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SUMMARY

Numerous comparisons between Reynolds-averaged Navier–Stokes (RANS) and large-eddy simulation
(LES) modeling have already been performed for a large variety of turbulent flows in the context of fully
deterministic flows, that is, with fixed flow and model parameters. More recently, RANS and LES have been
separately assessed in conjunction with stochastic flow and/or model parameters. The present paper performs
a comparison of the RANS k � � model and the LES dynamic Smagorinsky model for turbulent flow in a
pipe geometry subject to uncertain inflow conditions. The influence of the experimental uncertainties on the
computed flow is analyzed using a non-intrusive polynomial chaos approach for two flow configurations
(with or without swirl). Measured quantities including an estimation of the measurement error are then
compared with the statistical representation (mean value and variance) of their RANS and LES numerical
approximations in order to check whether experiment/simulation discrepancies can be explained within the
uncertainty inherent to the studied configuration. The statistics of the RANS prediction are found in poor
agreement with experimental results when the flow is characterized by a strong swirl, whereas the
computationally more expensive LES prediction remains statistically well inside the measurement intervals
for the key flow quantities. Copyright © 2012 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The pros and cons of Reynolds-averaged Navier–Stokes (RANS) simulations and large-eddy
simulations (LES) are now well established in the context of fully deterministic flows, that is, when
the physical flow conditions on one hand and the numerical parameters on the other hand (such as the
turbulence or subgrid-scale model parameters) are all assumed to be exactly known. Comparative
assessments of RANS/LES modeling can be found not only in the classical context of aerodynamic
studies [1–3], combustion [4], meteorology [5], and architectural fluid mechanics [6, 7] but also
for less standard applications dealing for instance with accurate rain measurements [8], electronic
system cooling design [9], sediment transport [10], or chemical and process engineering [11].

Deterministic comparisons between turbulent flow solvers are now identified as insufficient to
provide a valid assessment of their respective predictive potential. A first reason to believe that a
purely deterministic comparison is flawed comes from the process followed to obtain the reference
experimental data usually used to assess the superior accuracy of one model with respect to the other.
Because the available measured data for a flow experiment are usually averaged quantities over a set
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of experimental realizations, it seems indeed advisable to compare these statistical measurements
with similarly measured numerical quantities, that is, computed with a probabilistic description of
the operating conditions rather than a deterministic one. This type of observation may also lead to
reconsideration of the whole derivation process of turbulence models and more generally closure
models (thermodynamic equations of state for instance) as model calibration should be performed
on the basis of a statistical description for both experiments and computations [12, 13]. Stochastic
computational mechanics is a very active emerging field providing the necessary tools that have
to be coupled with existing computational fluid dynamics (CFD) solvers in order to quantify the
impact of uncertainty on numerical results [14, 15]. When restricting the review of the uncertainty
quantification (UQ) and CFD literature to the assessment of turbulent flow solvers, only few works
can be found. Lucor et al. [16] have used polynomial chaos to study the sensitivity of LES to
subgrid-scale-model parametric uncertainty. Ko et al. [17] have examined the sensitivity of direct
numerical simulations (DNS) of two-dimensional spatially developing plane mixing layers to uncer-
tainties in the inflow boundary conditions, applying a stochastic collocation method based on the
generalized polynomial chaos. Recently, Han et al. [18] have performed a similar analysis, applying
again generalized polynomial chaos to account for uncertain inflow conditions, in the case of the
massively separated flow around a square cylinder computed with a well-established two-equation
RANS model. A few other works such as [19–21] deal with UQ and the analysis of turbulent flows,
but to the best of our knowledge no contribution has yet dealt with a comparative assessment of
RANS and LES modeling on the same flow configuration when taking into account the uncertainties
associated with this configuration.

The original objective of the present work is therefore twofold: (i) to estimate on the same
industrial flow the predictive quality of LES and RANS approaches when uncertainties are included
in the numerical prediction; (ii) to quantify the effects of the physical uncertainties both on RANS
and LES modeling. The method used to take into account uncertainties in the numerical simulation
is the non-intrusive polynomial chaos described in Crestaux and Martinez [22]. This method has
been retained because of its reduced computational cost, good accuracy, and easy implementation
(see, for instance, Congedo et al. [23] for an application to inviscid dense gas flows with multiple
uncertainties) .

The flow configuration numerically studied in this work is derived from the experiments of
Dellenback et al. [24], which have investigated the flow in an axisymmetric expansion for no-swirl
and high-swirl inflow conditions. Measurements upstream of the expansion allow a proper
description of the inflow statistics, and several measured velocity profiles downstream of the
expansion provide a detailed picture of the flow development.

The paper is organized as follows: the physical and numerical details needed for a conventional
deterministic analysis of RANS and LES solutions of the flow are reviewed in Section 2. The added
information associated with UQ is described in Section 3 along with the UQ tools coupled with the
available flow solvers; the accuracy of these tools is also checked. A detailed analysis of RANS and
LES flow predictions subject to uncertain inlet conditions is presented in Section 4: both modeling
approaches are critically assessed for flows with or without swirl.

2. CONVENTIONAL EXPERIMENT/SIMULATION COMPARISON

2.1. Flow configuration

The turbulent flow in a pipe with an axisymmetric expansion experimentally studied by Dellenback
et al. [24] is considered for two main reasons: (i) it covers a variety of flow regimes, displaying
recirculating flow regions and high turbulence levels; and (ii) it is a well-documented experiment
allowing for a fine comparison between measurements and computations. This experiment has
already been used by Schlüter et al. [25] as a reference for (deterministic) numerical simulations
in a hybrid RANS/LES context and by Gyllenram and Nilsson [26] as a validation test case for a
modified k � ! turbulence model. A sketch of the experimental configuration is given in Figure 1
where the plane generating the full geometry by rotation around the ´-axis is displayed: the fluid
is flowing from left to right, entering the pipe at ´ D �2D with or without swirl, and leaving the
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Figure 1. Experimental configuration of Dellenback.

expansion at ´ D 10D. Measurements with laser Doppler anemometer are available upstream of
the expansion located in ´D 0, allowing for a proper description of the mean inflow quantities such
a time-averaged axial and tangential velocity. Available probe locations downstream the expansion
are also indicated in Figure 1. This incompressible flow configuration is described by two non-
dimensional parameters: the Reynolds number Re (based on the fluid kinematic viscosity, the inlet
diameter D, and the bulk velocity Ub) and the swirl number Sw describing the level of swirl in
the inlet flow. The swirl number is defined as the ratio between angular momentum flux and axial
momentum flux:

Sw D
1

R

Z R

0

r2hu´ihu� i drZ R

0

rhu´i
2 dr

, (1)

where R D D=2, r is the radial coordinate (Figure 1) and hu´i, hu� i denote respectively the time-
averaged streamwise and tangential velocity components. The experiment is reported performed for
a Reynolds number Re D 30, 000 and two values of the swirl number: a no-swirl configuration
(Sw D 0) and a strong swirl configuration (Sw D 0.6). The baseline flow (BF) configuration with a
bulk velocity yielding Re D 30, 000 and no swirl (NS) will be denoted from now on as BFNS test
case; similarly, BFHS will denote the BF at Re D 30, 000 with high swirl (HS) (Sw D 0.6).

2.2. Turbulence modeling and numerical tools

The incompressible turbulent flow considered in this study is governed by the instantaneous
Navier–Stokes equations expressing mass and momentum conservation:
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where ui , p, �, and � are respectively the velocity components, the pressure, the (constant) density,
and the kinematic viscosity. For high-level turbulent flows, it is not possible to perform DNS, that
is, to solve directly these equations with the computing resources available, because of the too large
range of fluid motion scales to account for. Some modeling of a part of the flow dynamics is needed
to overcome this limitation. The RANS approach solves the mean flow and attempts to model the
fluctuating field. The governing equations take the form as follows:
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where hui i denotes the time-averaged velocity field components and hP i is the modified mean
pressure. The influence of the fluctuations on the mean flow is described by the turbulent stress
tensor �T

@hui i
@xj

with the turbulent viscosity �T to be modeled in order to close the system. Several
standard turbulence models can be applied to define �T and perform RANS simulations [20]. In
the present work, the standard k � � model has been retained [27], where �T is expressed as a
function of the turbulent kinetic energy k and the dissipation � of this turbulent energy. These two
additional turbulent quantities are themselves determined by solving transport equations that are not
detailed here.

Alternatively, the LES approach proposes to solve only the filtered velocity field Nui , where the
filtering operation allows separation of the scales of the flow motion at the grid level, with the small
motion scales taken into account by a subgrid-scale model. The filtered velocity field is computed
as the solution of the filtered Navier–Stokes equations:8̂̂
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where the eddy viscosity �SGS must be defined to close system (4). The standard dynamic
Smagorinsky model [28] will be used in this study: the eddy viscosity is computed as �SGS D
.C �/2

ˇ̌
NS .x, t /

ˇ̌
, where

ˇ̌
NS .x, t /

ˇ̌
is the norm of the filtered strain rate tensor. This expression

defines �SGS algebraically so that no additional equation needs to be solved; the C coefficient is
dynamically computed following Germano’s definition [28].

The k� � model is not necessarily the best choice for an accurate RANS computation of the flow
under study, and the dynamic Smagorinsky model is not the sole choice of subgrid model. Let us
emphasize, however, that our objective is not to investigate the accuracy of RANS modeling with
respect to LES but to assess the comparative behavior of both approaches when uncertainties are
introduced in the flow description. In this respect, the k� � model on the one hand and the dynamic
Smagorinsky model on the other hand, which are commonly used models, remain valid choices.

Both RANS and LES approaches have been used as implemented into the open source finite
volume code OpenFOAM‡. In systems (3) and (4), convective and viscous fluxes are discretized
with a second-order accurate central differencing scheme. The pressure–velocity coupling is insured
by using the Pressure Implicit with Splitting of Operators (PISO) algorithm [29]. To avoid spatial
oscillations of the pressure field over the collocated grid arrangement, Rhie and Chow pressure-
weighted interpolation is applied [30]. Moreover, for system (4), time advancement is performed by
using a Crank–Nicholson scheme.

For RANS steady simulations, the outflow boundary condition is based on extrapolation
conditions that require that the derivatives of all quantities in the direction normal to the boundary
be zero. However, this condition is known to be not satisfactory in unsteady flows [31]. A convective
outflow condition [32] is thus used for LES unsteady simulations.

For both RANS and LES computations, the profiles of the time-averaged streamwise and ortho-
radial velocities are imposed at the inlet boundary from the measured data of Dellenback et al. [24].
These profiles depend on the bulk velocity Ub and the swirl number Sw . Because the first measure
point in the inlet section is located outside the boundary layer, the imposed velocity profiles are
smoothly connected to the zero value at the wall by a zero-pressure gradient turbulent boundary
layer velocity distribution.

‡www.openfoam.com
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When the LES approach is applied, the time-averaged profile must be completed with a time-
dependent disturbance. Such a perturbation is used to allow the flow instabilities development in
LES unsteady computations. In this work, the time-dependent inlet velocity distribution is defined
with a white noise as follows:

Nui ,LES.t/D hui ,EXPEi.Ub ,Sw/C �i

r
2

3
ki , (5)

where hui ,EXPEi is the experimental time-averaged velocity depending on Ub and Sw , ki is the
inlet turbulent kinetic energy, and �i is a sequence of random numbers conditioned so that each
distribution has zero mean and unit variance. Various more complex methods have been proposed to
impose this time-dependent perturbation [33–35]. However, it was decided in this work to focus the
analysis on a perturbation based on a white noise method only because this is the simplest and most
commonly used method so that the conclusions drawn regarding the impact of inflow uncertainties
benefit to the largest basis of LES practitioners. The inlet boundary condition with white noise,
Equation (5), is only applied to the BFNS configuration. Indeed, strongly swirling flows are known
to allow self-sustained instabilities without a significant influence of the initial disturbance. On the
same test case, Schlüter et al. [25] have previously demonstrated that inlet turbulent fluctuations
can be neglected when strong swirl is considered. In the present study, preliminary deterministic
LES computations for BFHS have been performed using the previously described numerical tools
without and with inflow perturbation, leading to similar predictions for the velocity profiles of
interest. It was thus decided to define the LES inlet boundary condition by the simple relationship
Nui ,LES.t/D hui ,EXPEi for BFHS.

When the RANS approach is used, the condition hui ,RANSi D hui ,EXPEi is systematically used.
However, additional inlet conditions have to be defined for the additional transport equations of k
and �. The inlet value of k and � are computed from the bulk velocity Ub and estimated values
of the turbulence intensity Ti and the characteristic turbulence length scale Lt , following the
classical relations:

k D
3

2
.Ti Ub/

2 � D
k3=2

Lt
, (6)

In conclusion, the RANS inlet boundary condition depends on a set of four physical parameters:
Ub , Sw , Ti , and Lt . The LES inlet boundary condition solely depends on Ub and Sw for BFHS and
also depends on Ti for BFNS. For BFNS and BFHS, Ub D 0.452m=s corresponds to Re D 30, 000
and Sw D 0 or Sw D 0.6. The turbulence intensity Ti is estimated equal to 0.03, leading to velocity
fluctuation about 3% of the bulk velocity, and the turbulence characteristic length scale Lt equal
to 5% of the inlet radius. Note that these quantities are rarely available from experimental data,
and there are no well-established rules to determine their values. This is an additional motivation to
quantify uncertainties on the results due to uncertainties on such inlet levels.

2.3. Mesh convergence study

A conventional experiment/simulation comparison would first focus on finding the optimal grid
resolution that ensures grid-independent numerical results (or at least a remaining level of grid
dependence below a prescribed threshold) while minimizing the cost of the numerical simulation.
The available experimental results are typically used as target values in this process. Once grid
independence is achieved, the numerical solver is usually applied to deepen the physical understand-
ing of the flow under study (each grid cell being used as a probe) or to perform a parametric study
around the experimental baseline configuration. In the present work, the analysis will be focused
on the comparison between experiment and simulation when the physical uncertainties found in the
experiment are injected in the numerical simulation. As will be next detailed, this more involved but
also more realistic comparison requires to perform a set of flow computations, each of them being
grid-converged. The mesh convergence study is performed for the BFHS configuration computed
with the LES approach because this combination is the most demanding as far as grid resolution is
concerned. The time-averaged axial and tangential velocity profiles measured in the experiment are
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compared with time-averaged profiles computed by LES on a series of increasingly refined grids
(Figures 2 and 3): a coarse grid containing 880, 000 cells with yC D 5 for the first grid point next
to the wall boundary, a medium grid of 1, 500, 000 cells with yC D 2, and a fine grid of 5, 600, 000
cells with yC D 0.5. Because the plotted values of velocity at section ´=D in Figures 2 and 3 are
shifted by a factor 4´=D with respect to their actual computed or measured values for an improved
readability of the plots, the velocity distribution at a given section is directly read as the difference
between these plots and the vertical dotted line associated with each section. It can be observed in
Figure 2 that the swirl leads to the formation of an extended back-flow region downstream of the
expansion, associated with high shear levels. The numerical results on the three grids and the exper-
imental data are globally in good agreement, with a well-predicted back-flow region. However, the
coarse grid yields a slightly over-predicted velocity peak for U´ immediately outside the recircula-
tion region (in the radial direction), which leads in turn to a shorter recirculation zone well visible
at ´=D D 1. The fine and medium grids yield very similar mean axial velocity profiles all along the
expansion. The mean tangential velocity profiles plotted in Figure 3 seem even less sensitive to the
grid coarsening with an already good overall agreement between computation and experiment on
the coarse grid. This grid convergence study leads us to retain the medium grid for all subsequent
computations. It will be a posteriori checked if the observed differences between the medium and
fine grid computations will remain negligible with respect to the variations introduced in the next
section by taking into account inflow uncertainties.

0 1 2 3 4 5
-1

-0.5

0

0.5

1
coarse
medium
fine
expe

z/D = 0.25 0.50 0.75 1.00

5 10 15 20
-1

-0.5

0

0.5

1
coarse
medium
fine
expe

= z/D1.50 2.00 3.00 4.00

Figure 2. Baseline flow with high swirl configuration. Mean axial velocity profiles computed at differ-
ent streamwise sections on the coarse, medium, and fine grids using the large-eddy simulation approach.
Comparison with the experimental measurements taken from Dellenback et al. [24]. Note that the veloci-
ties at section ´=D are systematically shifted by a value 4 ´=D with respect to their actual values to avoid

superimposed plots.

0 1 2 3 4 5
-1

-0.5

0

0.5

1
coarse
medium
fine
fine
expe

z/D = 0.25 0.50 0.75 1.00

5 10 15 20
-1

-0.5

0

0.5

1
coarse
medium
fine
expe

= z/D1.50 2.00 3.00 4.00

Figure 3. Baseline flow with high swirl configuration. Mean tangential velocity profiles computed at dif-
ferent streamwise sections on the coarse, medium, and fine grids using the large-eddy simulation approach.
Comparison with the experimental measurements taken from Dellenback et al. [24]. Note that the veloci-
ties at section ´=D are systematically shifted by a value 4 ´=D with respect to their actual values to avoid

superimposed plots.
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3. EXPERIMENT/SIMULATION COMPARISON INCLUDING UNCERTAINTIES

3.1. Setting up the uncertainties

The calculations performed in the previous section assumed exactly known inlet flow conditions
when using the RANS or LES numerical modeling; the grid-converged computed results were then
compared with measured quantities also assuming exactness of the measurements. In reality, the
measured distributions reported in Dellenback et al. [24] must be considered as averaged distribu-
tions over a set of experimental realizations. From one realization to another, the inlet bulk velocity
Ub and swirl number Sw (for the BFHS configuration) are subject to a level of fluctuation, which
lead in turn to some fluctuations in the velocity measurements. We will consider from now on
Ub D 0.452 m/s and Sw D 0.6 (for BFHS) to be mean values around which actual values of Ub
and Sw in the series of experiments are uniformly distributed. In other words, Ub and Sw are now
stochastic variables described by uniform probability distribution functions (PDFs) over the respec-
tive intervals Œ0.975Ub , 1.025Ub� and Œ0.975 Sw , 1.025 Sw �. The choice of a 2.5% variance for both
Ub and Sw is based on the analysis of the experimental setup description provided by Dellenback
et al. [24]. The inlet turbulence characteristics are also subject to uncertainty. However, because no
information is available in Dellenback et al. [24] regarding these quantities, the extent of variation
for Ti and Lt was estimated from previous calculations on similar configurations [36–38]. The tur-
bulence intensity Ti is assumed to vary between 0.006 and 0.06 following a uniform PDF; that is,
the velocity fluctuation is assumed to vary uniformly between 0.6% and 6% of the mean velocity;
the characteristic turbulence length scale is assumed to vary between 0.1% and 10% of the inlet
radius R, following a uniform PDF.

The uncertainty on Ub impacts all the simulations through the inlet velocity boundary condition:
with or without swirl, using RANS or LES approach. The uncertainty on Sw impacts the simulations
with swirl only, as Sw is assumed to remain very close to zero (with a negligible uncertainty) for
the configuration without swirl. The uncertainty on Ti impacts all the RANS calculations through
the inlet boundary condition (6) for k and � and the LES calculation for the configuration without
swirl through the inlet boundary condition (5). The uncertainty onLt impacts all the RANS calcula-
tions through the inlet boundary condition (6) for � but does not play a role in the LES calculations.
The uncertainties taken into account in the study are summarized in Table I. It remains to analyze
how these physical (Ub , Sw ) and modeling (Ti , Lt ) uncertainties impact the numerical solutions
provided by the RANS and LES approaches.

3.2. Tools for uncertainty quantification

Let us consider a stochastic differential equation of the following form:

L .x, � ,	/D f .x, �/ (7)

where L is a non-linear spatial differential operator (for instance, L is the RANS operator defined
by (3)), � is a random vector whose dimension depends on the number of uncertain parameters in
the problem, and f .x, �/ is a source term depending on the position vector x and on � . The solution
of the stochastic Equation (7) is the variable 	.x, �/ depending on the space variable x 2 R

d
and

on � . Under specific conditions, a stochastic process can be expressed as a spectral expansion
based on suitable orthogonal polynomials, with weights associated with a particular probability

Table I. Considered uncertainties for the various computations.

Simulations Ub (m/s) Sw Ti Lt

RANS with swirl 0.452˙ 0.0113 0.6˙ 0.015 0.006 to 0.06 0.1%R to 10% R
RANS without swirl 0.452˙ 0.0113 / 0.006 to 0.06 0.1%R to 10% R
LES with swirl 0.452˙ 0.0113 0.6˙ 0.015 / /
LES without swirl 0.452˙ 0.0113 / 0.006 to 0.06 /

RANS, Reynolds-averaged Navier–Stokes; LES, large-eddy simulation.
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density function. The basic idea is to project the variables of the problem onto a stochastic space
spanned by a complete set of orthogonal polynomials‰ that are functions of random variables 
 .�/,
where � is a random event [22, 23, 39–41]. For example, the unknown variable 	 has the following
spectral representation:

	 .x, �/D
1X
iD0

	i .x/‰i .
 .�// (8)

In practice, the series in Equation (8) has to be truncated to a finite number of terms, here denoted
with N . The total number of terms of the series is determined by the following:

N C 1D

nY
kD1

.pk C 1/ (9)

where n is the dimensionality of the uncertainty vector � , and pk is the order of the expansion poly-
nomial associated to the kth random variable. Substituting the polynomial chaos expansion (8), into
the stochastic differential Equation (7), we obtain the following:

L

 
x, � I

NX
iD0

	i .x/‰i .
 .�//

!
D f .x, �/ (10)

Equation (10) is solved through the weighted residual method. The collocation method is obtained
by choosing Dirac-delta weighting functions. The coefficients 	i .x/ are obtained using quadra-
ture formulae based on tensor product of a 1D formula. Applying a collocation projection to
Equation (10), we obtain the solution of a deterministic problem for each collocation point. In
both cases, once the chaos polynomials and the associated 	i coefficients have been determined, the
expected value and the variance of the stochastic solution 	i .x, �/ are computed from the following:

EPC D 	0 .x/ (11)

VarPC D

NX
iD1

	2i .x/
˝
‰2
˛

(12)

Another interesting property of PC expansion is to make easier sensitivity analysis based on the
analysis of variance (ANOVA) decomposition. By decomposing variance, we can compute variance
introduced by interactions of random variables and variance generated by a given random variable
only. For further details, see Refs. [22, 23, 42, 43].

3.3. Coupling computational fluid dynamics and uncertainties quantification

The non-intrusive stochastic method used in this study allows evaluating the flow statistics when
some of the inlet parameters are uncertain by performing a series of deterministic computations with
specific fixed values for the uncertain parameters—also defined as stochastic design of experiments
(DOE). The CFD solvers previously used in Section 2 remain unchanged. Once the deterministic
realizations are performed, their results are used to compute statistics of the solution by means of
Equations (11) and (12). The cost of the UQ process is essentially proportional to the size of the
stochastic DOE as the computational cost of the flow statistics is negligible with respect to the unit
cost of a single CFD realization, be it with a RANS or with a LES approach. The size of the stochas-
tic DOE is equal to .pC 1/n for the non-intrusive polynomial chaos approach used in this work,
where n is the number of uncertain parameters taken into account and p the order of the polyno-
mial chaos. For reasons that will be explained in the next paragraph, second-order and third-order
Legendre polynomial chaos have been considered (referred to as PC(2) and PC(3) from now on)—
Legendre polynomials are retained as we are dealing with uniform PDF for the uncertain variables.
When the RANS approach is applied to the configuration with swirl, four uncertainties are consid-
ered, which means that 25 computations have to be performed when PC(2) is used to compute the
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flow statistics and 125 computations are needed when PC(3) is used. When the RANS approach
is used for the configuration without swirl, the number of uncertainties reduces to 3 so that 16
(respectively 64) computations are needed to compute the flow statistics using PC(2) (respectively
PC(3)). When LES is used for the flow configuration with or without swirl, only two uncertain-
ties have to be taken into account, yielding nine LES computations when PC(2) is used to evaluate
the flow statistics. In terms of computational cost, one iteration of RANS simulation has roughly
the same cost as the LES approach. However, the physical analysis performed in Section 3 will be
focused on time-averaged quantities. Indeed, the analysis of instantaneous quantities was not con-
sidered first of all for lack of experimental data; note also that polynomial chaos could introduce
convergence issues when dealing with unsteady flow problems (for instance, Orzag and Bissonette
[44]). These time-averaged quantities are directly provided by the steady RANS approach, whereas
they have to be computed from various iterations when the flow is well established in the case of
the LES approach. It has been established for the present simulations that the computational cost
to provide time-averaged quantities is roughly 60 times more important for LES than for RANS.
The overall cost of the RANS stochastic analysis is consequently between 16 and 125 times the
computational cost of one deterministic RANS simulation, whereas this cost for the LES stochastic
analysis is around 540 (9�60) times the computational cost of one deterministic RANS simulation.
In this work, this cost has been optimized by making use of domain decomposition and parallel
computing with Message Passing Interface (MPI) based exchange of information between the
different grid blocks and by performing in parallel the decoupled deterministic computations of the
stochastic DOE.

3.4. Convergence analysis of the uncertainty quantification

The next section will be entirely dedicated to the physical analysis of the computed RANS and
LES flows in the presence of uncertain inlet conditions and to the comparison of these flow statis-
tics with the experimental results including measurement errors. Before performing this analysis,
however, a trade-off must be found between the accuracy of the computed statistics and the overall
computational cost of the stochastic DOE. To this end, PC(2) and PC(3) are applied to the config-
urations with and without swirl computed with the RANS approach, and an ANOVA analysis is
performed using the statistics obtained from the PC(2) DOE and the PC(3) DOE. These statistics
allow for instance the computation of the variance of the time-averaged velocity magnitude at each
grid point; the maximum value �max taken by this variance over the computational grid is reported
in Table II for PC(2) and PC(3), along with the computed contribution to this variance for each
uncertain parameter (�Ub for the contribution of Ub to the maximum total variance, and so on).

It can be checked that the prediction of the maximum variance of the velocity magnitude is only
slightly modified (by 3.6% for the flow with swirl and 2.8% for the flow without swirl) when using
PC(3) instead of PC(2). Note that the location of the maximum variance in the computational grid
is also the same for PC(2) and PC(3). Moreover, the hierarchy of the most influential parame-
ters is identical for PC(2) and PC(3) with little differences on the relative contribution of each
uncertain parameter to the total variance. A PC(4) analysis for the high-swirl configuration with
RANS and four inlet uncertainties would require a stochastic DOE of size 625, which appears as an
unnecessarily expensive verification step for the convergence of the UQ process. A much cheaper

Table II. Computed PC(2) and PC(3) statistics for Reynolds-averaged Navier–Stokes
stochastic simulations.

�max �Ub (%) �Sw (%) �Ti (%) �Lt (%)

Flow with swirl/PC(2) 0.0146 0.81 0.50 95.9 2.31

Flow with swirl/PC(3) 0.0151 0.82 0.53 96.2 2.15

Flow without swirl/PC(2) 0.000897 9.0 / 39.9 50.7

Flow without swirl/PC(3) 0.000923 8.9 / 39.7 51.1

Maximum variance �max of the time-averaged velocity magnitude and contribution (in %) of each source of
uncertainty to this maximum variance.
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verification can be performed by taking advantage of the contributions to the variance reported in
Table II. Indeed, because the turbulence intensity Ti appears to be the most influential uncertain
inflow parameter for the high-swirl flow configuration, it is decided to compute the mean flow and
its variance when this single inflow parameter is left uncertain; in that case, the size of the stochastic
DOE is limited respectively to 8, 16, and 32 for PC(3), PC(4), and PC(5), which makes the conver-
gence study truly affordable. It has been found that the L2 norm of the variance of the computed
velocity fields displays a maximum variation of 1% when using PC(4) instead of PC(3). Once this
additional confidence in the results computed using PC(3) is obtained, it is decided to perform in the
next section the physical analysis of the flow, including the whole set of uncertain inflow parameters,
on the basis of the PC(3) solutions.

The same convergence analysis, using PC(2) and PC(3), could be performed with the LES
approach. However, the polynomial chaos method is known to converge rapidly when steady non-
shocked flows are considered [17], which is the case of the present study; moreover, this property
has been confirmed by the previous RANS analysis. Consequently, the LES flow prediction in the
presence of uncertain parameters will be analyzed in the next section on the basis of PC(2) and a
stochastic DOE of size 9. Note also that the relative differences between RANS and LES predicted
variance using PC(2) will be much larger than the relative difference between PC(2) and PC(3) for
the RANS computations.

Note that the choice of uniform PDF for the uncertain inflow parameters is rather arbitrary; it is
mainly motivated by the lack of available physical data for guiding the choice of a specific PDF.
In order to assess the impact of the postulated distributions on the stochastic output, a UQ analysis
based on a PC(5) with a Gaussian PDF for the inflow turbulence intensity retained as the single
uncertain parameter was performed and its results compared with those given by PC(5) and a uni-
form PDF for Ti . When analyzing the L2 norms of the mean fields and the variance fields for each
velocity component, computed either for a uniform or a Gaussian PDF, it was found that the norms of
the mean field were almost equal, whereas the computed norms of the variance with a uniform PDF
are about 2.5 greater than those computed with a Gaussian PDF. As the present exploratory study
wishes to emphasize the need to take into account uncertain inflow conditions when performing
RANS or LES flow computations, the choice of uniform PDFs increasing the sensitivity of the
numerical results to the inflow uncertainties seems appropriate.

4. ANALYSIS OF REYNOLDS-AVERAGED NAVIER–STOKES AND LARGE-EDDY
SIMULATION FLOW PREDICTIONS

The accuracy of both the flow simulations and the stochastic analysis having been established,
it is now possible to analyze the RANS and LES flow predictions when physical and modeling
uncertainties on the inlet conditions are taken into account.

4.1. High-swirl configuration

Figure 4 displays the central plane of the flow colored by the mean time-averaged axial velocity
computed using the RANS computations and PC(3). The basic qualitative pattern of the mean flow

Figure 4. High-swirl flow. Reynolds-averaged Navier–Stokes computations analyzed using PC(3). Mean-
value contours (ms�1) of the time-averaged velocity magnitude. Vertical lines correspond to the sections

used for the comparison with experiment (Figures 5 and 6).
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is similar to that observed in Section II for BFHS on the streamwise sections plotted in Figure 2,
with in particular a recirculation zone occurring around the flow centerline downstream of the
expansion zone.

4.1.1. Comparison with experiment. Experimental measurements and simulation results are now
compared, taking into account the measurement errors and the propagation of uncertainties on the
inlet flow conditions in the numerical simulations as detailed in Table I. Figure 5 reports the exper-
imental, RANS, and LES axial mean velocity distributions along the radial coordinate in several
transversal sections, where error bars indicate the computed variance of the numerical solutions
(using PC(3) for the RANS results and PC(2) for the LES results) and the experimental error. A
tentative estimation of the error levels associated with the measurement instruments used at the time
of the experiment (1987) led us to assume the measurement error on the local velocity values to
be consistently equal to ˙0.04 m/s, be it in the inlet section or at any downstream location. Three
sections have been considered (Figure 1), located respectively near the expansion (L=D D 0.75), in
the center of the computational domain (L=D D 1.5), and near the exit (L=D D 4.0).

Let us emphasize again that the plots previously displayed in Figure 2 were limited to the com-
parison between experimental data and LES simulations performed for a single set of values of the
inlet flow conditions (equal to the mean values of these quantities) with supposedly exact measured
values. The present analysis provides a more realistic assessment of the predictive properties of the
RANS and LES approaches as the stochastic DOE for Ub , Sw , Ti , and Lt reproduces the actual
variability of the inlet flow conditions encountered in the experiment. Ideally, when the inlet flow
conditions follow the statistical description summarized in Table I, the mean numerical solution
should be close to the reported (mean) experimental distribution with a variance associated with the
numerical results similar to the estimated experimental error.

When using RANS modeling, the mean axial velocity curves remain systematically far from the
experimental distributions (Figure 5(a)–(c)). This observation is consistent with the well-known fact
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Figure 5. High-swirl flow. Statistics of the axial velocity distributions (mean value and standard deviation
displayed as error bar) at successive sections (from left to right: upstream to downstream) computed with
Reynolds-averaged Navier–Stokes modeling/PC(3) (top: a, b, c) and large-eddy simulation modeling/PC(2)
(bottom: d, e, f). Numerical results are compared with experimental measurements (mean value and assumed

experimental error bar).
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Figure 6. High-swirl flow. Statistics of the tangential velocity distributions (mean value and standard devia-
tion displayed as error bar) at successive sections (from left to right: upstream to downstream) computed with
Reynolds-averaged Navier–Stokes modeling/PC(3) (top: a, b, c) and large-eddy simulation modeling/PC(2)
(bottom: d, e, f). Numerical results are compared with experimental measurements (mean value and assumed

experimental error bar).

that the turbulent-viscosity assumption leads to inaccurate flow patterns for strong swirling flows.
Furthermore, the computed error bars at section L=D D 0.75 in the back-flow region close to
the centerline r=R D 0 (Figure 5 (a)) are much larger than the 2.5% inlet velocity uncertainty,
indicating the strong sensitivity of the RANS approach. These computed error bars tend to reduce
rapidly for more downstream sections as they are of the same order as the measurement error bars
(assumed consistently equal to the input uncertainty) for L=D D 1.5 and smaller for L=D D 4.0
but with a computed mean distribution largely overestimated near the flow centerline. When using
LES modeling, the picture is quite different as the mean solution is globally in good agreement
with the measured distribution, and the numerical error bars remain similar or even smaller than the
experimental error bars in all the sections under study (Figure 5(d)–(f)).

A similar analysis can be performed for the time-averaged tangential velocity distributions and
the computed mean values and variance distributions at the same sections L=D D 0.75, 1.5, and
4 are reported in Figure 6. As observed in Figure 6(a)–(c), the error bars for the RANS prediction
remain small, inferior to the experimental error. The computed mean distribution remains, however,
systematically far from the measured profile. The RANS approach can be considered as unable to
correctly predict the physical flow solution on the basis of a full analysis including the uncertainties
on the inlet flow conditions. It must also be noted that these physical uncertainties have specifically
a great impact on the numerical prediction of the axial velocity in recirculating flow regions.

When using the LES approach, the errors bars on tangential are also small but with a computed
mean solution that remains systematically close to the experimental profiles (Figure 6(d)–(f)).

4.1.2. Explanation of variance. Because mean flow quantities and their variance are computed at
each grid point, it is possible to plot the contours of the variance field for the time-averaged velocity
magnitude in order to better understand how the computed uncertainties are spatially distributed in
the flow. This analysis will be performed for the RANS approach only because the uncertainties
associated with the LES approach were found to remain small. The variance contours plotted in
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Figure 7 indicate that the highest values for the variance of the time-averaged velocity magnitude
are correlated with the location of the back-flow region well visible in Figure 4. Moreover, ANOVA
analysis can be applied at each grid point to estimate the contribution of each uncertainty to the
global variance, and the contours of these uncertainty contributions can be plotted and analyzed.
Such a process is successively applied to the four uncertainties taken into account when applying
RANS modeling to the high-swirl configuration. The contours of Ti uncertainty contribution to the
variance are plotted in Figure 8: they are very similar to the contours of the global variance plotted
in Figure 8, which indicates that the global variance of the RANS computations is essentially pro-
duced by the uncertainty on inlet turbulence intensity. The contours of Ub , Sw , and Lt uncertainty
contributions to the variance of the time-averaged velocity magnitude are respectively plotted in
Figures 9–11 and illustrate the very weak contribution to the global variance of the uncertainty on
bulk velocity, swirl number, and turbulence length scale.

Figure 7. High-swirl flow. Reynolds-averaged Navier–Stokes computations analyzed using PC(3). Variance
contours (m2 s�2) of the time-averaged velocity magnitude.

Figure 8. High-swirl flow. Reynolds-averaged Navier–Stokes computations analyzed using PC(3). Contours
of Ti uncertainty contribution to the variance of the time-averaged velocity magnitude.

Figure 9. High-swirl flow. Reynolds-averaged Navier–Stokes computations analyzed using PC(3). Contours
of Ub uncertainty contribution to the variance of the time-averaged velocity magnitude.

Figure 10. High-swirl flow. Reynolds-averaged Navier–Stokes computations analyzed using PC(3).
Contours of Sw uncertainty contribution to the variance of the time-averaged velocity magnitude.

Figure 11. High-swirl flow. Reynolds-averaged Navier–Stokes computations analyzed using PC(3).
Contours of Lt uncertainty contribution to the variance of the time-averaged velocity magnitude.
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4.2. No-swirl configuration

Figure 12 displays the mean-value contours of the time-averaged axial velocity for the no-swirl con-
figuration computed using the RANS approach and PC(3). With respect to the previously studied
configuration, the absence of swirl yields a higher velocity in the centerline region of the flow; note
also that back-flow regions appear close to the wall immediately downstream of the expansion.

4.2.1. Comparison with experiment. As already done for swirling flows, the experimental profiles
of the time-averaged axial velocity are plotted in Figure 13 along with the mean values of the
computed distributions using RANS and LES modeling; the experimental and computed stan-
dard deviations are also reported on the same plots. Let us recall that the error bar for the local
velocity components measurement is systematically assumed equal to ˙0.04 m/s. Three sections,
where experimental data are available, have been considered (Figure 1), respectively near the inlet
(L=D D �0.50), in the center of the flow domain (L=D D 1.0), and near the exit (L=D D 3.0).
The measured value at centerline r=RD 0 in section L=D D 1 is reported but seems spurious when
compared with the other nearby measured values in the same section; it will be discarded in the
following comments.

Figure 12. No-swirl flow. Reynolds-averaged Navier–Stokes computations analyzed using PC(3). Mean-
value contours (ms�1) of the time-averaged axial velocity. Vertical lines correspond to the sections used for

the comparison with experiment (Figure 13).
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Figure 13. No-swirl flow. Statistics of the axial velocity distributions (mean value and standard deviation
displayed as error bar) at successive sections (from left to right: upstream to downstream) computed with
Reynolds-averaged Navier–Stokes modeling/PC(3) (top: a, b, c) and large-eddy simulation modeling/PC(2)
(bottom: d, e, f). Numerical results are compared with experimental measurements (mean value and assumed

experimental error bar).
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When the mean curves computed with RANS modeling are compared with measurements, taking
into account their respective error bars, a correct agreement is found between experiment and com-
putation. RANS modeling tends to underpredict, in the mean, the values of axial velocity near the
centerline r=RD 0 and to slightly overpredict these values near the walls. However, the upper limit
of the computed envelope near the centerline is located inside the region bounded by the lower and
upper limits of the measured envelope at section L=D D �0.50 and L=D D 1; this same upper
limit of the computed envelope remains slightly below the lower limit of the measured envelope
in the downstream section L=D D 3.0. In contrast with the previous high-swirl configuration, the
variation of the error bars between the far upstream and far downstream sections remains very small.

The LES prediction is also in very good agreement with the experiments (Figure 13(d)–(f)). LES
modeling tends to slightly overpredict, in the mean, the axial velocity near the centerline. However,
the upper limit of the computed envelope in this centerline region tends to coincide with the upper
limit of the measured envelope. Moreover, the computed error bars for LES are sufficiently small for
the numerical envelope to be almost fully included into the measured envelope for the three sections
under study.

4.2.2. Explanation of variance. The variance contours of the velocity magnitude in the central
plane of the pipe are plotted in Figure 14 for RANS computations. The maximum value reached
by this variance remains well below the previously computed level for the high-swirl configuration
(0.0009 against 0.015m2 s�2). Moreover, this variance reaches its maximum well downstream from
the expansion, whereas this maximum was located in the immediate neighborhood of the expansion
for the high-swirl case (Figure 7). The contours of the various contributions to this global variance
are also reported in Figures 15–17. In contrast with the high-swirl case where the inlet turbulence
intensity Ti explained most of the variance, the uncertainties on Ub , Lt , and Ti are all significantly
contributing to the global variance in this no-swirl case. The uncertainty on bulk velocity explains
most of the variance in the inlet region, whereas the downstream peak of the global variance is
explained mostly by the uncertainties on the inlet turbulence intensity and turbulence characteristic
length scale.

Figure 14. No-swirl flow. Reynolds-averaged Navier–Stokes computations analyzed using PC(3). Variance
contours (m2 s�2) of the time-averaged velocity magnitude.

Figure 15. No-swirl flow. Reynolds-averaged Navier–Stokes computations analyzed using PC(3). Contours
of Lt uncertainty contribution to the variance of the time-averaged velocity magnitude.

Figure 16. No-swirl flow. Reynolds-averaged Navier–Stokes computations analyzed using PC(3). Contours
of Ub uncertainty contribution to the variance of the time-averaged velocity magnitude.
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Figure 17. No-swirl flow. Reynolds-averaged Navier–Stokes computations analyzed using PC(3). Contours
of Ti uncertainty contribution to the variance of the time-averaged velocity magnitude.

Figure 18. High-swirl/no-swirl flows. Analysis of the contributions to the maximal variance of the
time-averaged velocity magnitude computed using RANS/PC(3) and LES/PC(2).

A summary of the ANOVA analysis is proposed in Figure 18 where the contributions to the
maximum variance of the velocity magnitude are reported for the high-swirl and no-swirl configu-
rations computed using RANS or LES modeling. The contribution of each uncertain inlet parameter
to the variance (in %) is plotted for each combination of flow configuration and turbulence modeling,
keeping in mind (Table I) that Sw is fixed to zero for the no-swirl case and that LES modeling makes
use of Ti for the no-swirl case only and does not make use of Lt at all. The overwhelming influence
of the Ti uncertainty on the RANS high-swirl computations is clearly illustrated (with a contribution
equal to 96% of the variance in that case). For the RANS no-swirl case, the uncertainties on both
inlet turbulent conditions Ti and Lt contribute to more than 90% of the variance.

The maximum variance associated with the LES computation of the high-swirl flow is explained
by both uncertain parameters retained in that case, namely Ub and Sw , with respective contributions
of 75% and 24%. Similarly, the maximum variance associated with the LES computation of the
no-swirl flow is explained by both uncertain parameters retained in that case, namely Ub and Ti ,
with respective contributions of 80% and 20%.

5. CONCLUSION

In this paper, numerical simulations of the turbulent flow in a pipe with an axisymmetric expansion
have been performed, taking into account uncertain inflow conditions to allow a more realistic com-
parison with experimental data than when using fully deterministic simulations only. Two different
ways of treating turbulence, namely a RANS and a LES approach, have been used. The inherent
uncertainties due to the experimental setup under study are the fluctuations around the prescribed
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bulk velocity and swirl number. Moreover, some inlet quantities needed for numerical approach are
not controlled or not measured in experiments : they are the inlet turbulence length scale specifi-
cally needed for RANS simulations and the inlet turbulence intensity. If no well-established rules
exist to determine their values, these quantities have also to be considered as uncertain. In this
work, the experimental uncertainties on the computed flow have been analyzed using a non-intrusive
polynomial chaos approach as this approach allows to perform the uncertainty quantification pro-
cess with an acceptable computational cost. Two flow configurations, respectively with and without
swirl, have been studied. Comparisons between the expected value and variance of the computed
stochastic solutions and the measured value of the experimental data including error measurement
provide a solid ground to assess the reliability of the numerical simulations, with respect to a usual
purely deterministic approach. For the high-swirl configuration, the RANS simulation is found to be
inaccurate to reproduce the experimental mean axial distributions close to the back-flow region
generated by the strong swirl. Moreover, the considered inlet uncertainties have a great impact on
the numerical prediction in this region. ANOVA analysis shows that the global variance of the RANS
computations is essentially due to the uncertainty on the inlet turbulence intensity used to define the
inlet condition of the turbulent kinetic energy transport equation. When using LES modeling, the
mean solution is globally in good agreement with measured data, and the variance due to uncertain
conditions remain within the estimated experimental error bars. For the no-swirl configuration, both
RANS and LES approaches lead to a satisfactory agreement with experimental data, and the variance
remains systematically small. In this case, ANOVA analysis shows a more balanced contribution of
the various uncertain parameters to the global variance. The methodology developed in this work
for analyzing turbulent flows in the presence of inlet flow uncertainties for a given configuration is
readily applicable to other flows and also to other types of uncertainties such as those existing on
the calibration coefficients of the turbulence models. When a LES strategy is considered, the
uncertainty quantification methodology can be applied in particular to better understand the
influence of the methods in use to prescribe the time-dependent disturbance at the inlet boundary.
Future work on the pipe geometry thoroughly investigated in the present study as far as inlet
flow uncertainties are concerned will focus on the analysis of modeling or epistemic uncertainties,
keeping the distinctive feature of a simultaneous study of RANS and LES approaches.
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