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The spectral eddy-viscosity and eddy-diffusivity closures derived from the eddy-damped
quasinormal Markovian �EDQNM� theory, and one of its physical space counterparts, i.e., the
structure function model �Métais and Lesieur, J. Fluid Mech. 239, 157 �1992��, are revisited to
account for molecular viscosity and diffusivity effects. The subgrid-scale Schmidt number �usually
set to Sct�0.6� is analytically derived from the EDQNM theory and shown to be Reynolds number
dependent, a property of utmost importance for flows involving scalar transport at moderate
Reynolds numbers or during the transition to turbulence. A priori tests in direct numerical
simulation of homogeneous isotropic turbulence �da Silva and Pereira, Phys. Fluids 19, 035106
�2007�� and in spatially evolving turbulent plane jets �da Silva and Métais, J. Fluid Mech. 473, 103
�2002��, as well as a posteriori �large eddy simulation� tests in a round jet are carried out and show
that the present viscous structure function model improves the results from the classical approaches
and at a comparatively small computational cost. © 2008 American Institute of Physics.
�DOI: 10.1063/1.2844469�

I. INTRODUCTION

The large eddy simulation �LES� technique consists of
describing the large-scale motions based on a spatial filtering
operation while the effect of the subgrid-scales �SGS� needs
to be modeled.1 While many SGS models have been de-
signed to close the resulting filtered Navier–Stokes equations
for incompressible flows,2–4 the corresponding problem ap-
plied to turbulent combustion, turbulent mixing, or com-
pressible flow has not yet been fully addressed.5,6 For these
situations, the filtered transport equation of a scalar variable
�e.g., mixture fraction, temperature� must be solved and a
subgrid-scale scalar flux has to be modeled. The simplest
way to address this issue consists in considering a constant
SGS Schmidt number7 Sct�0.6 and in determining an eddy-
diffusivity term proportional to the eddy-viscosity model:
�t=�t /Sct. The main limitation of such a model is that Sct is
set to a constant while it should be strongly affected by the
slope of the kinetic energy spectrum.8 Moin et al.9 have
shown indeed that a dynamically computed value of Sct

could greatly improve the results of the simulations, since �t

depends on the molecular Schmidt number Sc and on the
local turbulence level of the flow. In the present work we
revisit the eddy-viscosity and eddy-diffusivity models in
spectral space8 in order to integrate the molecular viscosity/
diffusivity effects from the original eddy-damped quasinor-
mal Markovian �EDQNM� equations. The new formulation/
model is useful to address two related issues: �i� The effects
of low Reynolds number and �ii� a variable SGS Schmidt
number for transitional flows.

II. SGS MODELING IN SPECTRAL SPACE

In the Fourier space, the SGS transfers across the cutoff
wave number kc �which represents the smallest resolved
scale for LES� are modeled based on eddy-viscosity and
eddy-diffusivity concept defined as8
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where E�k� is the three-dimensional kinetic energy spectrum
and �kpq and �kpq

T are the velocity and scalar-velocity triple
correlation relaxation times, respectively,
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They are introduced in the frame of the EDQNM theory,
to close the evolution equation for the third-order moments
of the velocity and temperature components1,10,11 involving
triadic interactions,
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20
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20
kp2E�p�dp are linear damping functions that ap-

proximate the fourth-order cumulants with a1=0.218Ck
3/2,

a2=0, and a3=0.7848Ck
3/2 so that �a2+a3� /6a1=0.6. In Eqs.

�3� and �4�, the role of the molecular viscosity/diffusivity
terms �k2 and �k2 is to partially inhibit the linear terms as-
sociated to ��k�, ���k�, and ���k�. This contribution had
been neglected in the original formulation of the spectral
eddy-viscosity model8 because the aim was to deal with high
Reynolds number flows. It is presently reintroduced here to
address the issue of modeling turbulent flows involving a
transition to turbulence or a moderate Reynolds number. In
order to evaluate the integrals defined in Eqs. �1� and �2�, the
shape of the energy spectrum E�k� for k�kc must be known.
In the present work we assume that the kinetic energy spec-
trum is modeled as E�k�=Cmk−m for k�kc, where 5 /3	m

3. The case m=5 /3 is considered to be a good approxima-
tion for high Reynolds number flows. In particular, the accu-
racy of the approximation increases with the Reynolds num-
ber. For low Reynolds number flows, the spectrum exhibits
only a dissipative range with a local slope that is always m
�5 /3.8,12 Despite the limitations of this approximation, par-
ticularly in low Reynolds number flows, it has yielded good
results in numerous theoretical and numerical works.1 It is
interesting to note that the upper bound m=3 value in the
present analytical developments corresponds to forced flow
situations such as two-dimensional turbulence in geophysical
flows.1

Thus, the relaxation times are8,12
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Using Eqs. �1�, �2�, �7�, and �8�, the eddy-viscosity and eddy-
diffusivity are now obtained as13
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The present formulation leads to a damping effect with re-
spect to the basic inviscid eddy-viscosity and eddy-
diffusivity defined as8
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The new model equations �9�–�14� are first assessed using
kinetic energy spectra E�k� from DNS of homogeneous iso-
tropic turbulence14 for Re�=39−96, Sc=0.2−0.7−3. Ex-
plicit filtering is obtained with a sharp cutoff filter in Fourier

space applied with filter sizes ranging from �̄=2� to �̄
=10�, where � is the size of the grid from the DNS in each
direction. In practice, the m slope is obtained by interpolation
using a least-squares method12 applied on the three-
dimensional energy spectra in the wave number range kc /2
	k	kc. In this sense, m is a function of the global slope of
the kinetic energy spectrum in the neighborhood of the cutoff
wave number. For low Reynolds number flows no inertial
range exists and the cutoff filter is located in the dissipative
region of the kinetic energy spectrum. Therefore, m becomes
steeper as the filter size decreases. Figures 1�a� and 1�b�
show indeed that the spectral eddy-viscosity �t

� and diffusiv-
ity �t

�are strongly damped for low Reynolds numbers, e.g.,
for Re�=39, in comparison with their inviscid counterparts
�ti

� and �ti
�, respectively. The inviscid SGS Schmidt number

is defined8 as
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Introducing Q as the ratio between Y and X,
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we obtain an expression for the SGS Schmidt number,

Sct
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�m�QX − Q ln�1 + X�
QX − ln�1 + QX�
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In the limit of small X; i.e., small Reynolds number, the SGS
Schmidt number is

Sct
�m� =

�5 − m�
40

�1 +
1

Sc
�

instead of its inviscid value defined in Eq. �15�. Thus, the
new model provides a damping adjustment of the SGS
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Schmidt number, which includes the effects of the global
slope of the kinetic energy spectrum m around the cutoff
wave number and of the molecular diffusion �accounted for
by the Schmidt number�. These two effects are expected to
be of critical importance in the simulation of flows involving
scalar transport in low to moderate Reynolds numbers or
during the transition to turbulence. As an example of appli-
cation using Eqs. �15� and �17�, consider the case m=5 /3
and Sc=0.7. We get Scti

=0.6 and Sct=0.2, with these equa-
tions, respectively, while for m=3 and Sc=0.7, we obtain
Scti

=0.36 and Sct=0.12; i.e., the damping functions lead to a
reduction in the SGS Schmidt number to about one third.
These effects are well illustrated in Fig. 1�c�, where again the
shape of the energy spectra from isotropic turbulence14 were
used.

III. SGS MODELING IN PHYSICAL SPACE

A. Viscous structure function model

In LES carried out in the physical space, the filtered
Navier–Stokes equations and a corresponding filtered scalar
transport equation have to be evaluated,

� ūi
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+
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1
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FIG. 1. A priori tests on isotropic turbulence with passive scalar for Re�=39–96 and Sc=0.2–0.7–3. A sharp cutoff filter with filter widths equal to �̄ /�
� �2;10� was used. The results were obtained with Eqs. �9�, �10�, and �17�. �a� Spectral eddy-viscosity �t

� and �ti
�. �b� Spectral eddy-diffusivity �t

� and �ti
�. �c�

SGS Schmidt number Sct
�m� and Scti

�m�.
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where S̄ij =
1
2

��ūi / �xj + �ūj / �xi � is the strain rate tensor and

Ḡi= �T̄ / �xi is the scalar gradient. The subgrid-scale stresses
tensor �ij =uiuj − ūiūj and the subgrid-scale scalar flux qi

=Tui− T̄ūi are unknown quantities requiring modeling. The
use of the eddy-viscosity and eddy-diffusivity concepts per-
mits one to relate these unknowns to a turbulent eddy-
viscosity �t�z , t� and a turbulent eddy-diffusivity �t�z , t�,

�ij − 1
3�ij�kk = − 2�tS̄ij , �21�

qi = − �tḠi. �22�

The structure function �SF� model8 was developed as a
physical space representation of the spectral eddy-viscosity
model derived from the EDQNM closure. It seems, there-
fore, natural to assess the present model in the physical space
using the SF model as a starting point. The eddy-viscosity
for the SF model is given by

�t
sf = 0.105CK

−3/2�̄�F2�z,�̄,t� , �23�

where F2�z , �̄ , t� is the local second-order velocity structure

function computed on a shell of diameter equal to �̄. This
model showed good results in a number of turbulent shear
flows.8 The extension to the physical space of the present
low Reynolds number model consists in the viscous structure
function model �VSF� developed by Brun et al.13 In this
model the �physical space� eddy-viscosity13 and eddy-
diffusivity are given by

�t
VSF = �t
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1

x
ln�1 + x�� , �24�

�t
VSF =

�t
SF�1 −

1

Qx
ln�1 + Qx��
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respectively, where Q is given by Eq. �16�, and x is a func-
tion of the angle � between the local vorticity � and the

mean vorticity �m averaged over a shell of radius equal to �̄
�see Sagaut4�,

x = tan��

2
��t

SF

�
� = arccos� �m · �

��m������� . �26�

The resulting VSF model constitutes therefore a continu-
ous formulation of the selective structure function model.2,15

B. A priori tests

A priori tests were performed on a DNS of a turbulent
plane jet16 for ReH=3000 and Sc=0.7. Explicit filtering was
made with a top-hat filter for the evaluation of the SGS

model in the physical space for �̄ /�=3, 5, and 7. The results
demonstrated that �t and �t are roughly proportional to

��̄ /��4/3 as expected from the literature1 �not shown�. For
comparison we computed reference values for the eddy-
viscosity and eddy-diffusivity from the DNS data through

�t
REF = −

��ijS̄ij�

2�S̄klS̄kl�
, �t

REF = −
�qiḠi�

�qjqj�
, �27�

where �·� means a temporal averaging. Figure 2�a� compares
the new viscous SF eddy-viscosity �t

VSF, the classical SF
eddy-viscosity8 �t

SF, and the reference eddy-viscosity �t
REF

obtained with Eq. �27�. As can be seen the VSF model has
the expected behavior along the jet streamwise direction; i.e.,
it damps the influence arising from the presence of a strong
mean velocity gradient during the transition stage. Similar
results are obtained for the eddy-diffusivity �see Fig. 2�b��.
Figure 2�c� displays the evolution of the SGS Schmidt num-

0 2 4 6 8 10 12
0

2

4

6

8

0 2 4 6 8 10 12
0

2

4

6

8

VSF
REF
SF

νt/ν

z/H
(a)

0 2 4 6 8 10 12
0

2

4

6

8

10

0 2 4 6 8 10 12
0

2

4

6

8

10

VSF
REF
SF

κt/κ

z/H
(b)

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12
0

VSF
REF
SF

Sct

z/H
(c)

FIG. 2. Downstream evolution at y /H=0.5 of the �a� eddy-viscosity �t, �b� eddy-diffusivity �t, and �c� SGS Schmidt number Sct in a priori tests on a plane
jet for ReH=3000 and Sc=0.7. The reference values �REF� were obtained by box filtering the DNS, and using Eqs. �27�, while results for the classical structure
function model �SF�, and viscous structure function model �VSF� were obtained with Eqs. �23�–�26�, respectively.

025102-4 Brun et al. Phys. Fluids 20, 025102 �2008�

Downloaded 24 Apr 2008 to 171.67.22.49. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



ber corresponding to Figs. 2�a� and 2�b�. The constant value
of Sct=0.6 usually set in LES of passive scalar is also shown
for comparison. The potential of the new model is clearly
illustrated by the damping effect present in the initial stage of
the plane jet development.

C. A posteriori tests: LES of round jet at ReD=25 000

Finally, LES of spatially evolving turbulent round jet
were carried out with the new model �VSF� using an accurate
Navier–Stokes solver with pseudospectral methods and
sixth-order compact schemes.16,17 The Reynolds number is
ReD=25 000 based on the inflow velocity Uo of the jet and
on the diameter D, and the molecular Schmidt number is
Sc=0.2. The flow configuration consists of a co-flowing jet
with about Uext /Uo=7% co-flow. Hyperbolic tangent profiles
were applied as inflow conditions for both the velocity and
the scalar,16 with a momentum thickness �o=D /40. Results
are compared with the filtered structure function model2

�FSF� with constant SGS Schmidt number Sct=0.6. Figure
3�a� shows the mean velocity �Uc� and mean scalar �Tc� de-
cay rates along the centerline z, which are in good agreement
with the experimental results18,19 with �=5.8 and K1=4.48
for the velocity and passive scalar fields, respectively. A
good agreement is obtained also for the root-mean square
�RMS� of the velocity and passive scalar fields �Fig. 3�b��
with respect to experimental results19,20 including a linear
decay behavior in the fully turbulent region. Notice that the
transition to turbulence starts about 1D earlier for both the
velocity and the scalar fields �see Fig. 3�b�� due to the inhi-
bition of the SGS model caused by the damping functions.
The scalar RMS reaches a lower �about 10%� saturation
value with the VSF model than with the FSF model, an effect
which is related to the variation in SGS Schmidt number in
the transition zone. In the experiments,19 the transition to
turbulence is strongly enhanced when the flow is issued from
a smooth contraction and yields TRMS / To �3% at about z

=2D. The present LES results show a clear improvement
with a similar trend when the VSF model is used.

IV. CONCLUSION

In the present study, we revisited the spectral eddy-
viscosity and eddy-diffusivity closures derived from the
EDQNM theory and accounted for molecular diffusion ef-
fects which were neglected in the original formulation dedi-
cated to high Reynolds number flows.8 Two related issues
were addressed: �i� The effects of low Reynolds number and
�ii� a variable SGS Schmidt number for transitional flows.
The analytical present spectral formulation involves a damp-
ing of the inviscid eddy-viscosity and inviscid eddy-
diffusivity which vanishes for increasing Reynolds number
flows. The spectral model has been transposed to the physi-
cal space SGS modeling and yields a so-called viscous struc-
ture function �VSF� model, which consists of an improve-
ment of the original structure function �SF� model8 for flows
involving transition to turbulence. The present VSF model is
of particular interest for transitional flows with scalar trans-
port since the resulting SGS Schmidt number is no longer
constant and set to Sct=0.6 but is reduced in low Reynolds
number flow regions, as expected from analytical and nu-
merical analysis. The new model was validated based on
both a priori tests in DNS of homogeneous isotropic turbu-
lence and DNS of turbulent plane jet and a posteriori tests in
LES of round turbulent jet with scalar transport.
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