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The concept of optimal estimators, recently introduced by Moreau et al. �Phys. Fluids 18, 1 �2006��
is used as an a priori tool to discuss the accuracy of subfilter models. Placed in the framework of
large-eddy simulation of combustion problems, this work focuses on the subfilter models used to
evaluate the subfilter variance of a conserved scalar, the mixture fraction. The a priori tests are
performed using 5123 direct numerical simulation data of forced homogeneous isotropic turbulence.
First, the performance of the most commonly used models for the subfilter variance is studied. Using
optimal estimators, the Smagorinsky-type model �Pierce and Moin, Phys. Fluids 10, 3041 �1998��
is shown to have the best set of parameters. However, the conventional dynamic formulation of the
model leads to large errors in the variance prediction. It was found that assumptions used in the
model formulation are not verified. A new dynamic procedure based on a Taylor series expansion is
then proposed to improve the predictive accuracy. The a priori tests show that the new model
substantially improves predictive accuracy. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2896287�

I. INTRODUCTION

Large-eddy simulation �LES� is based on the separation
of turbulence scales into resolvable large scales and modeled
small scales. A filtering operation,

f̄�x�,t� =� f�y�,t���x� − y��dy� , �1�

is used to obtain the large-scale resolved field, where f̄ is the
filtered field corresponding to a turbulent field f and � is the
filter kernel. LES has been very successful in predicting free-
shear flows since these flows are typically controlled by
large-scale energy containing motions.1–3 Several models for
the subfilter unresolved terms have been proposed in this
context.4 While the LES formulation is useful in such flows,
combustion or wall-bounded flows are controlled by the
small-scale evolution of the turbulence and are not naturally
described by the large scales. Consequently, detailed subfilter
modeling in combustion is very critical in ensuring predic-
tive accuracy. Interestingly, the ability of LES to describe
large-scale scalar mixing provides a natural starting point for
modeling turbulence-chemistry interactions at the small
scales. In this context, the purpose of this work is to assess
the predictive accuracy of currently used models and provide
improved formulations.

LES of turbulent combustion often employs conserved
scalar based formulations.5 The mixture fraction Z is a con-
served scalar that is used to describe the local thermochemi-
cal state of the fluid. To obtain the filtered thermochemical
vector, the subfilter distribution of mixture fraction is re-
quired. Since LES resolves only the large scales, this infor-
mation needs to be provided through a statistical description
of the subfilter state. Typically, a presumed probability den-
sity function �PDF� in the form of a beta function is used.6

The PDF is parametrized by the filtered mixture fraction Z̄

and the mixture-fraction variance, Zv=ZZ− Z̄Z̄. Since the
subfilter variance is not directly available in LES, several
models have been proposed for this quantity. The perfor-
mance of these models is often not of satisfactory accuracy
given their importance for predicting the heat release and the
effect of the heat release on the large-scale motion of the
flow.

In this work, we first study the performance of the most
commonly used models, namely, the scale-similarity model6

and the dynamic Smagorinsky-type model.7 The validity of
the assumptions used to construct the dynamic Smagorinsky-
type model is tested. To improve the predictive accuracy, a
new dynamic procedure based on a Taylor series expansion
is then proposed. The new model is examined in a priori
tests and compared with the dynamic Smagorinsky-type
model.

II. NUMERICAL METHOD

In this work, a priori tests are conducted using direct
numerical simulation �DNS� data from a forced homoge-
neous isotropic turbulence computation. A pseudospectral
code with second-order explicit Runge–Kutta time advance-
ment is used. The viscous terms are treated exactly. The
simulation domain is discretized using 5123 grid points on a
domain of length 2�. A classic 3

2 rule is used for dealiasing
the nonlinear convection term, and statistical stationarity is
achieved using a forcing term.8 The mixture-fraction equa-
tion is advanced simultaneously using an identical numerical
scheme. To enforce stationarity of the scalar field, a mean
scalar gradient is imposed.9 The size of the computational
domain is larger than four times the integral length scale to
ensure that the largest flow structures are not affected. The
simulation parameters are chosen such that kmax��1.5 and
kmax�B�1.5, where kmax is the maximum wavenumber in the
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domain, and � and �B are the Kolmogorov and Batchelor
scales, respectively. The Reynolds number based on the Tay-
lor microscale is around 180 and the molecular Schmidt
number is set to 0.7. The numerical implementation has been
verified by comparing the skewness and flatness of the ve-
locity derivative with Jimenez and Wray10 for similar Rey-
nolds numbers.

In the a priori tests, the box filter is used to replicate the
behavior of the filter implicitly associated with the discreti-
zation using centered finite differences often used in LESs of
engineering flows.1 Several different filter sizes have been
used, chosen as � /�x=2, 4, 8, 16, and 32, where � is the
filter width and �x is the grid spacing used in the DNS. This
corresponds to � /��8, 16, 32, 64, and 128, where, accord-
ing to Pope,4 the latter two are in the inertial subrange. The
location in wavenumber space of the filters used are dis-
played in Figs. 1 and 2, which show the kinetic energy and
scalar variance spectra.

III. PREVIOUS SUBFILTER SCALAR VARIANCE
MODELS

Several models for the subfilter variance have been pro-
posed in the past.6,7 The scale-similarity model6 uses the self-
similar behavior of turbulent properties at different length
scales to model the subfilter variance. The scalar variance is
then written as

Zv,SS = Cs�Z̄Z̄̂ − Z̄
ˆ
Z̄
ˆ � . �2�

In this equation, ·̂ denotes a test filter and Cs is the scale-
similarity constant that needs to be specified. Cs is highly
flow dependent and is not a universal constant. Hence, a
priori specification almost always introduces large errors.11

Pierce and Moin7 proposed a dynamic formulation that is
based on a mixing length hypothesis similar to the Smagor-
insky model. In this approach, the model constant is evalu-
ated as a varying parameter using the filtered fields available
in LES. A scalar-gradient-based scaling law is used to obtain
a closed-form algebraic equation for the subfilter variance,

Zv,DM = Cd�2 �Z̄

�xi

�Z̄

�xi
, �3�

where Cd is the model constant that is determined dynami-
cally. Assuming that the model coefficient varies slowly in
space and that the same coefficient applies both at the filter
level and a larger test filter level, Eq. �3� can be written at the
filter level and then filtered again at the test filter level lead-
ing to

ZZ
̂

− Z̄Z̄̂ = Cd�2 �Z̄

�xi

�Z̄

�xi

̂

�4�

or it can be written at the test filter level, which gives

ZZ
̂

− Z̄
ˆ
Z̄
ˆ

= Cd�̂2 �Z̄
ˆ

�xi

�Z̄
ˆ

�xi
, �5�

where �̂ is the test filter width. In the present paper, �̂=2�
will be used. Subtracting Eq. �4� from Eq. �5� then provides

Ld = CdMd, �6�

with

Ld = Z̄Z̄̂ − Z̄
ˆ
Z̄
ˆ

and

Md = �̂2 �Z̄
ˆ

�xi

�Z̄
ˆ

�xi
− �2 �Z̄

�xi

�Z̄

�xi

̂

.

Assuming that the coefficient is constant over homogeneous
directions, Cd is then obtained using a least-squares averag-
ing procedure
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FIG. 1. Kinetic energy spectrum with the location of filters used in this
work.
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FIG. 2. Scalar variance spectrum with the location of filters used in this
work.
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Cd =
�LdMd�
�MdMd�

, �7�

where the brackets indicate averaging over homogeneous di-
rections. Note that in the case of homogeneous turbulence,
Cd is constant in all the domains.

As a first step toward understanding modeling errors,
both these models were evaluated a priori using DNS data.
For these tests, the scale-similarity constant was taken to be
equal to unity.6 In the framework of optimal estimation
theory,12 the models are compared using the notion of an
optimal estimator.13 Based on this idea, if a quantity Zv is
modeled with a finite set of variables �, an exact model
cannot be guaranteed. If the exact solution Zv is known, for
example, from DNS, the optimal estimator of Zv in terms of
the set of variables � is given by the expectation of the
quantity Zv conditioned on the variables in the set. A qua-
dratic error can consequently be defined as the average of the
square of the difference at each point between the condi-
tional mean value given by the value of � at this point and
the exact value of the quantity,

�min = ��Zv − �Zv	���2� , �8�

where �min is the error and the angular brackets indicate sta-
tistical averaging over a suitable ensemble. It should be
noted that any model formulated using the variable set � will
introduce an error that is larger than or equal to this mini-
mum error, with the best model formulation producing this
minimum error. Consequently, this quadratic error �min is re-
ferred to as the irreducible error. Only a change in the vari-
able set may reduce the magnitude of this error. In contrast,
the total quadratic error is given as

�tot = ��Zv − Zv,model�2� . �9�

For the dynamic Smagorinsky-type model, the variable

set used is �1= 
��Z̄ /�xi���Z̄ /�xi��, whereas the variable set

for the scale-similarity model is �2= 
Z̄Z̄
ˆ

− Z̄
ˆ
Z̄
ˆ �. Note that the

variables used to define Cd in the dynamic formulation are
not taken into account since Cd is constant due to the aver-
aging process. Figure 3 shows the total quadratic errors of
the scale-similarity and dynamic Smagorinsky-type models
as a function of the filter width. The irreducible errors asso-
ciated with the corresponding variable sets are also shown.
The errors have been normalized by the square of the exact
subfilter variance expectation. When the filter is located in
the inertial-convective range of the scalar spectrum, the qua-
dratic errors of each model begin to be significantly larger
than their associated irreducible errors. This is particularly
true for the dynamic Smagorinsky-type model showing a
very large error compared with the irreducible error for large
filter size. However, if only the irreducible errors are com-
pared, it is noticed that the irreducible error corresponding to
the dynamic Smagorinsky-type model is always lower than
the irreducible error corresponding to the scale-similarity
model. These results show that a better model can potentially
be formulated with the variable set �1 than for variable set
�2, but that a substantial improvement is needed to achieve
this goal.

While the dynamic Smagorinsky-type model produces a
large total quadratic error, the variable set corresponding to
this model produces a relatively small irreducible error. This
means that the assumptions that lead to the functional form
of the model formulation introduce the errors observed in the
a priori tests. To understand the source of these errors, the
main assumptions that lead to the dynamic formulation are
studied next. From Eqs. �3�–�6�, the quantities C1, C2, C3,
and C4 are defined from the DNS data as

ZZ − Z̄Z̄ = C1�2 �Z̄

�xi

�Z̄

�xi
, �10�

�11�
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FIG. 4. PDF of C1 �Eq. �10�� for several filter sizes. The arrow indicates
increasing filter size.
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FIG. 3. Evolution of the total quadratic errors of the scale-similarity and
dynamic Smagorinsky-type models and their associated irreducible error
with the filter width. The errors have been normalized by the square of the
exact subfilter variance expectation. ��Zv− �Zv 	�1��2� / �Zv�2 �—�,
��Zv−Zv,DM�2� / �Zv�2 �¯�, ��Zv− �Zv 	�2��2� / �Zv�2 �–·–�, and
��Zv−Zv,SS�2� / �Zv�2 �----�.
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ZZ
̂

− Z̄
ˆ
Z̄
ˆ

= C3�̂2 �Z̄
ˆ

�xi

�Z̄
ˆ

�xi
, �12�

and

�13�

Note that these quantities are spatially varying. The main
modeling hypothesis of the dynamic Smagorinsky-type
model is to assume that C1, C2, and C3 are constant over
homogeneous directions and equal to Cd. This assumption
also requires C4 to be constant over homogeneous directions
and to be equal to Cd. Figures 4–6 show the probability
PDFs of C1, C2, and C3 for several filter sizes. The coeffi-
cients C1 and C2 have clearly unimodal distributions with
distinct peaks, particularly for small filter sizes. This vali-
dates the assumption of constant quantities. The distribution
of C1 shows that the model �3� is valid but also that the

model coefficient is far from universal, even in such simple
flows, and that a dynamic procedure is required to improve
predictive accuracy. The coefficient C3, however, has a broad
distribution even for small filter sizes, showing that a con-
stant value of C3 cannot be assumed. Moreover, the ranges of
values of C1, C2, and C3 are clearly different. The assump-
tion C1=C2=C3=Cd is thus not verified. In this case, the
equality C4=Cd used to compute the dynamic constant can-
not be true. Indeed, C4 clearly has a bimodal distribution and
cannot be assumed to be constant �Fig. 7�. Note that C4 con-
tains a large negative range that would lead to negative, and
hence unrealizable, variance. The reasons for these findings
will be further discussed below. Both the unphysical behav-
ior and the scale dependence of the model coefficients need
to be addressed. In this context, a new model formulation is
discussed next.

IV. SUBFILTER SCALAR VARIANCE MODELING
BASED ON TAYLOR SERIES

The starting point for a new subfilter scalar variance
model is based on a Taylor series expansion. This approach
has already been used by several authors14,15 to derive the
so-called Clark’s gradient model. Here, we briefly describe
the method proposed by Bedford and Yeo16 to give an ex-
pansion for fg as a function of f and ḡ and their derivatives
�where f and g are quantities describing flow fields�.

A. Bedford and Yeo’s expansion

Bedford and Yeo16 proposed an expansion of fg based
on Taylor series in the case of a Gaussian filter. The starting
point is that in spectral space, the filtering operation �1� is

f̌�k�� = f̌�k���̌�k�� , �14�

where f̌�k�� is the Fourier transform of f�x�� and k� is the
wavevector. The Taylor series of a Gaussian filter of the form

�̌�k��=exp�−�2k2 /24� is given as
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FIG. 5. PDF of C2 �Eq. �11�� for several filter sizes. The arrow indicates
increasing filter size.
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FIG. 6. PDF of C3 �Eq. �12�� for several filter sizes. The arrow indicates
increasing filter size.
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FIG. 7. PDF of C4 �Eq. �13�� for several filter sizes. The arrow indicates
increasing filter size.
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�̌�k�� = 1 −
�2

24
k2 +

�4

1152
k4 −

�6

82 944
k6 + ¯ . �15�

Since the Laplacian operator, L�f�=�2f /�xi
2, is given in spec-

tral space by

Ľ�f� = − k2 f̌�k�� , �16�

the inverse Fourier transform of Eq. �14� combined with Eq.
�15� yields for the filtered function in physical space,

f̄ = f +
�2

24
L�f� +

�4

1152
L�2��f� +

�6

82 944
L�3��f� + ¯ , �17�

where L�n� is the Laplacian operator applied n times. More-
over, in spectral space, we can write the filtering operation as

f̌�k�� =
1

��k��
f̄
ˇ�k�� . �18�

We can then write a Taylor series for 1 /�̌�k��
=exp��2k2 /24� as

1/�̌�k�� = 1 +
�2

24
k2 +

�4

1152
k4 +

�6

82 944
k6 + ¯ , �19�

which leads to

f = f̄ −
�2

24
L� f̄� +

�4

1152
L�2�� f̄� −

�6

82 944
L�3�� f̄� + ¯ .

�20�

Considering the expansion �17� for fg, after substitution of f
and g by their expansion �20�, and after considerable algebra,
Bedford and Yeo16 found the expansion

fg = f̄ ḡ +
�2

12

� f̄

�xi

�ḡ

�xi
+

�4

288

�2 f̄

�xi�xj

�2ḡ

�xi�xj

+
�6

10 368

�3 f̄

�xi�xj�xk

�3ḡ

�xi�xj�xk
+ ¯ . �21�

Note that this expansion is based on the Gaussian filter and is
not valid for other filters. Similar results have been derived
elsewhere for the subfilter kinetic energy.17 Moreover, if f
=ui and g=uj, and if only the first two terms of the right-
hand side �RHS� are considered, the gradient model pro-
posed by Clark et al.14 to model the subfilter stress tensor is
obtained. The Clark’s relation can be used to model different
types of subfilter terms as long as the modeled terms have
the most part of their energy at large scales because, other-
wise, the truncation error of the expansion will be too large.
For instance, da Silva and Pereira18 have recently modeled
successfully the subfilter pressure-velocity term in the trans-
port equation of the subfilter kinetic energy using this rela-
tion.

B. Subfilter scalar variance modeling:
New dynamic procedure

Before deriving a new dynamic procedure, the dynamic
Smagorinsky-type model assumptions can be examined in
the light of expansion �21�. We will start by deriving Eq. �5�

from Eq. �21�, which is the Smagorinsky-type model at the
test filter scale. Note that in the derivation of the dynamic

model, it is assumed that test-filtered quantities such as Z̄
ˆ

are
obtained by first applying the filter on the regular scale and
then applying the filter on the test-filter scale. Because of
this, the modeling assumption used for Eq. �5� is not the
same as that in Eq. �3�. In fact, Eq. �3� follows from the
mixing length assumption, whereas the model used in Eq. �5�

would actually be the mixing length expression for Z̄Z̄̂− Z̄
ˆ
Z̄
ˆ
.

Using the expression �21� to expand ZZ
̂

leads to

ZZ
̂

= Z̄Z̄̂ +
�2

12

�Z̄

�xi

�Z̄

�xi

̂

+ ¯

= Z̄
̂

Z̄
̂

+
�̂2

12

�Z̄
̂

�xi

�Z̄
̂

�xi
+

�2

12

�Z̄

�xi

�Z̄

�xi

̂

+ ¯ . �22�

Equation �22� shows that ZZ
̂

− Z̄
ˆ
Z̄
ˆ

cannot be described by the

term �̂2��Z̄
ˆ /�xi���Z̄

ˆ /�xi� without taking the term

�2��Z̄ /�xi���Z̄ /�xi�̂ into account. This shows that the as-
sumption �5� is incorrect, as discussed before, and already
seen in the behavior of C3. From this, follows that Eq. �6�,
which is deduced from Eq. �5�, cannot be used for the for-
mulation of the dynamic procedure, as already seen in the
behavior of C4.

For the subfilter scalar variance, the first order of the
expansion �21� leads to the model

Zv,o2 =
�2

12

�Z̄

�xi

�Z̄

�xi
, �23�

which is similar to the dynamic Smagorinsky-type model,
but using Cd=1 /12 instead of computing Cd dynamically.
One could use this constant value to compute the variance.
However, since the higher-order terms of the expansion are
discarded in this model, a dynamic coefficient, Cn, can be
introduced to account for the truncation error. The new for-
mulation can be written as

Zv,LED = Cn�2 �Z̄

�xi

�Z̄

�xi
. �24�

Since the Leonard term, Z̄Z̄̂− Z̄
ˆ
Z̄
ˆ
, is available in LES, the

Taylor series expansion of this term can be used to determine
the dynamic coefficient. The expansion �21� is written for the

test filter with f = Z̄ and g= Z̄. This leads to

Z̄Z̄̂ − Z̄
̂

Z̄
̂

=
�̂2

12

�Z̄
̂

�xi

�Z̄
̂

�xi
+

�̂4

288

�2Z̄
̂

�xi�xj

�2Z̄
̂

�xi�xj
+ ¯ . �25�

Equation �25� shows that Z̄Z̄̂− Z̄
ˆ
Z̄
ˆ

can be evaluated from the

derivatives of Z̄
ˆ
, which are also available in LES. Here, we

keep only the first order term of the RHS and introduce a
dynamic coefficient to account for the truncation error. This
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coefficient is assumed to be equal to Cn, already used in Eq.
�24�.

To assess this assumption, a spatially dependent quantity
C5 is defined as

Z̄Z̄̂ − Z̄
̂

Z̄
̂

= C5�̂2 �Z̄
̂

�xi

�Z̄
̂

�xi
. �26�

The PDFs of C5 for several filter sizes are shown in Fig. 8.
The distribution of C5 is unimodal with a distinct peak, as
already seen with C1. Moreover, the range of values of C5 is
close to the range of values of C1. This confirms that the
assumptions that C1 and C5 are constant over homogeneous
directions and that C1=C5=Cn are valid. Assuming that Cn is
constant over homogeneous directions, a simple average
yields

Cn =
�Ln�
�Mn�

, �27�

with Ln= Z̄Z̄̂− Z̄
ˆ
Z̄
ˆ

and Mn= �̂2��Z̄
ˆ /�xi���Z̄

ˆ /�xi�. Instead, Cn

can also be evaluated from a least-squares approximation
according to Lilly’s method19 as

Cn =
�LnMn�
�MnMn�

. �28�

Figure 9 shows that both methods are close. In the following,
Cn is computed with the least-squares averaging. Since this
new dynamic procedure is based on a Taylor series expan-
sion of the Leonard term, we will refer to this model as the
Leonard term expansion dynamic model �LED�.
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FIG. 8. PDF of C5 �Eq. �26�� for several filter sizes. The arrow indicates
increasing filter size.
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FIG. 10. Evolution of the total quadratic errors of the models Zv,DM, Zv,o2,
and Zv,LED and the associated irreducible error with the filter width. The
errors have been normalized by the square of the exact subfilter variance
expectation. ��Zv− �Zv 	�1��2� / �Zv�2 �—�, ��Zv−Zv,DM�2� / �Zv�2 �¯�,
��Zv−Zv,o2�2� / �Zv�2 �----�, and ��Zv−Zv,LED�2� / �Zv�2 �–·–�.
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C. A priori tests of LED model

The analyses in the previous sections were carried out
using a Gaussian filter kernel. In practical LES calculations,
only a box filter is used. Hence, to ensure that the model
performance is not dependent on the filter kernel, a priori
tests were conducted using the box filter. The box filter is
applied by multiplication with the following kernel:

�̌�k�� = �
i=1

3
sin�ki�/2�

ki�/2

in spectral space.
Figure 10 shows the quadratic errors for the different

models. Note that the model Zv,o2 given by Eq. �23� is also
tested for comparison. For all filter sizes, the total quadratic
error of Zv,LED is smaller than the total quadratic errors ob-
tained with the two other models. Moreover, the total qua-
dratic error of the new dynamic procedure remains close to
the irreducible error, whereas the total quadratic error of the
dynamic Smagorinsky-type model increases strongly with
the filter size. This shows that Zv,LED is close to the best

possible model using only �1 as variable set. We can also
note that the total quadratic error of Zv,LED is close to the
irreducible error using �2 as set of quantities �Fig. 3�. This
shows that Zv,LED will be more accurate than a scale-
similarity model independent of the scale-similarity constant
Cs. To confirm that it is better to use a gradient-type model
than a scale-similarity model, Fig. 11 shows the correlation
between the exact subfilter variance obtained from the DNS
data and the modeled subfilter variance. It is evident that a
gradient-type model is strongly correlated with the exact
subfilter variance and that the correlation is higher than that
of the scale-similarity model for all filter sizes.

To assess the quality of a model, a scatter plot showing
the model result, g���, versus the modeled quantity, Zv, is
often used. In the same spirit, Moreau et al.13 proposed to
consider �Zv 	g���� as a function of g���, which compares
the model results with the best possible model given a cer-
tain parameter set �. They demonstrate that the model is
optimal when �Zv 	g����=g���. Figure 12 shows
�Zv 	Zv,model�= f�Zv,model� for several filter sizes. For the dy-
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FIG. 12. Plot of �Zv 	Zv,model� as a function of Zv,model. Zv,DM ���, Zv,o2 ���, and Zv,LED ���. y=x �—�.
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namic Smagorinsky-type model, the large total quadratic er-
rors for large filter sizes are due to an important underpre-
diction of the subfilter scalar variance. This underprediction
is due to the large part of negative values of C4, as previ-
ously observed. The model Zv,o2 always underpredicts the
subfilter scalar variance due to the truncation error since all
the terms of the expansion �21� are positive. For the LED
model, there is just a weak overprediction of the high values
of the subfilter scalar variance, but for most of the range of
the scalar variance, the model is in excellent agreement with
the data.

In LES, the subfilter variance itself is a fluctuating ran-
dom quantity. Hence, all statistical measures used in the con-
text of other random variables can be invoked for the vari-
ance as well. The variance, skewness, and flatness of the
subfilter variance model are compared with the moments of
the exact subfilter variance. These quantities define the mo-
ments of the PDF of the subfilter variance. Hence, they help

compare the distribution given by the models with the exact
distribution. Figure 13 shows the variance of the exact and
modeled subfilter variances. We can see first that the under-
prediction of Zv,o2 leads to a smaller variance of the subfilter
variance. The Smagorinsky-type model produces higher vari-
ance for small filter sizes, but the variance is nearly zero for
large filter sizes. These underpredictions are mainly due to
the large negative value of C4 given by the model. The LED
model underpredicts the variance of the subfilter quantity but
still predicts the right trend. Figure 14 shows the skewness
and the flatness of Zv and Zv,LED. Note that these quantities
are independent of the model coefficient. Again, a similar
behavior between the model and the exact subfilter variance
is found. All these observations indicate that the LED model
reproduces the distribution of the subfilter variance with rea-
sonable accuracy.

V. CONCLUSIONS

The subfilter scalar variance model was evaluated using
the concept of optimal estimators. It appears more suitable to
formulate a subfilter variance model by using the set of
quantities of the dynamic variance model7 than the set of
variables of the scale-similarity model.6 However, it was
found that the main assumptions used in the dynamic
Smagorinsky-type model formulation lead to large errors in
the variance predictions. The dynamic model assumes that
the same model coefficient can be applied at both the filter
and the test filter levels. Moreover, it is assumed that the
application of the test filter is equivalent to first applying the
regular filter followed by a test filter. A Taylor-expansion
analysis showed that this assumption is equivalent to ne-

glecting a first-order term in the expansion ZZ
̂

− Z̄Z̄
ˆ

. Inclusion
of higher-order expansion terms has led to a new dynamic
model formulation. A priori tests using DNS of forced ho-
mogeneous isotropic turbulence showed that the new model
substantially improves predictive accuracy.
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