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Subfilter scalar variance is a key quantity for scalar mixing at the small scales of a turbulent flow
and thus plays a crucial role in large eddy simulation of combustion. While prior studies have
mainly focused on the physical aspects of modeling subfilter variance, the current work discusses
variance models in conjunction with the numerical errors due to their implementation using
finite-difference methods. A priori tests on data from direct numerical simulation of homogeneous
turbulence are performed to evaluate the numerical implications of specific model forms. Like other
subfilter quantities, such as kinetic energy, subfilter variance can be modeled according to one of
two general methodologies. In the first of these, an algebraic equation relating the variance to
gradients of the filtered scalar field is coupled with a dynamic procedure for coefficient estimation.
Although finite-difference methods substantially underpredict the gradient of the filtered scalar field,
the dynamic method is shown to mitigate this error through overestimation of the model coefficient.
The second group of models utilizes a transport equation for the subfilter variance itself or for the
second moment of the scalar. Here, it is shown that the model formulation based on the variance
transport equation is consistently biased toward underprediction of the subfilter variance. The
numerical issues in the variance transport equation stem from discrete approximations to chain-rule
manipulations used to derive convection, diffusion, and production terms associated with the square
of the filtered scalar. These approximations can be avoided by solving the equation for the second
moment of the scalar, suggesting that model’s numerical superiority. © 2009 American Institute of
Physics. �DOI: 10.1063/1.3123531�

I. BACKGROUND AND MOTIVATION

Subfilter scalar variance plays a crucial role in large
eddy simulation �LES� based modeling of turbulent combus-
tion. The most popular models for nonpremixed combustion
rely on a conserved scalar approach, in which a nonreactive
scalar, the mixture fraction, is mapped to the thermochemical
state of the fluid using a combustion model, for example, a
flamelet model.1,2 The transport equation for the mixture
fraction contains no chemical source terms, making it more
tractable in the LES framework. Compared to chemically
inert turbulent flows, gas-phase combustion is highly sensi-
tive to the fine-scale distribution of the scalar. Since the fil-
tered mixture fraction field contains no information about the
small scales, additional modeling is required to statistically
represent the details of scalar mixing. In one-point statistical
closures, knowledge of the subfilter probability density func-
tion �PDF� allows for such a description of the scalar field.2

In the context of mixture fraction, this subfilter PDF is often
assumed to be a beta distribution parametrized by the filtered
mixture fraction and a subfilter variance of mixture fraction.3

A subfilter variance model is required to complete the speci-
fication of the subfilter PDF.

Several models for subfilter variance have been pro-

posed in the past.4–7 They can be broadly divided into two
categories: those based on a transport equation for the vari-
ance and those employing algebraic relations which do not
account for transport of variance at resolved scales. Models
in the first class are substantially holdovers from Reynolds-
averaged Navier–Stokes �RANS� methodology for the mix-
ture fraction variance. Putting aside for now the assumptions
necessary to write a subfilter variance transport equation
�VTE� for LES in analogy to the RANS formulations, the
most pressing modeling issue for the VTE is the closure of
the filtered mixture fraction dissipation rate. Within the more
prevalent second class of subfilter variance models, gradient-
based closures are generally found to be more accurate than
other algebraic models in a priori studies of direct numerical
simulation �DNS� data.8

LES computations are notoriously dependent on the nu-
merical discretization employed for their solution.9,10 Given
the extreme sensitivity of the entire modeled combustion
process to the values of the subfilter variance, the numerical
errors incurred in implementing a variance model are hardly
subordinate to the innate error of the model itself. However,
prior studies of model accuracy have largely failed to ac-
count for the effects of numerical scheme, and, as shown in
this work, the interaction of errors often produces counterin-
tuitive results. Below, we identify some potential numerical
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pitfalls in variance modeling while highlighting those formu-
lations that allow for the cancellation of finite-difference
errors.

II. DESCRIPTION OF VARIANCE MODELS

LES explicitly evolves all large-scale features of a flow
on a computational grid while accounting for the influence of
small-scale, unresolved motions on the large scales through
models. The small scales are removed using a filtering op-
eration which can be written as

Z̄�x,t� =� Z�x�,t�G�x� − x�dx�, �1�

where Z̄ is the filtered field corresponding to the true field
Z�x , t� and G is the three-dimensional filter kernel. The con-
stant density case is considered for simplicity, but the nu-
merical concerns addressed here are also applicable to vari-
able density flows. While the filter width could be defined
independently of the mesh size, grid-based implicit filtering
is overwhelmingly used in practical LES calculations.11 It
should be noted that any useful filtered field inherently con-
tains less information than an unfiltered field. Consequently,
different realizations of the flow can produce the same fil-
tered field.10–12

The subfilter variance is defined as

Z�2�x,t� =� �Z�x�,t� − Z̄�x,t��2G�x� − x�dx�

= Z2�x,t� − Z̄2�x,t� , �2�

where the first term on the right-hand side, Z2, is not gener-
ally available in LES and hence needs to be modeled. For a
given filtered scalar field, many different subfilter variance
fields are possible. Necessarily then, all modeling is statisti-
cal. Any model can, at best, only reproduce some statistical
mean of an appropriately defined ensemble.

Similar to the RANS formulation, the LES VTE can be
written as

�Z�2

�t
+

�ui
¯ Z�2

�xi
=

�

�xi
��D + Dt�

�Z�2

�xi
� + 2Dt

�Z̄

�xi

�Z̄

�xi

− ��̄ − 2D
�Z̄

�xi

�Z̄

�xi
� , �3�

where eddy diffusivity models have been introduced for the
scalar flux terms.5 In Eq. �3�, ui is the filtered velocity field
and the molecular and turbulent diffusivities are denoted by
D and Dt, respectively. The final bracketed term in Eq. �3� is
the filtered scalar dissipation rate, where the quantity

�̄ = 2D
�Z

�xi

�Z

�xi
�4�

makes the dissipation rate an unclosed term. The methodol-
ogy used in its modeling is largely informed by the approach
taken in RANS. However, it must be emphasized that in
RANS the mean scalar dissipation rate is a well-defined
quantity that can be directly modeled, while in LES the fil-

tered scalar dissipation rate remains a random variable and
any model can only try to predict some mean value. A com-
mon closure for the filtered scalar dissipation rate is

�̄ − 2D
�Z̄

�xi

�Z̄

�xi
=

1

�
Z�2. �5�

Here, � is the scalar mixing time scale. Again, several ex-
pressions for this time scale are available. One model, based
on the turbulent diffusivity and commonly used in the con-
text of the LES/filtered-density function approach,13–15 gives

� = C�

�2

D + Dt
, �6�

where � is the filter width and C� is a model coefficient. The
model coefficient does not have a universal value and de-
pends on many parameters, including the distribution of the
resolved length scales and the location of the filter cutoff in
the scalar energy spectrum. The sensitivity of the coefficient
to so many factors and the importance of the coefficient in
determining the dissipation rate are some of the more obvi-
ous weaknesses of the VTE in terms of physical modeling.5

In addition, the evaluation of the production term,

P = 2Dt
�Z̄

�xi

�Z̄

�xi
, �7�

which appears on the right-hand side of the VTE model, is
problematic from a numerical perspective because of its
gradient-squared dependency, as explained in Sec. IV A.

An alternative formulation is based on the transport
equation for the second moment of the mixture fraction,
which will be referred to as the STE model. The Z2 equation
can be written as

�Z2

�t
+

�ui
¯ Z2

�xi
=

�

�xi
��D + Dt�

�Z2

�xi
� − �̄ �8�

and the subfilter variance can then be calculated using Eq.
�2�. Note that the modeling of �̄ is a key bottleneck in using
either the STE or VTE model.

Models of the second class considered here, which are
algebraic in form, do not account for the transport of scalar
variance by the large scales of the flow. This approximation
is usually referred to as the local equilibrium
approximation.16 Essentially, the production and dissipation
of scalar energy are assumed to be locally balanced. Since
production and dissipation are both random fields, their in-
stantaneous values are, in general, not equivalent. Rather, the
equilibrium is implied to hold for their mean values.

The local equilibrium assumption, combined with an
eddy diffusivity model for the subfilter flux, allows the fil-
tered scalar dissipation rate to be expressed as17

�̄ − 2D
�Z̄

�xi

�Z̄

�xi
= 2Dt

�Z̄

�xi

�Z̄

�xi
. �9�

If the filtered scalar dissipation rate is then modeled using
Eq. �5�, the algebraic relation
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Z�2 = C�2 �Z̄

�xi

�Z̄

�xi
, �10�

where C=2 /C� results. The constant C still needs to be de-
termined and is commonly obtained through a dynamic mod-
eling procedure. Using two forms, taken to be equivalent, for
the scalar energy between the LES filter scale and some
larger test filter scale, an algebraic closure for the model

constant can be found.6 Letting �·�̂ denote a test filtered quan-

tity, with �̂ the test filter width, the dynamic model can be
written as

Z̄2 − Ẑ̄2 = C1�2�� �̂

�
�2

� Ẑ̄ · �Ẑ̄ − �Z̄ · �Z̄�� .ˆ �11�

This classic dynamic model, hereafter referred to as CDM,
has been widely used in combustion LES. Recently, Balarac
et al.7 showed that the CDM formulation ignores certain
leading-order terms in the Taylor series expansion of the left-
hand side of the dynamic closure, often called the Leonard
term L. They proposed an alternative model �henceforth,
BPR� for which the dynamic closure is written as

Z̄̂2 − Ẑ̄2 = C2�̂2 � Ẑ̄ · �Ẑ̄ . �12�

While other algebraic variance models are available,4 the dy-
namic procedure obviates the need to specify the model co-
efficient a priori and is therefore the top choice for combus-
tion modeling.6,8 If transport or accumulation of variance
cannot be neglected, then either the VTE model �Eq. �3�� or
the STE model �Eq. �8�� must be used, with the caveat that �̄
has to be modeled.

It is important to note that the subfilter scalar variance
has most of its energy content in the largest subfilter scales
and is therefore in the algebraic models estimated from the
smallest filtered scales, which are identified using the test
filtering operation. Similarly, the production term appearing
in the scalar variance equation actually describes an energy
cascade process, in which energy is transferred from the
smallest filtered scales to the largest subfilter scales. In both
cases, the smallest filtered scales are of significance. Because
the filter width and grid spacing are equal in implicit LES,
these scales are not resolved properly. It can be expected that
numerical errors in terms involving the smallest filtered
scales are of leading order. Therefore, the models cannot be
considered apart from these errors. With this context in mind,
the interaction of discretization errors with the models is dis-
cussed below. First, the dynamic model is considered and a
simplified scalar field is analyzed in order to demonstrate its
error cancellation effect. This behavior is then validated us-
ing DNS of homogeneous isotropic turbulence. Turning next
to the transport equation models, sources of error in the VTE
model are examined and the behavior of the STE model is
discussed.

III. MODIFIED WAVE NUMBER ANALYSIS

A modified wave number analysis18,19 can be used to
illustrate the effect of numerical errors on model prediction.
Consider a filtered scalar field represented by a single wave-
mode,

Z̄�x� = eikx, �13�

where k is some specific wave number and x is the physical
coordinate. To compute the model coefficient in the dynamic
model, a test filtering operation is necessary. For explicit-
ness, the filtering kernel is assumed to be a top-hat function

with step size of �̂, which also refers to the test filter width.
Then

Ẑ̄ =
1

�̂
�

x−�̂/2

x+�̂/2
Z̄�x��dx� =

2

�̂k
sin�k�̂/2�eikx = f�k�eikx. �14�

The test filtering operation can be represented as multiplica-
tion by a function of the wave number, which modulates the
amplitude of a mode but does not affect the wave number
associated with it.

For notational convenience, an operator G operating on a
field H is defined as

G�H� � �H · �H . �15�

The dynamic model for the coefficient C1 can be written as

L = C1M , �16�

where the model terms, specialized to our example function,
are

ˆL = Z̄2 − Ẑ̄2 = ei2kx�f�2k� − f2�k�� �17�

and

M = �2�p2G�Ẑ̄� − G�Z̄�̂� = − k2�2ei2kx�p2f2�k� − f�2k�� .

�18�

Here, � is the width of the filter used to obtain Z̄ and p

= �̂ /� denotes the ratio of the test filter width to the LES
filter width. To enhance the stability of the simulation, C1 is
typically calculated by averaging over homogeneous
directions,6 that is,

C1 =
	LM

	M2


. �19�

For this special case, the direct division L /M and the aver-
aging procedure expressed by Eq. �19� produce identical
results:

C1 =
f�2k� − f2�k�

− �2k2�p2f2�k� − f�2k��
. �20�

The subfilter variance for this scalar field is evaluated as
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Z�2ideal = C1�2G�Z̄� =
f�2k� − f2�k�

p2f2�k� − f�2k�
ei2kx. �21�

It should be noted that for the chosen test field, the variance
depends on the type of filter used �which determines
the form of f� and the test filter width used �which deter-
mines p�.

While the exact derivative for the test function defined in

Eq. �13� is given by dZ̄ /dx= ikeikx, finite-difference operators
produce a different value. For a given scheme and fixed grid
spacing h, the error depends only on the wave number of the
function being differentiated and can be expressed in terms
of a modified wave number g. Thus, the derivative evaluated
using a finite-difference scheme is given by

dZ̄fd

dx
= ig�k�eikx. �22�

For the central schemes that will be considered here, g as-
sumes only real values so that the error is manifested solely
in the amplitude of the derivative. In Eq. �22�, obviously the
scheme is exact if g�k� tends to k, which is the case if the
wave number or the grid spacing tends to zero. However, for
larger values of k, the modified wave number becomes small,
resulting in a large error. For a second-order central differ-
ence scheme, g�k�=sin�kh� /h. Modified wave numbers for
other schemes are available in the literature.19 The finite-

difference operator for G is denoted by Gfd, e.g., Gfd�Z̄�
=−g2�k�ei2kx. Using finite-difference operators does not af-
fect the values of L, but M is replaced by

Mfd = �2�p2Gfd�Ẑ̄� − Gfd�Z̄�̂�

= − g2�k��2ei2kx�p2f2�k� − f�2k�� . �23�

Using the finite-difference operation defined in Eq. �22� and
the test filtering operation defined in Eq. �13� and averaging
as in Eq. �19�, the dynamic model coefficient evaluates as

C1
fd =

f�2k� − f2�k�
− �2g2�k��p2f2�k� − f�2k��

. �24�

Comparing this result with Eq. �20� shows that the ratio of
the exact model coefficient to the finite-difference value is
�k /g�k��2. As discussed earlier, the smallest resolved scales
in LES will dominate the model evaluation. The function
g�k� is always less than k for nonzero grid spacing, implying
that there is an inherent overprediction of the model coeffi-
cient due to the use of a finite-difference scheme. However,
the variance evaluated with the coefficient from Eq. �24� is

Z�2
CDM
fd = C1

fd�2Gfd�Z̄� =
f�2k� − f2�k�

p2f2�k� − f�2k�
ei2kx = Z�2

CDM
ideal .

�25�

Although the coefficient is overpredicted, the finite-
difference approximation does not affect the predicted vari-
ance. This result is explained by noting that the filtering and
finite-differencing operations do not modify the wave num-
ber associated with the field but rather act only to damp the
amplitude of the mode. The final step in computing the vari-

ance �Eq. �25�� cancels the damping error, thereby eliminat-
ing the effect of the finite-difference operator. This result, for
the case of a scalar field containing a single wavemode, is
independent of the finite-difference approximation used and
is valid for any filter kernel that does not generate additional
modes.

Proceeding along similar lines, it can be shown that the
BPR dynamic procedure, when applied to a unimodal scalar
field, is also insensitive to finite-difference error. As in the
finite-difference CDM model, overprediction of the model
coefficient is exactly compensated for by underprediction of
Gfd, so that

Z�2
BPR
fd =

f�2k� − f2�k�
p2f2�k�

ei2kx = Z�2
BPR
ideal. �26�

In realistic turbulent flows, many different wavemodes exist.
Consequently, a simple analysis like the one carried out
above is not possible. Even if only two wavemodes are
present, the numerical error associated with the dynamic pro-
cedure plays a nontrivial role. The results of the simplified
case are, however, quite suggestive. While Gfd is inevitably
underpredicted when high wave number modes �i.e., scales
just greater than the filter width� are present, overprediction
of the model coefficient due to the dynamic procedure would
ostensibly reduce the total error in the variance calculation.
Next, DNS-based a priori tests are conducted to assess the
dynamic models’ error-mitigating effects in a realistic flow.

IV. DNS-BASED A PRIORI ANALYSIS
OF NUMERICAL ERRORS

A pseudospectral code was used to compute forced iso-
tropic turbulence in a periodic domain. The velocity field
was forced by introducing energy at the large wave
numbers.20 The scalar field was allowed to decay from an
initially segregated state.21 The computation was carried out
on a 5123 grid using 128 processors. At steady state, Re� was
roughly 135. The Schmidt number was set to unity. The code
has been verified and validated using canonical flow configu-
rations and using theoretical correlations for the higher-order
statistics. All the analyses in this section are based on this
data set. A box filter was used throughout for LES and test
filtering. In similar tests by Balarac et al.,7 the use of a
Gaussian filter was shown to have no significant effect on the

results. The ratio of test to LES filter widths ��̂ /�� was held
at 2.

A. Effect of discretization errors
on the dynamic model

For this study, three different numerical schemes,
namely, the second-order central difference �CD-2�, fourth-
order central difference �CD-4�, and sixth-order Padé
�Padé-6� schemes, are considered. The discretization
schemes are emulated using the corresponding modified
wave number.18,19 The dynamic model is built on a gradient-
based scaling law that requires the computation of the square
of the scalar gradient. To understand the impact of discreti-
zation, the scalar gradient-squared field computed using

055102-4 Kaul et al. Phys. Fluids 21, 055102 �2009�

Downloaded 15 May 2009 to 194.254.66.130. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



finite-difference approximations, Gfd�Z̄�, should first be com-

pared to the term computed using a spectral method, G�Z̄�.
Figure 1 shows the conditional average of the finite-

difference approximation conditioned on the spectrally com-
puted gradient-squared term plotted for different filter sizes.
The mesh size is taken to be equal to the filter width. Clearly,
the finite-difference methods underpredict the gradient-
squared term. As the order of the scheme decreases, the er-
rors increase, which is consistent with basic theory for the
order of accuracy of finite-difference schemes. It can also be
seen that the magnitudes of the DNS-based gradients de-

crease with increasing filter width and, while the absolute
magnitudes of the finite-difference errors also decrease, the
relative errors become greater. It is important to note that as
the filter width increases, the true subfilter variance will also
increase, reflecting larger amounts of unresolved scalar en-
ergy. If the scalar gradient is underpredicted, the model co-
efficient should correspondingly increase in order to predict
the variance correctly. Additionally, the range of scalar gra-
dient values will narrow as the scalar field evolves. An indi-
cation of the variability of the scalar field is given by the
global variance 	Z�2
= 	Z2
− 	Z
2, where 	·
 denotes an aver-
age taken over the entire volume. It is then not surprising
that the results of the dynamic model change as the scalar
becomes more mixed, which is represented by a decrease in
the value of 	Z�2
.

Figures 2 and 3 show the model coefficients computed
using the classic model �CDM� and the improved model
�BPR� at two different times. Several key points have to be
noted. First, the choice of numerical method clearly impacts
the value of the coefficients computed. As the order of the
scheme is increased, the coefficient value at any filter size
decreases. This in itself indicates that the dynamic procedure
will mitigate some of the gradient underprediction discussed
above. Second, the Padé scheme performs very similarly to
the spectral scheme in calculating the BPR model coefficient
for both scalar fields. Third, the CDM coefficient has very
peculiar behavior. The spectrally computed CDM coefficient
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FIG. 1. Plot of the conditional average of the gradient-squared term, Gfd�Z̄�,
computed using various finite-difference approximations: �dashed line�
CD-2, �dotted line� CD-4, and �dashed-dotted line� Padé-6 schemes. The

conditioning variable is the spectrally computed G�Z̄�. The three plots cor-
respond to three different filter sizes: �a� �=16�, �b� �=32�, and �c� �
=64�, where � is the Kolmogorov length scale.
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FIG. 2. Dynamic model coefficient for �a� CDM and �b� BPR. The coeffi-
cient is computed by averaging over the entire computational domain.
	Z�2
=0.1802. Results for �solid line� spectral, �dashed line� CD-2, �dotted
line� CD-4, and �dashed-dotted line� Padé-6 schemes are shown.
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first increases then begins to drop with increasing filter
width. The fall-off of the spectral coefficient value steepens
as 	Z�2
 decreases and the peak value occurs at a smaller
filter width. As pointed out by Balarac et al.,7 the declining
value is due to the large negative correlation between the L
and M terms in the model evaluation. None of the finite-
difference approximations appear to capture this correlation
well, thereby leading to a marked difference in the trends.
Instead, the finite-difference CDM coefficients seem to fol-
low a trend similar to the BPR model coefficient. As the
global variance decreases, the magnitude of the BPR coeffi-
cient increases for all schemes, but the variations between
the schemes remain quite similar.

Figures 4 and 5 show the quadratic error between the
modeled variance and the DNS subfilter variance for a range
of filter widths. This error is defined as

error =
	�Z�2model − Z�2DNS�2


	Z�2DNS
2 . �27�

Interestingly, the discretization order has a limited impact on
the variance prediction. Regardless of the model used, the
errors associated with the evaluation of the gradients are
compensated for by the errors in the dynamically calculated
model coefficient, which is consistent with the results of the
modified wave number analysis presented in Sec. III. While
the higher-order schemes show marginal improvement, the
second-order scheme is surprisingly accurate in predicting

the variance. It can also be observed that, despite the BPR
model’s lower modeling error �evidenced by the lower error
of its spectral form�, finite-difference approximations of the
BPR model do not necessarily perform better than the corre-
sponding CDM implementations. However, the BPR model
exhibits well-defined behavior in terms of reduced error for
higher-order numerics over the whole range of filter widths.
For both scalar fields, the finite-difference CDM formula-
tions perform worst at smaller filter widths but monotoni-
cally improve in accuracy as the filter width increases. How-
ever, the trend in the error for the spectrally computed CDM
variance changes with 	Z�2
. The error shows a steady de-
crease with increasing filter width at the higher global vari-
ance. At the lower value of global variance, the error shows
a distinct minimum at about �=20� and then increases with
filter width. A similar phenomenon occurs for the spectrally
computed BPR model.

These analyses demonstrate that variance modeling us-
ing a gradient-based scaling law is subject to significant
finite-differencing errors. The presence of a range of wave
numbers in a turbulent flow leads to complex, nonlinear in-
teractions within dynamic gradient-based models, producing
results that fail to follow conventional error convergence es-
timates. In particular, there is no guarantee that higher-order
schemes will incur less error, at least in the case of the origi-
nal dynamic procedure.
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FIG. 3. Dynamic model coefficient for �a� CDM and �b� BPR. The coeffi-
cient is computed by averaging over the entire computational domain.
	Z�2
=0.1015. Results for �solid line� spectral, �dashed line� CD-2, �dotted
line� CD-4, and �dashed-dotted line� Padé-6 schemes are shown.
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FIG. 4. Quadratic error generated by �a� CDM and �b� BPR model, calcu-
lated by �solid line� spectral, �dashed line� CD-2, �dotted line� CD-4, and
�dashed-dotted line� Padé-6 schemes in relation to the true variance. 	Z�2

=0.1802.
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B. Transport equation based models for variance

An alternate approach for modeling variance is based on
solving a transport equation. This transport equation could
evolve either the scalar variance �VTE model, Eq. �3�� or the
second moment of the scalar �STE model, Eq. �8��. In this
section, we demonstrate that the VTE model has significant
numerical errors in convection, diffusion, and production

terms associated with Z̄2, which do not appear in the STE
model. The STE formulation is therefore superior to the VTE
model.

The primary advantage of the STE formulation is its
ability to recover the analytical solution for variance in the
absence of scalar dissipation. For the sake of this discussion,
we set the term �̄ in Eq. �8� to zero. Then, the mixture frac-
tion transport equation and the STE are identical in form. In
all practical computations, the variance of mixture fraction at
the inflow boundaries and walls is set to zero. In this case,
the mixture fraction equation and the STE will evolve iden-

tically. In other words, Z2= Z̄ at all spatial locations and for
all times. This also implies that the variance is a function
only of the filtered mixture fraction, everywhere assuming its
local maximum value since

Z�2 = Z2 − Z̄2 = Z̄ − Z̄2 = Z̄�1 − Z̄� . �28�

The STE model then reproduces the correct variance trivially
by virtue of the formulation.

The VTE approach, on the other hand, does not possess
this feature. Starting from the definition of subfilter variance
�Eq. �2��, the temporal evolution of variance can be written
as

dZ�2

dt
=

dZ2

dt
−

dZ̄2

dt
. �29�

The first term on the right-hand side is the second moment
transport equation or the STE model �Eq. �8��. The second

term evolves Z̄2, which is redundant because the equation for

Z̄ is already being solved. The second term has to be ex-
pressed in terms of the filtered mixture fraction transport
equation by application of the chain rule. However, forms
which are equivalent for continuous variables are not equal
in the discrete case, i.e.,

�Z̄2

�t
� 2Z̄

�Z̄

�t
, �30�

where the operator � refers to the finite-difference approxi-
mation of the transport equation. To further understand the

numerical errors, the individual transport terms of the Z̄2

equation need to be studied and compared to the terms of the

2Z̄�Z̄ /�t equation. We define the following quantities for this
purpose:

P1 = 2Z̄
�ūjZ̄

�xj
, P2 =

�ūjZ̄
2

�xj
, �31�

and

Q1 = 2Z̄
�

�xj
��D + Dt�

�Z̄

�xj
� ,

�32�

Q2 =
�

�xj
��D + Dt�

�Z̄2

�xj
� − 2�D + Dt�

�Z̄

�xj

�Z̄

�xj
.

P1 and Q1 are the discrete versions of the convection and

diffusion terms, respectively, in the 2Z̄�Z̄ /�t equation, while

P2 and Q2 are the corresponding terms of the discrete Z̄2

equation. Note that the second term in Q2 includes the pro-
duction term in the scalar variance equation.

Using these definitions, the transport equations for

2Z̄�Z̄ /�t and �Z̄2 /�t can be written in semidiscretized form
as

2Z̄
�Z̄

�t
= − P1 + Q1 �33�

and

�Z̄2

�t
= − P2 + Q2. �34�

It should be recalled that to obtain an equation for the vari-
ance, Eq. �34� must be subtracted from the transport equation
for Z2, but only Eq. �33� is known in the context of the
filtered scalar transport equation. The error is hence ex-
pressed in the differences between P1, P2 and Q1, Q2.
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FIG. 5. Quadratic error generated by �a� CDM and �b� BPR model, calcu-
lated by �solid line� spectral, �dashed line� CD-2, �dotted line� CD-4, and
�dashed-dotted line� Padé-6 schemes in relation to the true variance. 	Z�2

=0.1015.

055102-7 Numerical errors in variance computation Phys. Fluids 21, 055102 �2009�

Downloaded 15 May 2009 to 194.254.66.130. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



For the purpose of comparison, consider the conditional
mean quantities, 	P2 � P1
 and 	Q2 �Q1
. The departures of
these quantities from P1 and Q1, respectively, provide an
estimate of the errors induced by the chain-rule approxima-
tion encapsulated in Eq. �30�. Figures 6 and 7 show the con-
ditional mean values evaluated for a range of filter sizes. The
turbulent diffusivity was obtained using a dynamic
procedure.22 The plots reveal some interesting trends. The
	P2 � P1
 term is overpredicted when the P1 term is negative
and underpredicted when P1 is positive, so that the magni-
tude of P1 is always underpredicted. The P terms are flux
terms so errors in their values affect the redistribution of
variance.

The term 	Q2 �Q1
 behaves differently from the convec-
tion term. The chain-rule approximation seems to affect the

negative terms more than the positive terms. For all filter
widths, the conditional mean lies above the diagonal, indi-
cating that the Q2 term is generally overpredicted. However,
the error is more pronounced when Q1 is negative, indicating
large variance production. The variance production term is
dominated by the smallest resolved scales, so even high-
order finite-difference schemes are subject to large errors.
For positive values of Q1, the overprediction actually de-
creases with increasing filter width. An overprediction of the

Q term will increase Z̄2 and reduce the subfilter variance.
Further, these errors are evaluated for a single time step. In
practical inhomogeneous calculations, the variance equations
evolve spatially and temporally, accumulating errors during
the course of the computation. Consequently, the subfilter
variance estimated using the VTE will be considerably lower
than that found using the STE approach.
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FIG. 6. Conditional mean 	P2 � P1
 plotted for filter widths of �a� 8�, �b�
32�, and �c� 128� using different numerical schemes: �dashed line� CD-2,
�dotted line� CD-4, and �dashed-dotted line� Padé-6.

800 600 400 200 0 200 400 600 800
800
600
400
200
0

200
400
600
800

Q fd1

Q
fd 2
|Q

fd 1

(a)

100 75 50 25 0 25 50 75 100100
75
50
25
0
25
50
75
100

(b)

10 8 6 4 2 0 2 4 6 8 1010
8
6
4
2
0
2
4
6
8
10

(c)

Q
fd 2
|Q

fd 1
Q
fd 2
|Q

fd 1
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 plotted for filter widths of �a� 8�, �b�
32�, and �c� 128� using different numerical schemes: �dashed line� CD-2,
�dotted line� CD-4, and �dashed-dotted line� Padé-6.
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It is also worth noting that the choice of numerical
method does not significantly alter the qualitative or quanti-
tative nature of the chain-rule errors. For all schemes consid-
ered here, the behavior is very similar and the errors are of
the same order of magnitude. This result is very similar to
the errors observed in the dynamic model formulation dis-
cussed earlier. It was also verified that when a spectral
method is used for evaluating all derivatives, both forms pro-
duce nearly identical P and Q terms, implying that truncation
error in the finite-difference schemes plays a crucial role in
amplifying the errors. Further, to assess the impact of the
diffusivity model on the estimation of Q, a constant diffusiv-
ity calculation was performed with the total diffusivity set to
a constant value of unity throughout the domain. Figure 8
shows representative plots for two different filter widths. It is
readily seen that the trends are very similar to the dynamic
eddy diffusivity calculation. These conditional means plotted
at different times, with different values of 	Z�2
, exhibited
identical trends, implying that the results are valid at all
times.

In some applications, the nonconservation form of the
convective term is preferred. The effects of chain-rule errors
on this form were also tested. Results similar to those dis-
cussed above were found. Again, only minor differences
were observed among the three finite-difference schemes.

C. Equilibrium model for filtered scalar
dissipation rate

In addition to the subfilter scalar variance, a number of
combustion models �such as flamelet models� require knowl-
edge of the filtered scalar dissipation rate. To specify the
filtered scalar dissipation rate, a model for �̄, defined in Eq.
�4�, is needed. Making an assumption of local equilibrium

leads to the model �̄=2�D+Dt�� Z̄ ·�Z̄. It should be noted
that this model follows from setting the production term in
the VTE equal to the dissipation rate. The numerical errors in
this model stem from the dynamic evaluation of the turbulent
diffusivity as well as the calculation of gradients using finite-
difference methods. As discussed above, the dynamic proce-
dure partly balances numerical errors in the CDM for the
variance, but use of a dynamically calculated turbulent dif-
fusivity has limited effect on the chain-rule errors found in
the convective and diffusive terms of the VTE. It would,
therefore, be useful to understand the effects of numerical
errors on the model for �̄.

Figure 9 shows the mean value of �̄ computed using
finite-difference approximations, conditioned on �̄ calculated
using spectral methods. The plots clearly indicate that errors
in the quantity are substantial over the entire range of true �̄
values and grow at a faster than linear rate. The underpredic-
tion in the gradient term has already been discussed in Sec.
IV A. Figure 10 shows the average of the eddy diffusivity
calculated using finite differences conditioned on the spec-
trally computed eddy diffusivity. Finite-difference methods
underestimate the eddy diffusivity at all but its lowest values,

where it is overpredicted. However, evaluation of 	Dt �G�Z̄�
,
shown in Fig. 11, indicates that high values of Dt correspond

to high values of G�Z̄�, where finite-difference errors are
greatest. It is remarkable that in the calculation of the eddy
diffusivity there is little difference among the schemes, indi-
cating that there is cancellation of errors within the dynamic
procedure �Fig. 10�. However, for none of the numerical
schemes is the error cancellation sufficient to compensate for
the underprediction of the strain-rate tensor that appears as
part of the model. Consequently, the turbulent diffusivity is
mostly underpredicted. The gross underprediction of the �̄
model is a compounded result, involving the underprediction
of mixture fraction gradients as well as the eddy diffusivity.
The modeled form of �̄ is similar to the production term in

the VTE formulation, Eq. �7�. The results for G�Z̄� and Dt

suggest that the production term will be underestimated
when finite-difference methods are used. It can therefore be
concluded, reaffirming the findings of Sec. IV B, that the
variance predicted by the finite-difference VTE will always
have a lower value than the variance predicted by the spec-
trally computed VTE.

V. CONCLUSIONS

The interactions of numerical errors with subfilter scalar
variance models used in LES of turbulent combustion have
been studied using a priori analysis methods. The preceding
model evaluations show that realizing the predictive value of
a model does not necessarily mandate the use of higher-order
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numerics. The analyses were carried out for two categories
of subfilter variance models. In the first category, two alge-
braic models based on the dynamic procedure were evalu-
ated. When model accuracy alone is considered, the BPR
dynamic method is superior to the CDM method. Introducing
finite-difference effects complicates the picture, particularly
at small filter widths where the errors of both models un-
dergo rapid variation. The BPR model shows an advantage in
that using higher-order schemes consistently reduces the er-
ror. At large filter widths, the CDM model’s performance is
slightly better, and for either model, there is little difference
between the finite-difference methods. Since the relative
magnitudes of errors vary as the scalar field decays, the more
well-defined behavior of the BPR model is its most attractive

feature. In the category of transport equation based subfilter
variance models, the VTE and STE formulations were evalu-
ated. In the limiting case of zero scalar dissipation, the STE
model can be shown to reproduce the analytical variance
even when solved using finite-difference methods. The VTE
lacks this property due to errors induced by discrete approxi-
mations to the chain rule. These errors lead to an underesti-
mation of the variance.

Finally, the local equilibrium model for scalar dissipa-
tion rate based on the eddy diffusivity and the mixture frac-
tion gradient was considered. In spite of the error cancella-
tion effect in the dynamic procedure, the eddy diffusivity
computed using any of the finite-difference schemes is lower
in value than that found using spectral methods. Since the
mixture fraction gradients are also underpredicted by finite
differences, the filtered scalar dissipation rate is subject to
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large numerical errors. Lower dissipation rates push flames
closer to equilibrium and understate the effect of flame strain
on the combustion process.

These results indicate that numerical errors play a sig-
nificant role in the LES modeling of combustion. Through
careful model formulation, these numerical effects can be
decreased. The STE approach provides a clear example of
this process. It should be noted, however, that the results
presented here account for the effects of numerical error on
model predictions given an accurate filtered scalar field. In a
practical LES computation, accumulated errors in the large-
scale evolution of the filtered fields could have significant
effects on the magnitude of the scalar and velocity gradients.
This source of error needs to be considered in order to fully
characterize the ramifications of finite-difference errors on
the modeling of subfilter quantities.
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