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In this work, modeling of the near-wall region in turbulent flows is addressed. A new wall-layer
model is proposed with the goal to perform high-Reynolds number large-eddy simulations of wall
bounded flows in the presence of a streamwise pressure gradient. The model applies both in the
viscous sublayer and in the inertial region, without any parameter to switch from one region to the
other. An analytical expression for the velocity field as a function of the distance from the wall is
derived from the simplified thin-boundary equations and by using a turbulent eddy coefficient with
a damping function. This damping function relies on a modified van Driest formula to define the
mixing-length taking into account the presence of a streamwise pressure gradient. The model is first
validated by a priori comparisons with direct numerical simulation data of various flows with and
without streamwise pressure gradient and with eventual flow separation. Large-eddy simulations are
then performed using the present wall model as wall boundary condition. A plane channel flow and
the flow over a periodic arrangement of hills are successively considered. The present model
predictions are compared with those obtained using the wall models previously proposed by
Spalding, Trans. ASME, J. Appl. Mech 28, 243 !2008" and Manhart et al., Theor. Comput. Fluid
Dyn. 22, 243 !2008". It is shown that the new wall model allows for a good prediction of the mean
velocity profile both with and without streamwise pressure gradient. It is shown than, conversely to
the previous models, the present model is able to predict flow separation even when a very coarse
grid is used. © 2011 American Institute of Physics. #doi:10.1063/1.3529358$

I. INTRODUCTION

Because of the development of computational resources,
it is current to simulate high Reynolds number flows in com-
plex geometry for practical engineering applications related,
for instance, to aeronautical or car industry. To adequately
represent the flow unsteadiness, large-eddy simulation !LES"
methods are more and more often used. It is well known that
the scaling of the near-wall structure is strongly dependent
on the Reynolds number, so a very refined grid needs to be
used close to the wall if one wants to fully resolved this flow
region. An estimation of a LES calculation total cost was
provided by Chapman.1 He showed that the cost of a wall-
resolved LES is proportional to Re2.4. The near-wall reso-
lution is thus a strong limit for the LES methods at high
Reynolds number. To bypass this limitation, various methods
have been proposed. A first approach consists of keeping a
fine grid at the wall but solving simplified set of equations
weakly coupled to the outer flow. This approach was first
employed by Balaras et al.,2 who employed a simplified set
of equations, using thin-boundary-layer assumption, in the
inner layer. Another example is the detached eddy simulation
!DES" method introduced by Spalart et al.,3 which switches
from one turbulence model in the core of the flow to another
one in the wall vicinity. A lot of works has more recently
been devoted to the development of the so-called hybrid
methods, using RANS equations in the inner layer, while
LES equations are solved away from the wall !see Fröhlich
and von Terzi,4 for a recent review". Another approach con-

sists in using a relatively coarse grid at the wall and to mimic
the dynamical effects of the energy-containing eddies in the
wall-layer through a wall model. The model allows then to
specify proper wall boundary conditions by enforcing the
wall shear-stresses value. Such models were first employed
by Schumann5 in a channel flow simulation. Modification of
Shumann’s model has been proposed later by Grötzbach6 and
Spalding,7 for example. A review of wall model used in LES
can be found in various references.8–10 Note that previous
wall stress models made the assumption of an equilibrium
boundary-layer, which is not valid in many complex flows, in
particular, flows with boundary-layer separation. The favor-
able or adverse pressure gradient indeed acts as a nonequi-
librium term for the boundary-layer. To take this effect into
account, Manhart et al.11 proposed a model including the
streamwise pressure gradient. However, the Reynolds
stresses were neglected in their formulation limiting the va-
lidity range of the model to the viscous sublayer.

The purpose of the present work is to extend the work of
Manhart et al.11 with a new model for the streamwise veloc-
ity taking into account both the streamwise pressure gradient
and the Reynolds stresses effects. This new model provides
an analytical formulation of the streamwise velocity varia-
tion as a function of the distance to the wall. After the pre-
sentation of the model formalism !Sec. II", it is first validated
a priori by comparison with direct numerical simulation
!DNS" data !Sec. III". Using a so-called a posteriori ap-
proach, the model has then been implemented to perform
LES of various boundary-layer flows !Sec. IV". The consid-

PHYSICS OF FLUIDS 23, 015101 !2011"

1070-6631/2011/23!1"/015101/12/$30.00 © 2011 American Institute of Physics23, 015101-1

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp

http://dx.doi.org/10.1063/1.3529358
http://dx.doi.org/10.1063/1.3529358
http://dx.doi.org/10.1063/1.3529358


ered boundary-layer flows consist in a periodic channel and a
periodic arrangement of hills. The results are compared with
the wall-resolved LES of Kravchenko et al.12 for the channel
flow and the wall-resolved LES of Temmerman et al.13 and
Breuer et al.14 for the periodic hill configuration. The model
performances are evaluated by comparing its predictions
with those obtained with the previous models, respectively,
proposed by Spalding7 and Manhart et al.11 It is shown that
the strength of the present wall model lies in its ability to
predict flow separation and reattachement even with a coarse
grid.

II. GOVERNING EQUATION AND WALL MODELING
STRATEGY

One of the starting point for a wall model is to consider
averaged Navier–Stokes equations. In the LES case, it con-
sists in assuming that the filtered velocity is equivalent to the
averaged velocity close to the wall. Piomelli10 showed that
this assumption can be done if cells are coarse enough close
to the wall to contain a large number of eddies and if the
time step is much larger than the time-scale characteristic of
the near-wall eddies. In the boundary-layer case, a simplified
averaged set of partial equations derived from the Navier–
Stokes equations can be considered. This set of equations,
known as the unsteady thin-boundary-layer equations8
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In this equation, " and ! are, respectively, the fluid kinematic
viscosity and the density, assumed to be constant. Ui is the
mean velocity in directions xi and y indicates the direction
normal to the wall. The Reynolds stresses are modeled
through a turbulent eddy viscosity assumption noted "t!x! , t".
The left-hand side of the previous equation corresponds to
the nonequilibrium terms. Starting from Eq. !1", Wang and
Moin15 compared two simpler models to a full TBLE model:
first, totally neglecting the left-hand side and second includ-
ing only the streamwise pressure gradient. They showed that
the inclusion of the pressure gradient allows for a significant
improvement of the model predictions. In the present work,
we thus reduce the left-hand side of the equation to the
pressure gradient term. The streamwise pressure gradient is
furthermore assumed to be constant in the wall-normal direc-
tion. Under these assumptions, the simplified mean stream-
wise momentum equation can be integrated analytically in
the wall normal direction,
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with U the mean streamwise velocity and #w the wall-shear
stress defined as #w=!" #U

#y 'y=0.

A. Near-wall scaling of Manhart et al.

Next, momentum equation Eq. !3" is scaled with the ex-
tended inner scaling proposed by Manhart et al.11 for the
wall-layer. This scaling is denoted by a superscript !. Actu-
ally, the scaling takes into account both the wall shear stress
and the streamwise pressure gradient. Nondimensional ve-
locity U! and nondimensional length y! are thus defined by

U! =
U

u#p
, y! =

yu#p

"
, !4"

where u#p=(u#
2+up

2 is a combined velocity using the classi-
cal friction velocity at the wall, u#=('#w' /!, and an addi-
tional velocity based on the streamwise pressure gradient
up= '!$ /!2"!#P /#x"'1/3 proposed by Simpson.16 One of the
advantages of this scaling is that it stays valid even for sepa-
ration or reattachment region as opposed to the classical wall
coordinates !where u#=0". Moreover, a nondimensional pa-
rameter %=u#

2 /u#p
2 " #0,1$ can be used to quantify the pre-

ponderant effect between shear stress and streamwise pres-
sure gradient. Hence, %=0 corresponds to a zero shear stress
flow, a separation point, and %=1 corresponds to a zero pres-
sure gradient flow.

From dimensional equation !3", the following nondimen-
sional formula can be derived using the extended scaling:

#U!

#y! =
sign) #P
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*!1 − %"3/2y! + sign!#w"%

)1 +
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"
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The comparison between the pressure gradient sign and the
wall shear stress sign allows to know if the pressure gradient
is adverse or favorable.

B. Turbulent eddy viscosity model

Now, the eddy viscosity "t needs to be defined. It is
usually modeled using an ad hoc damped mixing-length to
approximate both the linear and the inertial region. Even if
the original van Driest formula17 predicts very well the ve-
locity profile for boundary-layers with zero streamwise pres-
sure gradient, it has given unsatisfactory results for nonzero
pressure gradient. This has prompted many investigators18,19

to propose modifications for this turbulent viscosity to take
the pressure gradient into account. Based on the works of
Nituch et al.20 and Balaras et al.,2 the eddy viscosity is here
defined by

"t

"
= &y!#% + y!!1 − %"3/2$'!1 − e−y!/!1+A%3""2, !6"

where & is the von Kàrmàn constant. The constants A and
' are determined through a priori results as discussed in
Sec. III.

The last two equations, !5" and !6", allow to relate the
streamwise velocity with the wall-normal coordinate, taking
into account both streamwise pressure gradient and velocity
gradient at the wall. They constitute the present wall model
allowing to determine the wall shear stress, which is the
needed unknown quantity in practical LES.
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III. A PRIORI VALIDATION

A. Asymptotic behavior

To validate the model for U!, two asymptotic cases are
first considered. First, in the viscous sublayer, y! is very
small and the turbulent viscosity can be assumed to be zero.
Equation !5" can be integrated in the wall-normal direction
y!, to get a polynomial expression for the velocity profile,

U! = sign) #P

#x
* !1 − %"3/2

2
y!2 + sign!#w"%y!. !7"

The model proposed by Manhart et al.11 is thus recovered
with the streamwise pressure introducing a quadratic term,
neglected in the classical linear wall law. A second
asymptotic case consists in considering the inertial region
with zero streamwise pressure gradient. In this case, the
damping function of the turbulent viscosity is close to one
and %=1. The streamwise velocity then follows the classical
logarithmic law,

U! =
sign!#w"

&
ln!y!" + Cste. !8"

B. Comparison with DNS data

To check the validity range of the present model de-
scribed by Eqs. !5" and !6", a priori tests based on DNS
calculations for different flow configurations are next
presented. DNS results are used to validate both turbulent
viscosity and velocity models in the extended coordinate sys-
tem. Three different configurations are used: a simple peri-
odic channel flow at different Reynolds numbers !Re#=395
and 590" !CF", a separating turbulent boundary-layer along a
flat plate !BL", and a channel flow with constrictions !PH".
Channel flow calculations were performed by Moser et al.21

and the last two DNSs were done by Manhart et al.11 All
DNS calculations are periodic in the spanwise direction so
the average fields depend only on the streamwise and wall
normal directions. This allows to calculate % at the wall at
each streamwise position. The value of % is then used to
classify the configuration.

FIG. 1. Comparison of "t /" for %=1, DNS channel flow.

FIG. 2. Comparison of "t /" for %=0, separation point.

FIG. 3. Comparison of the mean nondimensional velocity profile %=1.

FIG. 4. Comparison of the mean nondimensional velocity profile for
%=0.3 and sign!#w" · sign!#P /#x"(0.
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1. Turbulent viscosity

Figure 1 shows the turbulent viscosity extracted from
DNS data through the relation "t=−+u!v!, / !#U /#y" in the
%=1 case !CF" corresponding to a zero pressure gradient
flow. Here u! and v! are the velocity fluctuations in the
streamwise and wall-normal directions and the brackets are
the averaging operator both in time and along the homog-
enous directions. The computed turbulent viscosity is com-
pared with the model given by Eq. !6". A good agreement
between the model and the DNS data is found for distance
from the wall as far as y!-60. This indicates that the model
for the turbulent viscosity is correct in the absence of stream-
wise pressure gradient. We next consider the cases where
separation occurs and Fig. 2 shows the turbulent viscosity
profile at the separation point !%=0". From these DNS data,
the best choice for ' is found to be '=0.78 which is higher
than the previously chosen value20 of '=0.5. Moreover,
Figs. 1 and 2 allow to validate the damping function given
by !1−e−y!/!1+A%3"": the best fit is obtained for A=17. Note
that for a value of %=1, i.e., without pressure gradient, this
gives a damping function equal to !1−e−y!/18" which is very
close to the damping functions used by Wang and Moin15

and by Cabot and Moin:8 !1−e−y!/19" and !1−e−y!/17", respec-
tively. It is interesting to note that the damping function de-
pends on the value of %, that is to say on the intensity of the
pressure gradient, as it was suggested in previous studies.18

2. Mean velocity profile

Figures 3–5 show the mean velocity profiles in the ex-
tended scaling for different values of %. Knowing the value
of %, the nondimensional velocity U! can then be computed
as a function of the nondimensional distance from the wall
y!, from Eqs. !5" and !6". These profiles are superposed with
the DNS data on the figures. The classical attached flow with
zero pressure gradient is first represented on Fig. 3. It is well
known that the law of the wall has a linear part in the viscous
region and the classical logarithmic profile in the inertial
region. A very close agreement between the model and the
velocity profile from the channel DNS calculation is ob-
served. In particular, the buffer layer is well predicted.

We next consider the pressure gradient dominated situa-
tion, %=0.3. It is necessary to distinguish between two cases
depending on the pressure gradient sign in comparison

with the wall shear stress signs. Figures 4 and 5 show,
respectively, the favorable and adverse pressure gradient
cases. In both cases, our extended wall model approx-
imates the profiles correctly. In particular, the reverse flow
existing close to the wall after the separation point
#sign!#w" · sign!#P /#x")0$ is well predicted !see zoom on
Fig. 5, left". Finally, when the wall shear stress is zero, cor-
responding to a separation point !%=0", the model predicts
the velocity correctly for all DNS data cases !see Fig. 6".

IV. A POSTERIORI TESTS

In this section, LESs are performed using various wall
models as wall boundary condition. To test the performance
of the present model given by Eqs. !5" and !6", it is com-
pared with two previous wall models: the model proposed by
Spalding7 !denoted as SWM" and the one by Manhart et al.11

!denoted as MPB". The choice of these two models is moti-
vated by the fact that SWM model assumes zero longitudinal
pressure gradient and that MPB model, although taking into
account longitudinal pressure gradients, is only valid if the
first computational point is located in the viscous layer.

Spalding’s wall model !noted SWM" uses a Taylor series
expansion to describe, with a unique function, the entire tur-
bulent boundary-layer: viscous region, buffer layer, and loga-
rithmic region. Using the classical wall units,

FIG. 5. Comparison of the mean nondimensional velocity profile for %=0.3 and sign!#w" · sign!#P /#x")0.

FIG. 6. Comparison of the mean nondimensional velocity profile at the
separation point %=0.

015101-4 Duprat et al. Phys. Fluids 23, 015101 !2011"

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



U+ =
U

u#
, y+ =

yu#

"
, !9"

Spalding’s law writes as
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6
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where &=0.42 is the von Kàrmàn constant and E a constant
characterizing the wall roughness: E=9.1 for a smooth wall.
Note that this wall function is only valid for flows with zero
pressure gradient such as the classical channel flow. As pre-
viously pointed out !see Sec. III A", Manhart et al.11 is iden-
tical to our model when the Reynolds stresses are neglected
in front of the viscous stress. It is thus restricted to compu-
tations with a first computational point away from the wall
located within the viscous sublayer. This model is given,
Eq. !7", and referred to as the MPB model. Note that this
wall model has only been validated through priori tests by
Manhart et al.11

A. Numerical methods and subgrid-scale model

The governing equations are solved using the open
source CFD code, OPENFOAM. It uses finite volume methods
and has been extensively validated for LES.22–24 The spatial
discretization scheme is second-order accurate and uses cen-
tered interpolations and differentiations. The temporal
scheme is a second-order accurate Crank–Nicholson scheme.
The Rhie and Chow momentum interpolation25 is applied to
avoid pressure-velocity decoupling. The Poisson equation for
the pressure increment is solved iteratively using incomplete
Cholesky conjugate gradient methods. Parallelization is
implemented via domain decomposition.

The application of the spatial filtering operation to the
incompressible Navier–Stokes equations leads to the follow-
ing filtered equations:

# ūi

#t
+

# ūiūj

#xj
= −

1
!

# p̄

#xi
+

#

#xj
)"

# ūi

#xj
− #ij* , !11"

where #ij =uiuj −ui uj represents the unknown subgrid-scale
stresses, which has to be modeled in LES. In this study, the
subgrid-scale !SGS" model is based on the eddy-viscosity
concept, leading to

#ij − 1
3*ij#kk = − 2"SGSS̄ij , !12"

where S̄ij =1 /2!#ūi /#xj +#ūj /#xi" and "SGS is the subgrid-
scale !SGS" viscosity. The contribution #kk is lumped into a
modified pressure, P̄= p̄− 1

3#kk, and therefore does not need to
be accounted for. Using the SGS viscosity, the filtered equa-
tions lead to the LES equations,

# ūi

#t
+

# ūiūj

#xj
= −

1
!

# P̄

#xi
+

#

#xj
%!" + "SGS"

# ūi

#xj
& . !13"

The SGS model we used is the model of Yoshizawa and
Horiuti26 based on a transport equation for the subgrid ki-
netic energy, kSGS=1 /2#kk. This model was here chosen be-
cause models with transport equation have shown to yield
better results when very loose grid are used.22 Once kSGS is
determined, the SGS viscosity is subsequently derived as

"SGS = Ck+(kSGS, !14"

where += !+x+y+z"1/3 is a characteristic length scale, taken
proportional to an averaged grid size. In most of this work,
Ck is taken constant with Ck=0.07 as recommended by
Yoshizawa and Horiuti.26 To check the influence of the
subgrid-scale model, some LES computations are performed
with a variable Ck determined with the dynamic procedure
proposed by Ghosal et al.27 Note that the SGS model imple-
mentation in OPENFOAM has already been extensively vali-
dated by Fureby et al.22

In a finite volume solver, Eq. !13" is rewritten as

#

#t)0 0 0
V

ūidV* +0 0
Sj

ūiūjdSj

= −
1
!
0 0 0

V

# P̄

#xi
dV +0 0

Sj

!" + "SGS"
# ūi

#xj
dSj , !15"

where V is the volume of the cell and Sj is the surface of the
cell normal to the direction j. The wall model is then used to
define the boundary condition at the wall for the molecular
and turbulent viscosity term !"+"SGS"#ui /#y. For the cells in
contact with the wall, this term is rewritten to enforce the
wall normal velocity gradient to correspond to the shear
stress value given by the wall model. This is performed by
using a corrective parameter "corr, homogeneous to a viscos-
ity, such that

FIG. 7. Sketch of the channel flow test case.

FIG. 8. Sketch of the periodic hill flow test case.

015101-5 A wall-layer model for large-eddy simulations Phys. Fluids 23, 015101 !2011"

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



!" + "SGS"
# ūj

#y
= !" + "SGS + "corr") # ūj

#y
*

wall

"

, !16"

where !#ūj /#y"wall
" is the velocity gradient computed by the

code. To provide the correct velocity derivative in the first
cell at the wall, "corr is thus given by:

"corr =
#w

!) # ūj

#y
*

wall

" )1 +
"SGS

"
* − " − "SGS, !17"

where #w is determined locally by the wall model using the
filtered velocity as a local averaged velocity close to the
wall.

B. Simulated flow geometries

We first consider the classical turbulent channel flow
which has been extensively used as a simple test case for
wall models without streamwise pressure gradient effects.
Wall-resolved LES of Kravchenko et al.12 are here used as
reference. Similarly to these LESs, simulations are thus per-
formed at Re#=4000, Reynolds number based on the channel
half-width h, the friction velocity u#, and the kinematic vis-
cosity ". The size of the computational domain is the same as
for the TBLE simulations of Cabot and Moin,8 Lx=2,h, Ly

=2h, and Lz=2, /3h in the streamwise x, wall-normal y, and
spanwise z, directions, respectively !see Fig. 7". The objec-
tives of the present model are to be used in complex flow
geometries at high Reynolds number, that is to say with a
loose grid. Similarly to Cabot and Moin,8 the grid spacing is

FIG. 9. Profiles of the mean streamwise velocity in wall units for the 643 mesh !left" and the 323 mesh !right".

FIG. 10. Profiles of the streamwise !top-left", normal !top-right" and spanwise !bottom" velocity component rms for the 643 mesh.

015101-6 Duprat et al. Phys. Fluids 23, 015101 !2011"

Author complimentary copy. Redistribution subject to AIP license or copyright, see http://phf.aip.org/phf/copyright.jsp



thus taken uniform in each direction !without any wall-
refinement", and two different discretizations are thus used
which are rather loose by current standard for the channel
flow. The first grid consists in 643 computational cells with a
first grid point located in the buffer layer at 25 wall units
away from the wall corresponding with yf

+=25. The second
grid is even coarser and composed of 323 computational cells
with a first grid point in the inertial region such as yf

+=120. It
is probably representative of resolutions used in high
Reynolds numbers, complex flow configurations. The statis-
tical quantities are obtained by averaging through homoge-
neous directions !spanwise and streamwise" and by averag-
ing in time over 160 crossing times of the computational
domain.

The second simulated flow is the flow over a periodic
arrangement of hills !see Fig. 8". It is a challenging flow for
wall models since it exhibits a boundary-layer with stream-
wise pressure gradient due to the streamwise curvature, lead-
ing to separation and reattachment processes with a large
backflow region. The proper representation of the flow sepa-
ration constitutes a particularly demanding test. This test
case is part of the ERCOFTAC Database collection and was
already part of the ERCOFTAC/IAHR/COST Workshop on
Refined Turbulence Modeling.28 A detailed investigation of
this flow was undertaken by Fröhlich et al.29 based on LES
computation. In conformity with this test case, the dimen-
sions of the geometry are Lx=9h, Ly =3.035h, and Lz=4.5h
!h hill height" as recommended by Mellen et al.30 for LES or
hybrid LES-RANS simulations. The Reynolds number based
on h, the bulk velocity Ub, and the viscosity " is fixed to
10 595. In the streamwise !denoted by x" and spanwise !de-
noted by z" directions, periodic boundary conditions are
used. Wall models are applied on the hill surface as well as
on the top-wall of the channel. For a given streamwise posi-
tion x, 33 discretization points are used in the y direction
!denoted by vertical direction" and these points are distrib-
uted with a constant expansion ratio between two adjacent
cells. Three grids !noted A, B, and C" with different expan-
sion rates are chosen such that the distance yf

+ !expressed in
standard wall units" of the first computational point away
from the hill wall is yf

+=5 for grid A, yf
+=40 for grid B, and

yf
+=100 for grid C. Note that the total number of computa-

tional points is therefore identical for the three grids with

nx=118, ny =33, and nz=96 in the streamwise, vertical, and
spanwise directions, respectively. To obtain reliable statistics,
the quantities are averaged in time over 140 crossing times
of the computational domain, in conformity with the litera-
ture recommendations, and along the spanwise direction. The
results are compared with the wall-resolved LES performed
by Temmerman et al.13 !TL" and Breuer et al.14 !BM". These
wall-resolved LESs were performed with 196-128-186
grid points and 280-220-200 grid points, respectively, us-
ing a yf

+ around 1. It is important to point out that our com-
putational grid has 12.5 times and 33 times less points than
the two wall-resolved LES performed by Temmerman et al.13

and Breuer et al.,14 respectively.

C. Results and discussions

1. Channel flow

The channel flow LESs are performed using the three
different wall models: the present model, Eqs. !5" and !6",
SWM model,7 and MPB model.11 In addition, results of the
computations without any wall model are also shown for
comparison: these are called no-slip boundary conditions.
Results are compared with the wall-resolved LES computa-
tion by Kravchenko et al.,12 as already done by Cabot and
Moin8 to validate their TBLE simulations.

We first focus on the mean velocity profile and compare
the behavior of the various wall models for the two grid
resolutions 643 !yf

+=25" and 323 !yf
+=120". The results are

displayed on Fig. 9 and are expressed in wall units taking u#

from the wall-resolved LES to scale all the data. As ex-
pected, the use of a wall model is obviously compulsory: the
results obtained for both resolutions without any model !no-
slip case" indicate a flow relaminarization due to an under-
estimation of the wall-shear stress. Similarly, the MPB model
is not in its validity region because Reynolds stress tensor
terms are not negligible. This leads to an underestimation of
the velocity close to the wall for the 643 resolution and a bad
prediction of the slope in the inertial range. The SWM model
and the present model lead to very similar results since, as
previously pointed out, both models are designed to match
both the linear profile close to the wall and the logarithmic
law away from the wall. Even with a very coarse resolution,

FIG. 11. Profiles of the mean streamwise velocity !left" and the velocity components rms !right" for the 643 mesh. Comparison between constant and dynamic
Ck used in the SGS model, Eq. !14".
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both model predictions are closed to the well-resolved LES
results showing their ability to correctly predict the mean
velocity within the flow core.

For further analysis, the second-order statistics are
shown in Fig. 10. It is important to point out that the wall
models used in the present study are not built to properly
predict the rms velocity components in the vicinity of the
wall since no specific treatment is applied in this region such
as a dynamic stochastic forcing proposed by Keating and
Piomelli31 or the synthesized turbulence method proposed by
Davidson and Billson.32 However, one can expect to obtain a
correct prediction of these statistical quantities in the channel
core. Figure 10 shows that if no-wall model is used, the rms
values are ill-predicted throughout the channel depth. For the
so-called no-slip boundary condition case, the three rms
components are indeed underestimated close to the wall be-
fore undergoing a strong increase away from the wall. This

too strong increase can be explained by the overestimated
mean normal velocity gradient near the wall, which leads to
an overestimation of the turbulent production intensity. The
turbulent fluctuations are consequently overpredicted over
the whole channel width. Similarly, the MPB model strongly
overestimates the streamwise fluctuations. For this model, a
linear profile, u+=y+, is assumed in the case without pressure
gradient to be valid until the first computational point away
from the wall. When this point is not located in the viscous
region, the model yields a strong overestimation of the mean
normal velocity gradient close to the wall. Both the SWM
model and the present model fail to predict the rms statistics
close to the wall. For y /h(0.2, both models lead, however,
to a good prediction of the rms quantities in concordance
with the wall-resolved LES. Note that the normal !v!" and
spanwise !w!" velocity fluctuations statistics are weakly un-

FIG. 12. Profiles of the average streamwise velocity for grid A at different streamwise locations, x /h.
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derestimated. These results are consistent with the previous
observations made by Cabot and Moin8 based on TBLE
computations and by Keating and Piomelli31 based on DES
computations.

To investigate the influence of the sugbgrid-scale model,
in particular, in the near-wall region, LESs using the present
wall-model are performed with a dynamic determination of
Ck for the SGS model given by Ghosal et al.27 !Fig. 11". The
mean velocity profiles are similar with both SGS models but
some important differences can, however, be noticed for the
rms quantities. Indeed, close to the wall, the dynamic proce-
dure predicts a higher level of fluctuation for the three rms
components, especially for the u! component. This is due to
the well-known fact that the dynamic procedure allows to
more correctly reproduce the decay of "SGS when one ap-
proaches the wall and therefore induces a less important
damping of the fluctuations in this flow region.33

2. Periodic hills

We now consider the periodic hill configuration. As
pointed out, the challenge for the wall-models lays in their
ability to allow the prediction of flow separation. The correct
estimation of the length of the recirculation bubble also con-
stitutes a good quality test for the models. We recall that
three different grids are used differing by their near-wall res-
olution: grid A with yf

+=5, grid B with yf
+=40, and grid C

with yf
+=100.

Figure 12 shows the mean velocity profiles obtained
with a grid A LES using the different wall models: SWM,
present, and MPB models. As for the channel flow, a LES
computation without any wall model is also shown. The pro-
files are displayed at different streamwise locations, x /h,
where h is the hill height. For grid A, the first cell point is
located at the upper end of the viscous region. The meshing
is thus fine enough to lead to good results for the no-model
case !no-slip condition". Moreover, MPB model is expected

to be within its validity range. Thus, a good agreement with
the wall-resolved LES data is found for the MPB and present
models over the entire height of the computational domain.
Conversely, the SWM model leads to a poor prediction of the
mean velocity not only in the vicinity of the hill surface but
also in the core of the flow. It is interesting to notice that the
no-model case !no-slip" matches much better the reference
data than the SWM model. This clearly demonstrates the
importance of designing models taking properly into account
the effects on the mean quantities of the streamwise pressure
gradient. Conversely, the present model and the MPB model
allow for slightly better predictions than the no-model case.

This is confirmed by Fig. 13 which shows the mean flow
streamlines for the various cases. The results obtained in the
reference well-resolved LES by Breuer et al.14 are also dis-
played for comparison. The size of the separation region size
for the SWM model is clearly underestimated, whereas the
other wall boundary conditions yield a good agreement with
the reference result.

The improved performances of the present model are
made more obvious when coarser grid resolutions are used.
Figure 14 shows the mean velocity profile at various stream-
wise locations for the grid C case. As expected, SWM model
still leads to poor predictions and is not longer able to predict
flow separation as shown by the mean velocity which re-
mains always positive. Similarly, the no-model case is no
longer justified and similar results to the SWM model with-
out reverse flow are found. Since the first computational cell
is located in the inertial region where Reynolds stresses are
important, MPB model fails also to correctly predict the flow
close to the wall and no reverse flow is found. Even if its
applicability is questionable with grid C wall resolution, one
can notice that MPB model provides better results than
SWM model especially in the downslope part of the hill
!x /h=1, x /h=2, and x /h=3". Only the present model is able
to predict the reverse flow with acceptable agreement with

FIG. 13. Mean streamlines for grid A. Top: reference LES computation by Breuer et al. !Ref. 14"; top to bottom and left to right: no-slip condition, SWM
model, MPB model, present model.
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the reference data. The consequence is that, due to mass
conservation, only the present model is also able to match
the reference data in the core of the flow.

Similar results are found with grid B resolution which
has its first cells in the buffer layer. In this case, the MPB
model is able to predict a reverse flow but the size of the
recirculation is strongly underestimated as shown by Fig. 15.

In comparison, the present model allows to reproduce the
flow separation although the recirculation region is much
shorter than the real one as discussed below.

Table I summarizes the results in terms of prediction of
the streamwise locations of the separation and the reattache-
ment points. As already mentioned by Temmerman et al.13

and Breuer et al.,14 the ability to correctly reproduce the

FIG. 14. Profiles of the average streamwise velocity for grid C at different streamwise locations, x /h.

FIG. 15. Mean streamlines obtained with grid B for MPB model !left" and the present model !right".
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length of the separated region is a good indicator of the
model quality. Indeed, the worst the model is, the later the
flow separates and the sooner it reattaches. In that respect,
SWM model predicts the shorter recirculation bubble with
grid A. Conversely, the other three investigated cases yield
comparable length not too far from the reference value. For
grid B, the SWM model is no-longer able to predict the
reverse flow region. The MPB model and the no-model cases
both yield a very reduced length for the recirculation bubble
and the largest length is predicted by our model. As previ-
ously stated, for grid C, only the present model is able to
predict a reverse flow region. It is important to remark that
the streamwise discretization being very coarse it is therefore
difficult to precisely predict the exact flow separation. In-
deed, the difference between the location of the separation
point predicted by our model and the LES of reference is
only six times the streamwise cell size for the grid C case.

V. CONCLUSIONS

A new model is constructed to approximate the velocity
profile in the near-wall region of turbulent flows subjected to
streamwise pressure gradients. The model is based on the
simplified thin-boundary-layer equations and on a turbulent
viscosity coefficient whose formulation is an extension of the
ones originally proposed by Nituch et al.20 and Balaras et al.2

In particular, the turbulent viscosity involves a damping
function which is a function of the intensity of the stream-
wise pressure gradient. The model validation is first made
through a priori tests with various flow configurations with
and without streamwise pressure gradients and with an even-
tual flow separation. From the performed comparisons, it is
shown that the model is accurate until roughly 100 wall
units. The present wall model is then used in LES computa-
tions as wall boundary condition with the definition of a
corrective viscosity in the first cells at the vicinity of the
wall. LESs using the present model are then performed for
various flow configurations such as a turbulent channel flow

and the flow over a periodic hill arrangement. The model is
compared with success to several previous wall models of
the literature. It yields good results for first order statistics
even when the first grid point away from the wall is located
in the logarithmic boundary-layer region. The results clearly
demonstrate the importance of taking into account both
streamwise pressure gradient effects and Reynolds stresses in
the wall modeling. In particular, for flows with adverse pres-
sure gradient, the present model is able to reproduce flow
separation even when very coarse grids are considered. It is
important to point out that the present wall model can also be
applied for RANS simulations and thus widely used for prac-
tical applications.
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