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This paper describes a novel hybrid method, combining a spectral and a particle method,
to simulate the turbulent transport of a passive scalar. The method is studied from the
point of view of accuracy and numerical cost. It leads to a significative speed up over more
conventional grid-based methods and allows to address challenging Schmidt numbers. In
particular, theoretical predictions of universal scaling in forced homogeneous turbulence
are recovered for a wide range of Schmidt numbers for large, intermediate and small scales
of the scalar.
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1. Introduction

The prediction of the dynamics of a scalar advected by a turbulent flow is an important challenge in many applications.
The scalar field can be used to represent various quantities transported by the flow. In combustion, the mixture fraction is
a conserved scalar used to describe mixing between fuel and oxidizer [1]. The prediction of scalar in environmental flows is
also of great importance [2]. The temperature field is another type of advected scalar which is critical in many applications,
e.g. to simulate the cooling systems used for nuclear reactors [3]. Passive scalars can finally be used to capture interfaces in
multiphase flows [4] or determine the dynamical properties of turbulent flows [5].

A passive scalar, θ , is governed by an advection–diffusion equation,

∂θ

∂t
+ �u · �∇θ = �∇ · (κ �∇θ) (1)

where κ is the molecular scalar diffusivity and �u the flow velocity field. The phenomenology of passive scalar convection–
diffusion depends on the molecular Schmidt number, the viscosity-to-diffusivity ratio, Sc = ν/κ . For turbulent flows, the
Kolmogorov scale, ηK , is defined as the smallest length scale of the turbulent motion. Similarly, for Schmidt numbers higher
than one, the Batchelor scale, ηB , is defined as the smallest length scale of the scalar fluctuations. The Batchelor and Kol-
mogorov scales are related by ηB = ηK /

√
Sc.

The Batchelor scale is thus smaller than the Kolmogorov scale. This means that, for Schmidt number larger than one,
scalar dynamics can occur at scales smaller than the smallest velocity eddy, and therefore requires important computational
resources. Donzis et al. [6] performed DNS of turbulent transport by means of pseudo-spectral methods using up to 4096
modes in each direction to study universal scaling laws of a passive scalar.
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In the above reference the same grid resolution and numerical method are used for the momentum and the scalar
equations. The two-scale nature of turbulent scalar transport, however, makes it natural to use different grids and different
numerical methods for the scalar and the momentum. In a recent work, Gotoh et al. [7] describe a hybrid method combining
a spectral method for the Navier–Stokes equation and compact finite-difference schemes for the scalar advection. This hybrid
method is validated and applied for simulations of decaying turbulence at Schmidt numbers of 1 and 50. Significant gains
were obtained in comparison with methods using spectral discretizations for both the momentum and the scalar.

For large Schmidt numbers, the scalar dynamics is essentially governed by advection, a regime for which Lagrangian
or semi-Lagrangian methods are ideally suited. An important feature of these methods, which makes them particularly
appealing in the case of high Schmidt numbers, is that they are stable under conditions that are related to the flow strain
and not to the grid-size. In practice this means that the time-step used for the scalar equation will depend on the grid
resolution used for the momentum equation even if a much finer grid is used for the scalar. Inspired by this observation,
we proposed in [8] to couple semi-Lagrangian particle methods at different grid-resolutions for both the scalar transport and
the Navier–Stokes equations. This reference provides a proof of concept that scalar spectra and structures are resolved with
the same accuracy and much less computational effort in a hybrid method using a coarse resolution for the momentum
than in a fully resolved high resolution method. This work was pursued in [9], to investigate the universal laws for large,
intermediate and small scales of the scalar for Reynolds numbers (based on the Taylor micro-scale) between 80 and 160
and Schmidt numbers between 0.7 and 16. In this reference, a particle method for the scalar equation was coupled with a
pseudo-spectral method for the Navier–Stokes equations.

The purpose of the present paper is to describe and validate the hybrid spectral-particle numerical approach used in [9],
and to discuss its efficiency, in particular in comparison with fully resolved methods using spectral discretizations for both
the scalar and momentum equations, and with the hybrid method proposed in [7].

An outline of this paper is as follows. In Section 2, we describe the semi-Lagrangian particle method used for the scalar
equation, the pseudo-spectral method used for the momentum equation and the coupling strategy. We also indicate the
approach to run the hybrid method on massively parallel machines. In Section 3, we test our method in decaying turbulence
experiments similar to those in [7] and discuss its accuracy, cost and overall efficiency. In Section 4, we apply our method
to investigate the physics of turbulent transport in forced homogeneous turbulence over a wide range of Schmidt numbers.
Section 5 is devoted to concluding remarks and future directions that we are currently exploring.

2. Hybrid spectral-particle method

In this section we first describe the particle method used to solve the scalar equation, then the pseudo-spectral method
used for the Navier–Stokes equation and the coupling strategy. We also explain our strategy to optimize the parallel perfor-
mance of the hybrid method.

2.1. Semi-Lagrangian particle methods

The principle of particle methods for the advection of a given quantity is to concentrate this quantity on a set of par-
ticles and to follow these particles with the advection field. These methods are conservative by nature and free of CFL
stability conditions. Continuous fields or grid values are recovered from the particles by mollification or interpolation [10].
The numerical analysis of these methods shows that a strong strain in the advection field can create distortions in the
particle distribution and deteriorate the accuracy of the method. To overcome this difficulty, it is common practice to
remesh particles on a regular grid through interpolation [11,10]. In the context of the advection of a vorticity field to
solve the incompressible Navier–Stokes equation in vorticity form, these methods have been validated against spectral or
finite-difference methods and applied in bluff body flows [11–14], in homogeneous decaying turbulence [15] and in vortex
dynamics [16,17]. In the context of scalar advection they have been used for Lagrangian discretizations of level set methods
[18–20] and for the determination of Lyapounov exponents of flow maps [5].

When particles are remeshed at every time-step, which is often the case in practice, one obtains a class of conservative
semi-Lagrangian methods that can be analyzed as CFL-free finite-difference methods [20]. Remeshing is performed through
interpolation. In one dimension it can be expressed by the following formula:

θi =
∑

p

θpΛ

(
xi − xp

�xθ

)
,

where Λ is the interpolation kernel, xi denote the grid points and xp the particle locations after advection. The summation
concerns particles which belong to the support of the kernel around a given grid point. In the present paper, particles are
advected by a second order Runge–Kutta scheme and we use the following kernel, derived in [19],

Λ(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
12 (1 − |x|)(25|x|4 − 38|x|3 − 3|x|2 + 12|x| + 12) if 0 � |x| < 1
1

24 (|x| − 1)(|x| − 2)(25|x|3 − 114|x|2 + 153|x| − 48) if 1 � |x| < 2
1

24 (3 − |x|)3(5|x| − 8)(|x| − 2) if 2 � |x| < 3
(2)
0 if 3 � |x|.
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This kernel has a support of size 6. It is shown in [21] that this remeshing kernel provides a scheme that is fourth order
accurate in space for constant velocity field, and second order in the general case, provided the time-step is bounded by
(max |∇u|)−1. Throughout this paper we used the following value for the scalar time-step:

�tθ = (
max |∇�u|)−1

. (3)

Note that (max |∇�u|)−1 is the relevant time scale for the advection of a quantity with a velocity �u. For scalar advection in
three dimensions, following [20] we use a Strang splitting method, where particles are moved and remeshed alternatively
in the 3 directions. More precisely, a complete advection-step with time-step �tθ of the scalar is performed by successively
solving the advection equation along the x-axis, y-axis, z-axis, y-axis, x-axis, for �tθ /2, �tθ /2, �tθ , �tθ /2 and �tθ /2,
respectively.

After advection and remeshing of particles on the cartesian grid, scalar values are diffused on the grid. In the present
study, we use an implicit spectral diffusion solver. In practice, with Schmidt numbers larger than one, we have observed
that the diffusive time-scales were of the same order or bigger than the value given by (3). This time-step value is therefore
consistent with the time-scales that need to be resolved to ensure accurate results for the advection–diffusion equations
that we had to deal with.

2.2. Hybrid spectral-particle method

One of the advantages of semi-Lagrangian particle methods is that they are readily applicable to coupling approaches.
In our case, we couple the advection–diffusion of a scalar by the semi-Lagrangian particle method just described with a
pseudo-spectral method used to solve the Navier–Stokes equations. Both particle and spectral solvers are used in parallel,
and employ different grid resolutions to take into account the separation between the Kolmogorov and Batchelor scales. The
velocity field is computed by a pseudo-spectral solver with a second-order explicit Runge–Kutta time-advancement scheme,
and a CFL number equal to 0.5. If �xu and �tu are the grid size and time-steps for Navier–Stokes solver, the CFL condition
yields

�tu = �xu

2 max |u| . (4)

The classical 3/2 rule is used for de-aliasing the non-linear inertial term of the Navier–Stokes equation and the viscous
terms are treated exactly by integrating analytically the spectral form of the diffusion equation. The velocity obtained from
the Navier–Stokes solver is interpolated in spectral space to obtain particle velocities. Although less expensive interpolations
could have been used, spectral interpolation has been chosen because it minimizes interpolation errors. Since the velocity
resolution is taken in a DNS range, the spectral interpolation beyond the Kolmogorov scale is indeed nearly exact. Moreover
our numerical experiments showed that the computational overhead resulting from this interpolation method remained
small in comparison with the computational cost associated with the scalar and momentum equations.

In practice, due to (3) and (4), the time-step used for the scalar equation is always larger than the time-step used for
the Navier–Stokes equation. �tθ can be chosen to be an integer multiple of �tu and several sub-steps of the Navier–Stokes
solver are performed for one iteration of the scalar equation.

2.3. Parallel efficient implementation

Our goal is to perform direct numerical simulations (DNS) of turbulent transport at high Schmidt numbers. A very
fine spatial resolution is therefore required, which makes the development of algorithms optimized for massively parallel
computers mandatory.

2.3.1. Parallel algorithm for the pseudo-spectral solver
The pseudo-spectral solver uses a classical parallel design based on two-dimensional subdivisions. The 3D fast Fourier

transform is split in three one-dimensional fast Fourier transforms. The parallelization is done by subdividing the 3D geome-
try along only 2 directions: along Y and Z in the real space and along X and Y on the spectral space (see [9] for more details).
In order to achieve the coupling between the two solvers, the domain subdivision used for the particle method implemen-
tation is the same as the one used inside the pseudo-spectral library in the real space. This avoids data-reorganization.

2.3.2. Parallel design of the particle method
Our strategy to limit communications in the particle method is to define work items as a group of particles, defined

on the basis of their location and a geometric subdivision, that are followed during a time-step (see Algorithm 1). The
directional splitting further dictates the choice of a (large) group of particle lines for these work items, which allows to
gather communications (lines 8, 9 and 14 of Algorithm 1). Each time step requires only four communications (one at lines
8 and 9 and 2 at line 14 of Algorithm 1) per line group for each MPI-process.
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Algorithm 1 Advection of a particle line.
1: for each (1D-) line do
2: Create a particle on each mesh point and initialize its position: pi

n = i · �xθ .
3: Compute the intermediate RK2 positions for each particle: pi

n+1/2 = pi
n + (�tθ /2) · vi

n .

4: Compute the integer truncation I i
n of (pi

n+1/2)/�x.
5: for m = 0 to 1 do
6: Compute the rank Rm(i,n) of the process which stored the velocity on node I i

n + m.
7: if my MPI-rank is different from Rm(i,n) then
8: Send a MPI message to process Rm to ask for the velocity on node I i

n + m.
9: Receive the velocity on node I i

n + m from process Rm(i,n).
10: end if
11: end for
12: Interpolate the velocity on position pi

n+1/2 from velocity on node I i
n and (I i

n + 1) {as pi
n+1/2 ∈ [I i

n; I i
n + 1]}.

13: Compute the final particle positions: pi
n+1 = pi

n + (�tθ /2) · vn(pi
n+1/2).

14: Remesh particles.
15: end for

Table 1
Strong scalability of the hybrid method on different architectures. To compute the scala-
bility, the run on the minimal cores number is used as a reference. Nu and Nθ denote the
number of mesh points for velocity and scalar, respectively.

Cores Time/iteration Scalability

1024 102.02 s –
2048 52.39 s 97%
4096 26.80 s 95%
8192 14.32 s 89%

(a) Strong scalability on IBM Blue Gene Q for Nθ = 20483 and Nu = 2563.

Cores Time/iteration Scalability

128 55 s –
256 27.5 s 100%
512 14.4 s 95%

(b) Strong scalability on Intel cluster for Nθ = 10243 and Nu = 1283.

2.3.3. Overall scalability
The parallel scalability has been tested on different architectures. Table 1 presents results on a Blue-Gene/Q cluster and

on an Intel-based cluster using quad-cores with Intel Westmere-EP processors. Due to memory limitations, the grid sizes
are not the same on the two clusters. For the purpose of these scalability measures, the Navier–Stokes and scalar equations
are solved with the same time-step. Grid resolutions for the velocity and scalar used in this study are typical of those used
for high Schmidt number simulations.

3. Validation and performances of the hybrid method

3.1. Simulation setup

To validate and to compare the hybrid spectral-particle method with, on the one hand, a pure spectral method and, on
the other hand, the hybrid method proposed by Gotoh et al. [7], we have implemented the same test-cases as in [7]. In
all cases, we solved the Navier–Stokes equations with a classical pseudo-spectral method using a second order Runge–Kutta
time-stepping and the CFL condition (4).

In these test-cases, both scalar and velocity freely decay from random initial fields. The random fields are multivariate
Gaussians with a given spectrum. Following [7] these initial spectra, for the velocity and scalar, are chosen as follows

E(k, t = 0) = 16

√
2

π
k−5

0 k4 exp
(−2(k/kν)2), (5)

Eθ (k, t = 0) = 32

√
2

π
k−5

0 k4 exp
(−2(k/kθ )

2), (6)

with kν = kθ = 6 and k0 = 5. In this section we report simulations corresponding to two different Schmidt numbers, 1 and
50. As in [7], the value of the viscosity ν was adjusted to keep the same scalar resolutions in both cases. Table 2 presents
the physical parameters and the grid resolutions used in our different simulations, and Table 3 provides the statistics that
determine the initial conditions. Here the Reynolds and Péclet number are defined from the Taylor micro scales,

Rλ = u′λ
ν

λ =
√

〈u2
1〉

〈(∂u /∂x )2〉 , (7)

1 1
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Table 2
Numerical parameters for the different runs.

Run Scheme ν Sc Nu Nθ

1 Reference (spectral) 4.0 × 10−4 1 15363 15363

2 Spectral 4.0 × 10−4 1 10243 10243

3 Hybrid 4.0 × 10−4 1 10243 10243

4 Hybrid 4.0 × 10−4 1 10243 12803

5 Hybrid 4.0 × 10−4 1 10243 15363

6 Spectral 1.2 × 10−2 50 10243 10243

7 Spectral 1.2 × 10−2 50 2563 10243

8 Hybrid 1.2 × 10−2 50 2563 10243

9 Hybrid 1.2 × 10−2 50 2563 12803

Table 3
Statistics at initial time.

Sc ε̄ χ̄ Rλ Pλ

Runs 1–5 1 0.06498 0.2596 881 690
Runs 6–9 50 1.950 0.1557 29 1150

Pλ = u′λθ

κ
λθ =

√
〈θ2〉

〈(∂θ/∂x1)2〉 . (8)

For completeness, we recall the definition of the mean kinetic energy and scalar variance dissipation rates,

ε̄ = ν

2

〈∑
i, j

(
∂u j

∂xi
+ ∂ui

∂x j

)2〉
, (9)

χ̄ = 2κ

〈∑
i

(
∂θ

∂xi

)2〉
. (10)

We will also consider the mixed skewness Suθ of the velocity and scalar gradients, which measures the transfer of the
scalar excitation toward small scale

Suθ = 〈∂u1/∂x1(∂θ/∂x1)
2〉

〈(∂u1/∂x1)2〉1/2〈(∂θ/∂x1)2〉 , (11)

and the flatness of the scalar gradient

F∂θ/∂x = 〈(∂θ/∂x1)
4〉

〈(∂θ/∂x1)2〉2
. (12)

3.2. Accuracy of the hybrid method

In all the following comparisons, the time is normalized by the eddy turnover time. As it is customary, the spatial
resolution of our DNS is chosen such that K u

maxηK and K θ
maxηB are larger than 1.5 [22], where K u

max and K θ
max are the

maximal wave numbers for the discrete velocity and the scalar, respectively.

3.2.1. Test case I: Sc = 1
For Sc = 1, since ηK ≈ ηB , the same resolution is needed for velocity and scalar fields. A reference spectral simulation

has been run with 15363 points. Fig. 1 shows that a spectral simulation with 10243 points already provides a well resolved
DNS, at least until time t = 4. This is confirmed by Fig. 2, which shows the kinetic energy spectrum at several times for
both resolutions.

To study the accuracy of the hybrid scheme, the spectral simulations are now compared with simulation using the
hybrid spectral-particle method on the same mesh (Nθ = 10243 points) and with finer resolutions using Nθ = 12803 =
(1.25 × 1024)3 or Nθ = 15363 = (1.5 × 1024)3 points for the scalar (see Table 2).

Fig. 3 shows first the scalar variance spectrum for the different simulations, at various time. All the spectra well agree
except for run 3 (hybrid method with Nθ = 10243) at the smallest scales. This means that the particle discretization of the
scalar equation leads to a slight numerical dissipation at the smallest scales. Note that this has also been observed in [7]
with a fourth order finite difference scheme. Fig. 3 also shows that when K θ

maxηB = 2.25, which corresponds to 1.5 times
the classical resolution criterion, the hybrid method recovers most of the spectrum.
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Fig. 1. Time evolution of K u
maxηK for Sc = 1.

Fig. 2. Kinetic energy spectra E(k, t) at time u0k0t = 0, 1.5, 3 and 6. (For interpretation of the references to color in this figure, the reader is referred to the
web version of this article.)

Additional comparisons can be performed based on the probability density functions (PDF). Figs. 4, 5 and 6 show PDFs of
the scalar, of the gradient scalar and of the scalar dissipation rate, respectively. The probability distribution functions of the
scalar produced in runs 2 and 3 are in excellent agreement. The PDFs of the scalar gradient and of the scalar dissipation are
more discriminant, and some discrepancies with the reference solution are observed near the tails of the distributions even
for the spectral simulation using 10243 grid points. For the hybrid simulations, the highest resolution (Nθ = 15363) well
reproduces the reference results, whereas the smaller resolutions (Nθ = 10243 and 12803) lead to a slight under-prediction
of the tails, comparable to what is observed on the 10243 spectral simulation. The PDF of the mean dissipation follows a
exp(−c(χ/χ̄)α) law [23]. The exponent α is expected to slowly decay in time, but it is interesting to evaluate its value and
compare it with previous studies. From our results, we obtain α = 0.354, 0.370, 0.372, 0.365 and 0.357 at u0k0t = 6 for run
1 to 5, respectively. These values are close to the theoretical prediction α = 1/3 of the Kraichnan model [23].

Some complementary statistics, similar to those presented in [7], are finally presented. The time evolution of the scalar
mean dissipation (10) and of the flatness (12) of the scalar gradient (Fig. 7 and 8 respectively) exhibit some discrepancies
between the spectral method and the hybrid method using the same scalar resolution. For Nθ � 12803 (runs 4 and 5),
the hybrid method provides a very good agreement with the spectral method. The last statistic is the mixed skewness of
velocity and scalar gradient Suθ (11). Its time evolution is shown on Fig. 9. As explained in [7], the reference run slightly
over predicts this diagnostics: in all cases, the finite resolution limits the energy transfer near the cut-off. This resolution
effect makes it harder to compare the different results, but it appears that the hybrid method delivers very accurate results
for Nθ � 12803.

From all these data, on can conclude that, for Sc = 1, the hybrid spectral-particle method with Nθ = 15363 (run 5),
although slightly over-dissipative near the cut-off wave number, exhibits for all diagnostics an accuracy similar to the
pseudo-spectral method and to the high order compact finite-difference methods proposed in [7]. In other words, the
modified DNS criterion, K θ

maxηB � 2.25 = 1.52 ensures that the hybrid method can be run in a DNS regime. For 1.5 <

K θ
maxηB < 2.25, run 4 shows that the statistic quantities are rather well recovered. We will see below (Section 3.3) that,

even for this small value of the Schmidt number and with higher resolution, the hybrid method leads to a computational
speed-up over both the purely spectral method and the hybrid method of [7].
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Fig. 3. Spectra of the scalar variance Eθ (k, t) at times u0k0t = 1.5 and 6. (For interpretation of the references to color in this figure, the reader is referred
to the web version of this article.)

Fig. 4. PDF of the scalar value at time u0k0t = 3 and u0k0t = 6 for Sc = 1. σ denotes the mean square root of the scalar (computed in run 1). See Fig. 3 for
legend.

3.2.2. Test-case II: Sc = 50
To address this case, following [7] the fluid viscosity is decreased to 1.2 × 10−2. This allows to respect the DNS criterion

with a resolution of 10243 points for the scalar and 2563 points for the velocity (see Fig. 10). For the hybrid method, a
simulation with 12803 points for the scalar (run 7) is performed, based on the modified DNS criterion K θ

maxηB = 2.25.
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Fig. 5. PDF of the scalar gradient at time u0k0t = 6 for Sc = 1. σ is the mean square root of the scalar gradient (computed in run 1). See Fig. 3 for legend.

Fig. 6. PDF of the scalar dissipation at time u0k0t = 6 for Sc = 1. See Fig. 3 for legend.

Fig. 7. Time evolution of the mean scalar dissipation rate for Sc = 1. See Fig. 3 for legend.
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Fig. 8. Time evolution of the flatness of the scalar gradient for Sc = 1. See Fig. 3 for legend.

Fig. 9. Time evolution of the mixed skewness −Suθ (t) for Sc = 1. See Fig. 3 for legend.

Fig. 10. Time evolution of K u
maxηK and K θ

maxηB for Sc = 50. (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article.)

Another simulation (run 6) is also performed with 10243 points to compare spectral and hybrid methods on the same
resolution (see Table 2).

First, Fig. 11 shows the scalar variance spectra at time u0k0t = 1.6 and 3. The hybrid method using Nθ = 12803 particles
is in excellent agreement with the spectral method except near the cut-off, whereas, as expected, the run 6 shows some
numerical discrepancy at high wave numbers. The PDFs of the scalar gradient and the scalar dissipation are shown on
Figs. 12 and 13. All the runs provide the same scalar gradient distribution. The hybrid method accurately reproduces the
tails of the PDF of the scalar dissipation rate only for Nθ � 12803. The fit with the theoretical form exp(c(χ/χ̄)α) gives
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Fig. 11. Spectra of the scalar variance Eθ (k, t) at time u0k0t = 1.6 and 3.0 for Sc = 50. (For interpretation of the references to color in this figure, the reader
is referred to the web version of this article.)

Fig. 12. PDF of the scalar gradient at time u0k0t = 3 for Sc = 50. σ is the mean square root of the gradient scalar (computed in the spectral run). See Fig. 11
for legend.

α = 0.351,0.374 and 0.350 at time k0u0t = 3 for the spectral method and the hybrid method with Nθ = 10243 and 12803,
respectively. Finally, Figs. 14 and 15 show the mixed skewness and the flatness of the scalar gradient. The results obtained
with the spectral method and the hybrid method with Nθ = 1280 (i.e. K θ

maxηB � 2.25) are in excellent agreement.
These experiments confirm that the condition K θ

maxηB � 2.25 on the scalar resolution (coupled with the condition
K u

maxηK � 1.5 to ensure that the Navier–Stokes equations are solved in a DNS regime) ensures accurate DNS with the
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Fig. 13. PDF of the scalar dissipation at time u0k0t = 3 for Sc = 50. See Fig. 11 for legend.

Fig. 14. Time evolution of the mixed skewness −Suθ (t) for Sc = 50. See Fig. 11 for legend.

Fig. 15. Time evolution of the flatness of the scalar gradient for Sc = 50. See Fig. 11 for legend.
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Table 4
Numerical efficiency of the different methods – Runs are performed on 2048 cores of a Blue Gene Q. Nu , Nθ denotes the spatial resolution for velocity and
scalar and �tu , �tθ are the numerical time steps for momentum and scalar equations.

Run Scheme Sc Nu Nθ �tu

(×10−4)
�tθ

(×10−4)
CPU
time/step

Total
CPU time

2 Spectral 1 10243 10243 2.5 2.5 12.12 s 43 590 s
3 Hybrid 1 10243 10243 2.5 [20.76;40] – 33 868 s
3bis Hybrid 1 10243 10243 2.5 2.5 11.09 s 39 929 s
4 Hybrid 1 10243 12803 2.5 [20.76;40] – 34 923 s
4bis Hybrid 1 10243 12803 2.5 2.5 13.46 s 48 463 s
5 Hybrid 1 10243 15363 2.5 [20.76;40] – 36 213 s
5bis Hybrid 1 10243 15363 2.5 2.5 16.42 s 59 122 s

6 Spectral 50 10243 10243 2.5 2.5 12.12 s 43 590 s
7 Spectral 50 2563 10243 2.5 2.5 4.63 s 16 671 s
8 Hybrid 50 2563 10243 10 100 – 1139 s
8bis Hybrid 50 2563 10243 10 10 3.14 s 2827 s
9 Hybrid 50 2563 12803 10 100 – 1328 s
9bis Hybrid 50 2563 12803 10 10 4.96 s 4461 s

hybrid method. For 1.5 < K θ
maxηB < 2.25, the global statistic quantities are correct but the smallest scales are slightly un-

derestimated. Nevertheless we will see in the next section that this error remains small and does not prevent to study
qualitatively the spectrum decay and discriminate between universal scaling laws. We now explain how this hybrid strategy
provides important computational savings even when a finer spatial resolution is used for the scalar.

3.3. Numerical efficiency

Table 4 presents the computational cost of the different methods. In this table, the total CPU time to reach a given
simulation time u0k0t = 6 is reported. We recall that, in practice, several sub-steps of the Navier–Stokes solver are performed
for one iteration of the scalar equation, since the particle method can be used with large time-steps. To properly evaluate
the computational cost of the particle method and the computational efficiency resulting from the ability to use large
time-steps, additional runs (3bis, 4bis, . . . ) have been performed with the hybrid method using the same (small) time-steps
as the Navier–Stokes equations. For these runs, the CPU time per time-step is also reported.

All the simulations reported in Table 4 have been performed on 2048 cores of an IBM Blue Gene Q. Note that this
computer exhibits a rather low CPU frequency (1.6 GHz for each core).

A first conclusion is that the particle method for the scalar equation runs about 10% faster than the spectral method
using the same grid resolution and time-sep (runs 2 and 3bis). On Intel-based clusters, which are more common, similar
comparisons have been performed, and the acceleration factor reaches the value of 2. However the most important speed-up
factor comes from the large time step allowed by the hybrid method. As expected, the scalar time step does not depend on
the scalar spatial resolution. For test-cases at Sc = 1, the same time-step is used for Nθ = 10243, 12803 and 15363 whereas a
spectral method, or any grid-based method, would require to divide it by 1.25 for Nθ = 12803 and 1.5 for Nθ = 15363. Note
that in runs 3, 4 and 5, the scalar time step is not constant as the maximum value of the velocity gradient varies during the
simulation: at the beginning, the velocity gradient increases until the kinetic energy spectrum reaches the smallest scales
(near the Kolmogorov scale) and then it starts to decrease due to the energy dissipation. The range of the variations of �tθ

is presented in Table 4. �tθ always remains much larger than �tu . Comparisons of the total CPU times for runs 2, 3, 4 and
5 show that, even when the spectral method is used under the condition K θ

maxηB ≈ 1.5, and the spectral-particle scheme
under the more severe condition K θ

maxηB � 2.25, the hybrid method is about 20% faster.
The efficiency of the hybrid method is even more pronounced for larger values of the Schmidt number. For Sc = 50,

in hybrid methods based on Eulerian schemes [7] the time-step for the scalar equations will be determined by the scalar
resolution. This is not the case for the spectral-particle hybrid method. A comparison of the total CPU time of runs 6 and
9, shows that, even with a higher resolution, the hybrid spectral-particle method leads to a speed up factor of 32 over the
purely spectral method. These results can be compared to those obtained by the hybrid spectral-finite-difference method
of [7]. This reference reports a speed up factor about 4 for hybrid spectral-finite-difference methods in comparison with a
purely spectral method. Although this comparison must be taken with care, due to the difference in the machines and of
the spectral codes, it demonstrates the value of the hybrid spectral particle method for high values of the Schmidt number.

4. Application to the advection of passive scalar at high Schmidt numbers

The hybrid spectral-particle method is now used to study the turbulent mixing on a wide range of Schmidt numbers,
with numerical parameters that have been validated in the previous section. Theoretical studies explain the influence of the
Schmidt number on the behavior of the scalar variance spectrum [24]. For a Schmidt number larger than one, Batchelor
[25] reports that the classical Corrsin–Obukhov cascade associated with a k−5/3 law (where k is the wave number) for the
scalar variance spectrum [26,27] is followed by a viscous-convective range with a k−1 power law. This viscous-convective
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Fig. 16. Left picture: Energy spectra for both Reynolds numbers, Rλ ≈ 130 and Rλ ≈ 210. The spectra are compensated by the Kolmogorov scaling. The
arrow shows the direction of increasing Reynolds numbers. Right picture: Scalar variance spectra for Rλ ≈ 130. The spectra are compensated by the scaling
proposed by Corrsin–Obukhov. The arrow shows the direction of increasing Schmidt numbers.

Table 5
Setup of simulations performed. �tu is the time step used to solve the Navier–Stokes equation with a pseudo-spectral solver. �tθ is the time step used to
solve the scalar transport equation with the particle method. �tθ

spec is the time step which would be needed if a pseudo-spectral method was used for the
same number of scalar grid points.

Rλ Nu K u
maxηK �tu Sc Nθ K θ

maxηB �tθ �tθ
spec

130 2563 1.73 1.2e−2 0.7 5123 – 8.6e−2 6e−3

4 10243 3.39 3e−3

8 10243 2.45 3e−3

16 15363 2.61 2e−3

32 15363 1.85 2e−3

64 20483 1.76 1.5e−3

128 30643 1.79 1e−3

210 5123 1.79 3e−3 0.7 7703 – 2e−2 2e−3

4 10243 1.76 1.5e−3

Fig. 17. x–y plan colored by the vorticity magnitude (left, blue regions are for the lowest vorticity values and red regions are for the highest vorticity
values) and by the passive scalar (middle, blue regions are for the lowest scalar values and red regions are for the highest scalar values) for Rλ ≈ 130 and
Sc = 128. The zooms (right) correspond to the white box with a length of 8ηK for the vorticity magnitude (top) and the scalar (bottom). (For interpretation
of the references to color in this figure, the reader is referred to the web version of this article.)

range is followed by the dissipation range, where various theoretical scalings have been proposed for the spectrum [25,28].
The goal of this section is to compare DNS results based on the hybrid-spectral method with these theoretical predictions
for small, intermediate and large scales and for various Schmidt numbers.
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Fig. 18. Scalar variance spectra for Rλ ≈ 130. The spectra are compensated by the scaling proposed by Batchelor for Schmidt number higher than one. The
arrow shows the direction of increasing Schmidt numbers. For a sake of clarity, the results are shown with wavenumbers multiplied by the Kolmogorov
scale (left) and by the Batchelor scale (right). For the dissipative region, the circles show the law proposed by Kraichnan and the squares show the law
proposed by Batchelor (right).

4.1. Flow configuration

Several simulations have been performed in the context of forced homogeneous isotropic turbulence, in a 3D periodic box
with a length 2π . The forcing scheme used to obtain a statistical steady flow follows the one proposed by Alvelius [29]. To
achieve a steady state for the scalar, a forcing scheme is also applied to low wave number modes in Fourier space, similarly
to the velocity forcing [30]. Two Taylor-scale Reynolds numbers, Rλ , are considered, 130 and 210, using a resolution of
Nu = 2563 and 5123 grid points, respectively. Fig. 16 (left) shows the compensated spectrum for the kinetic energy, where
ε̄ is the mean energy dissipation rate. For the scalar field, the mesh resolution is increased with the Schmidt number
[6] from 5123 to 30643 grid points. Simulation details are given in Table 5. The time-steps used in these simulations are
independent of the scalar resolutions, which allowed important cost reductions for the high Schmidt number cases. On
the basis of the comparisons reported in the previous section, given the values of the time-steps shown in Table 5, for
Sc = 128 the speed-up provided by the spectral-particle method over a purely spectral method can be estimated at about
100. Fig. 17 illustrates the scales separation between the Kolmogorov and Batchelor scales for the highest Schmidt number
case, Sc = 128.

4.2. Scalar spectrum analysis

The behaviors of the scalar variance spectrum are next studied at large, intermediate and small scales from this DNS
database and compared with theoretical predictions. First, at the scales beyond the forcing peak, the classical Corrsin–
Obukhov cascade is expected to characterize the inertial-convective range. Similarly to the inertial range of the kinetic
energy spectrum, it is expected that this cascade follows a k−5/3 law [27,26]. Fig. 16 (right) shows the scalar spectra for
various Schmidt numbers, compensated by the Corrsin–Obukhov scaling, where χ̄ is the mean scalar dissipation rate. As
expected, the results show an inertial-convective range independent of the Schmidt number. The k−5/3 range of the scalar
spectrum is found more clearly than the k−5/3 range of the energy spectrum. Indeed, the scalar spectrum exponent is
known to tend to the −5/3 value more rapidly than the energy spectrum exponent [31,32]. Note that the end of the
inertial-convective range appears around kηK ≈ 0.1 (which is roughly the Taylor scale) independently of the Schmidt num-
ber.

Beyond this range, for Schmidt numbers larger than one, Batchelor [25] described the development of the viscous-
convective range with a k−1 law. This scaling is due to the velocity small scales strain effect on the scalar field. Fig. 18
shows the scalar spectra for various Schmidt numbers, compensated by the Batchelor’s scaling. For clarity, the results are
shown with wavenumbers multiplied by the Kolmogorov scale (Fig. 18, left picture) or by the Batchelor scale (Fig. 18, right
picture). From our numerical results, we observe that the k−1 power law starts from kηK ≈ 0.1, after the inertial-convective
range, and this viscous-convective range grows with the Schmidt number (Fig. 18, left picture).

The form of the scalar variance spectrum in the dissipation range (following the viscous-convective range) is also studied
(Fig. 18, right picture). Two distinct theoretical behaviors have been proposed by Batchelor [25] and Kraichnan [28]. For
scales beyond the Kolmogorov scale, Batchelor [25] assumes that the scalar at high Schmidt number is strained by the
smallest scales of the velocity. Considering spatial fluctuations of the local strain rates, but neglecting temporal fluctuations,
Batchelor predicts the following form of the scalar variance spectrum

Eθ (kηB)√ = q
exp

(−q(kηB)2), (13)

χ̄ ν/εηB kηB



J.-B. Lagaert et al. / Journal of Computational Physics 260 (2014) 127–142 141
Fig. 19. Scalar variance spectra for two Schmidt number, Sc = 0.7 and Sc = 4 for Rλ ≈ 130 (left) and Rλ ≈ 210 (right). The spectra are compensated by
the scaling proposed by Corrsin–Obukhov. The arrow shows the direction of increasing Schmidt numbers. The dashed and solid lines show the spectra
for the low wave numbers forcing and constant gradient forcing, respectively. The dashed-dotted line corresponds to the k−1 scaling under the chosen
normalization.

where q is a constant. Alternatively, Kraichnan [28] assumes that strain rates rapidly fluctuate in time and obtains

Eθ (kηB)

χ̄
√

ν/εηB
= q

kηB

(
1 + (6q)1/2kηB

)
exp

(−(6q)1/2kηB
)
. (14)

Note that the distinction between these behaviors has some practical implications on our understanding of energy transfer
between ocean and atmosphere [33], for example. Although the different curves do not perfectly coincide, our DNS results
clearly show a good agreement with the Kraichnan form, even for the runs where 1.75 < K θ

maxηB < 2.25. This result con-
firms previous studies performed in [33–35]. Note that, Donzis et al. [34] observed that, even for Schmidt number smaller
than 1, the scalar spectra collapse in the dissipative range when they are normalized by Batchelor variables. The same trend
is found with our numerical results for Sc = 0.7 (Fig. 18 right). However, for Sc = 0.7 (the smallest Schmidt number value
shown on figures), the spectrum does not exhibit a k−1 range (Fig. 18, left). This range is only found for Sc > 1, as predicted
by theory.

4.3. Effect of forcing schemes

Our numerical results find the same behavior for the smallest scales as previous studies and observations [35,36]. How-
ever, our numerical results also clearly show a −5/3 inertial-convective range for moderate Reynolds numbers, in contrast
with the results reported in [34], where an imposed mean scalar gradient was used [36]. To better understand the influence
of the forcing scheme at large and intermediate scales, additional simulations have been performed with an imposed mean
scalar gradient to maintain the scalar variance. Fig. 19 compares the scalar variance spectra for two Reynolds numbers, 130
and 210 and two Schmidt numbers, 0.7 and 4. The spectra are compensated by using the scaling of the inertial-convective
range. As expected the small scales behavior is not influenced by the forcing schemes. But, for moderate Reynolds number,
the influence of the forcing schemes clearly appears. The simulations using a mean scalar gradient forcing have no clear
k−5/3 range, and they have a large k−1 range beginning at large scales. In particular, for Sc = 0.7, the scalar spectrum ex-
hibits a viscous-convective range for the mean scalar gradient forcing, in contrast with the results obtained with a low wave
numbers forcing and with the theoretical prediction. When the Reynolds number increases, an inertial-convective range be-
gins to appear for simulations with mean scalar gradient forcing, as shown by the spectra for Rλ = 210. Note that Watanabe
and Gotoh [37] have already observed an influence of the forcing scheme on the scaling exponents of the structure function.

5. Conclusion

In this paper we have presented a hybrid scheme for the turbulent transport of a passive scalar, combining a spectral
method for the Navier–Stokes equations and a semi-Lagrangian particle method for the scalar transport. The method takes
advantage of the Lagrangian nature of particle methods to enable high resolution of the scalar at affordable numerical cost.

A validation study in decaying homogeneous turbulence against a purely spectral method allowed to clarify the particle
resolution necessary to resolve the smallest scales. This study showed the gain of the present method over hybrid methods
combining spectral and finite-difference methods in the case of high Schmidt numbers. The efficiency of the method was
further demonstrated in a study of universal scalar laws in forced homogeneous turbulence for Schmidt numbers up to 128.
Using scalar resolution up to 30643 particles on massively parallel clusters, the method allowed to recover the theoretical
predictions at large, intermediate and small scales.



142 J.-B. Lagaert et al. / Journal of Computational Physics 260 (2014) 127–142
Further works are currently undertaken to extend the capabilities of the method in several directions. The local nature
of particle methods allows us to envision hybrid method where the scalar is solved on GPU along the line of [21]. Moreover,
thanks to the dimensional splitting, using high order particle remeshing schemes derived in [21] should further improve
the accuracy of the hybrid method for a marginal additional cost. Finally, the present study opens the way to a multi-scale
approach to vorticity transport as an LES tool for the Navier–Stokes equations.
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