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1 Introduction

Giovanni Alfonso Borelli can be credited to be the first person to have examined in quantitiative
detail the deflection that falling bodies undergo due to the Earth’s diurnal rotation.

The two primary sources are his book De vi percussionis (1667), and an open letter to Michelan-
gelo Ricci (Riposti de Gio: Alfonso Borelli Messinese etc. 1668) in reply to criticism expressed by
Stefano degli Angeli.

These sources were used by Koyré in his paper A documentary history of the problem of fall from
Kepler to Newton – De motu gravium naturaliter cadentium in hypothesi Terrae motae, published
in the Transactions of the American Philosophical Society, 45 (4), 329–395, in 1955.1

The following discussion is based on Koyré’s paper. In his discussion of De vi percussionis, on
pages 358–360, he quotes the relevant parts in the original (i.e. Latin) and also provides an English
translation. Borelli’s letter, however, is only given in translation, and partly paraphrased (on pages
371–376).

Another relevant publication is a paper by H.L. Burstyn, The deflecting force of the Earth’s
rotation from Galileo to Newton, published in Annals of Science 21, 47–80, in 1965. In his dis-
cussion of Borelli’s work, he relies entirely on Koyré’s paper for the source material, but he adds
an interpretation of his own (more on that below). Unlike Koyré, he quotes extensively from the
correspondence between Hooke and Newton; on that part of the story he has more to offer than
Koyré.

In the abovementioned publications, it has passed unnoticed that Borelli’s result is inconsistent
with his original assumption. He starts with the assumption that the transverse speed be conserved.
Then, by an erroneous reasoning, he arrives at a result that actually corresponds to quite a different
assumption, namely that of conservation of angular momentum ! Yet, this does still not correspond

1This long paper was later translated into French and published as a book: Chute des corps et mouvement de la
terre – de Kepler à Newton (Vrin, 1973).
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with the modern result, because his outcome only holds if one supposes that the vertical fall is
uniform (as opposed to accelerated). The purpose of this note is to dissect Borelli’s reasoning and
to resolve the paradox it involves.

2 De vi percussionis

A short passage in this work is devoted to the deflection of falling bodies. He first observes that an
object at a certain height, turning along with the Earth, traverses a circle at a certain “transverse
impetus” (impetu transversali circulari). Now, as the object starts falling towards the Earth’s centre,
it will, according to Borelli, retain its transverse impetus; it will continue to traverse equal circular
distances in equal times, but since the radius of the circle becomes smaller during the fall, the
traversed angles will increase [quare si primo tempore mobile excurrit spatium DG secundo tempore
ei aequali percurret spatium IH aequali ipsi DG et quia hujusmodi spatia aequalia mensurantur non
in eodem, sed in divertis circulis inaequalibus fit ut angulus ACG minor sit angulo GCH, et proinde
anguli praedicti successive crescunt prout distantia a centro C diminuuntur].2

Borelli states very clearly here that in equal times, the object traverses equal spatia, i.e. spaces,
distances. From an accompanying figure, it is indeed clear that these spatia stand for circular arcs.3

Now, in modern notation, we would state this as conservation of ωr (leaving the mass aside),
where ω is the angular velocity, and r the radius. This azimuthal ωr being constant, the object
traverses equal spatia in equal times, but, as the radius decreases during its fall, the object traverses
ever larger angles.

The text leaves no room for an interpretation put forward by Burstyn, who claims that Borelli
expresses here the principle of conservation of angular momentum (i.e. of ωr2, again leaving the mass
aside). According to Burstyn, Borelli’s impetus is “the triple product of the mass and the tangential
velocity of the body and of the radius of the curve of fall”. Burstyn’s interpretation would hold if
Borelli had stated that the areae enclosed by the arcs were conserved, but Borelli speaks of spatia,
the length of the arcs.4

From a historical perspective, it is also most improbable that Borelli should have come up with
this principle (which we now know to be the correct one), at a stage when the development of
mechanical notions was still in its infancy. It is true, of course, that Kepler had already empirically
discovered the “law of areas” (his 2nd law), which, as we now know, is equivalent to conservation
of angular momentum. But at the time there was no understanding of such an equivalence, and,
moreover, before Newton it was not obvious that this same principle may be applicable to terrestrial

2the late Latin diminuere has no longer the same meaning as in classical Latin (viz. to shatter), but rather that of
the classical deminuere, to lessen.

3Confusingly, however, the arcs DG and IH are not of equal length in that figure, even though he states in his text
that they should. This inconstency is remedied in his later publication, discussed below.

4The latin spatium, when used in a quantitative sense, stands for ’interval’, ’stretch’, or ’distance’. Only in the
vaguer, broader sense, may it mean ’room’ or ’space’.
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bodies; there was still a sense that the ’sublunar’ obeys different laws than the celestial spheres.
Indeed, Borelli nowhere mentions such an analogy, nor does he refer to Kepler’s laws.

3 Borelli’s open letter

We follow here the translation provided by Koyré (Transactions, p. 371–374).
Regarding the falling motion of a stone dropped from a tower, Borelli first reiterates his guiding

principle:

“[I] believe [that] in whatever place of the descent it finds itself, it must conserve the same degree
of transverse velocity, and consequently traverse equal spaces in equal times on all the circles that
it traverses” (p. 371).

(Notice, again, that Borelli assumes the transverse speed, not angular momentum, to be con-
served – contradicting Burstyn’s claim.) The situation he now considers is the following:

“Coming now to our case, let C [Fig. 1] be the center of the Earth , the circumference of the
Equator be EH, and let AH be the height of the tower [. . . ] and let it be admitted that AE, together
with the semidiameter EC, perform a uniform circular motion along the circumference EH; let us
now drop a stone from the summit A.” (p. 373)

He then goes on to estimate the magnitude of the deflection:

“The tower AE is 240 feet high, and it is supposed to circumgyrate with the terrestrial semidi-
ameter CE on the arc EH of one minute of the Equator in such a manner that the tower moves to
the site HM and that in this time a ball of chalk falling from the top A arrives at the Earth with
two motions, i.e. with the transverse motion, of which the uniform impetus is measured by the arc
AM and with the descending impetus on the perpendicular AE. I say that in this case the ball will
not fall precisely upon the lowest place H of the perpendicular to the horizon HM traced on the
face of the tower, but that falling along the line MO, it will outrun it somewhat, [and that] the arc
EO will have to be equal to AM and thus greater than EH. I must show now that the deviation
HO, on account of its smallness, cannot be observed, because as the terrestrial semidiameter CA is
supposed to be of 23,367,468 Roman feet (antique) and the tower EA of having a height of 240 of
the same feet, the proportion of the terrestrial arc EH of a minute of the Equator to the arc AM
traversed by the top of the tower, will be the same as that of CE to AC; now this transit is made
in 4′′ of the hour; therefore, admitting the arc HE to be of 6,797 1/2 Roman feet, the arc AM, or
thus EO [will have] 6,797 48/120 feet and consequently the excess HO will be 8/120 foot, which is
8/12 inch, and thus less than an inch.”
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Figure 1: From Borelli’s letter.

His result amounts to 2.0 cm (one Roman foot being 29.6 cm). His reasoning can be rendered
in a simpler way as follows. Starting from the presumed equality of AM and EO,

AM = EO ,

and assuming the fall to take an amount of time T (which Borelli takes to be 4 seconds), we have,
with the Earth’s angular velocity Ω,

AM = Ω(AE + EC)T ; EH = ΩEC T .

Hence
HO = EO − EH = AM − EH = Ω AE T . (1)

This amounts to 0.07 foot, the value Borelli arrived at.
As Burstyn notes correctly, this is larger than the modern value, which would be 2

3ΩAE T (see
below). Whence comes the difference? According to Burstyn, Borelli “has implicitly assumed that
the fall of the body is uniform”, and argues that an accelerated motion would have led to a smaller
value. The problem is, however, that Borelli’s reasoning does not seem to depend on the nature of
the fall, but only on its duration.

The conundrum becomes still larger by the fact that Borelli started out with the incorrect as-
sumption of a “uniform transverse impetus”; he should instead have applied conservation of angular
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momentum. The latter principle is what gives the factor “2” in the Coriolis force in the term gov-
erning the deflection at hand. So, this correction would make Borelli’s value (1), which already is
too large, even larger !

3.1 The Coriolis force

The eastward deflection is governed by the Coriolis force term

∂u

∂t
= −2Ω cos(φ)w .

At the equator (Borelli’s case), we have cosφ = 1. Double integration in time then gives,

∆ = −2Ω
∫ T

0
dt

∫ t

0
dt′w . (2)

where ∆ is the eastward deflection (i.e. HO in Borelli’s notation).
It is now an interesting exercise to calculate the deflection assuming a uniform vertical motion,

i.e. to take w to be constant: w = −h/T , h the height of the tower. This gives

∆unif = ΩhT (for a uniform fall) . (3)

This is the same as Borelli’s (1)! This is the all the more remarkable, as the Coriolis term is based
on conservation of angular momentum (ωr2), not of transverse speed (ωr). And the latter is what
Borelli assumed !

To resolve the contradiction, let us reconsider Borelli’s argument. He begins with the assumption
that the stone’s transverse speed, v = Ω(CE +EA), is conserved. From this he infers that the stone
will traverse an arc of length AM, irrespective of whether it stays at the top or falls downward. Now,
had the object begun an eastward trajectory at the foot of the tower (E), and moved from there at
speed v, then it would indeed have ended up at O after time T , since EO is equal to AM. On the
other hand, had the object stayed at the top, it would have ended up in M. Now, the stone does
in fact neither of these two things, since it starts at the top A, but ends up at the Earth’s surface.
Assuming a uniform vertical fall, we should therefore take the mean height, i.e. D, as a starting
point for drawing the arc. But this means that the stone reaches the eastward position given by
the middle of the dashed line OM, which amounts to an eastward deflection of precisely half the
distance HO ! In other words, had Borelli followed through his argument in a consistent way, he
would have found the deflection

1
2
ΩAE T .

instead of (1).
Replacing now conservation of transverse speed by conservation of angular momentum, we find

twice the previous result, i.e. ΩAE T , which is consistent with (3).
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Turning, finally, to the correct solution, as found by Laplace, we use again (2), but now take the
correct expression for w, the one that corresponds to a uniformly accelerated fall: w = −gt′. Hence

∆acc =
1
3
gΩT 3 .

Or, since h = 1
2gT 2,

∆acc =
2
3
hΩT . (4)

By comparing (3) and (4), we see that the difference between a uniform and a uniformly accelerated
vertical motion amounts to a factor of 2/3.

In summary, we may distinguish four cases:

conservation of conservation of
transverse velocity angular momentum

uniform fall 1
2ΩhT ΩhT

uniformly accelerated fall 1
3ΩhT 2

3ΩhT

The correct answer, of course, is that of the lower right corner. Based on his assumptions,
Borelli should have found the result stated in the upper left corner, but, by an erroneous reasoning,
he ended up with the expression of the upper right corner.

3.2 Kepler’s problem

The most rigorous way to treat the problem is to conceive it as a “Kepler problem”, which in this
case amounts to determining the trajectory of a satellite in a given gravity field, for a given initial
position and velocity of the satellite.

This means we have to solve the following equations

dr

dt
= w (5)

dw

dt
= −GM

r2
+

L2

r3
(6)

dΘ
dt

= L/r2 . (7)
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(The equations have here been written in a form that is convenient for numerically solving them.)
The third equation expresses conservation of angular momentum, L being constant.

There are two slight differences with respect to Laplace’s solution, (4). First, gravity g is not
taken constant, but is now given by −GM/r2. This turns out to be a very minute effect. More
important is the second difference: the vertical movement is now being calculated, instead of being
imposed as if it were identical to a fall on a non-rotating Earth. The latter procedure was followed
above (and by Laplace, too), when we prescribed w. This is not completely exact. After all, the
kinetic energy the stone has gained when it reaches the Earth’s surface should be the same on a
rotating and a non-rotating Earth (since the same amount of potential energy is being converted
in both cases). Now, in the former case, part of this gain goes into a (small) eastward velocity,
associated with the eastward deflection, which implies that the terminal vertical velocity must be
slightly smaller than on a non-rotating Earth.

These two aspects are calculated exactly by solving the “Kepler problem”. Specifically, the
outcome is as follows. The eastward deflection is found to be 1.3140 cm, which is slightly larger
than what (4) yields (i.e. 1.3117 cm). The terminal vertical velocity is 37.3017 m/s, which is
slightly smaller than for the non-rotating case, 37.3661 m/s (or the virtually identical 37.3663 m/s
in Laplace’s case, where gravity is taken constant). In other words, the vertical velocity is decreased
by 0.17% with respect to Laplace’s expression, which gives slightly more time for the eastward
deflection to build up, and which is therefore 0.17% larger than in Laplace’s expression.
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