The time correlation of

the filtered DNS data stays always higher than the time cor-

relation of the no-filtered DNS data. This is because only the

large scales are taken into account when the time correlation

is computed with the filtered DNS data and these large scales

are known to be better correlated than small scales. Note that

the difference between filtered and no-filtered DNS data is

not visible for Sc¼ 0.2 because the part of subfilter scales is

reduced in this case. NDCM seems to lead to better agree-

ment with the filtered DNS data. Indeed, DCM and DSM

lead to higher correlations whereas NDCM predicts faster

decorrelation than the other models at the beginning. This is

probably due to a better prediction of the mixing activities at

the smallest resolved scales, as already shown by studying

scalar variance spectra. Thus, the smallest resolved scales

contribution to temporal decorrelation is better reproduced

by NDCM than by DCM and DSM. In future works, further

analysis could be carried out by studying two-points time

correlations,28 as well as Lagrangian time correlations.29

VI. CONCLUSION

The SGS scalar flux model was evaluated using the con-

cept of optimal estimators. This allows to measure the struc-

tural and functional performances of SGS models. It appears

more suitable to formulate a SGS scalar flux model by using

a dynamic Clark model approach. However, it was found

that the classic dynamic procedure used with the Clark

model leads to large errors in the predictions. Indeed, the

dynamic Clark model shows a better correlation with the

DNS than the dynamic Smagorinsky model, but it has a low

accuracy to model the subgrid-scale scalar dissipation. Thus,

it appears that the dynamic procedure used is not fully opti-

mized. Starting from Taylor series expansions, a new

dynamic model formulation is proposed. A priori tests of ho-

mogeneous isotropic turbulence showed that the new model

substantially improves the predictive accuracy. This is con-

firmed by a posteriori tests where the new model is imple-

mented and where various scalar statistic quantities are

compared with filtered DNS results.
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