

GRAPHENE NANOPLATELETS SUSPENSIONS

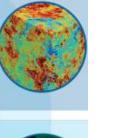
GRENOBLE GREEN GRAPHENOFLUID

Research institute on geophysical and industrial fluid mechanics

Turbulence Modeling Simulation

LEGI:

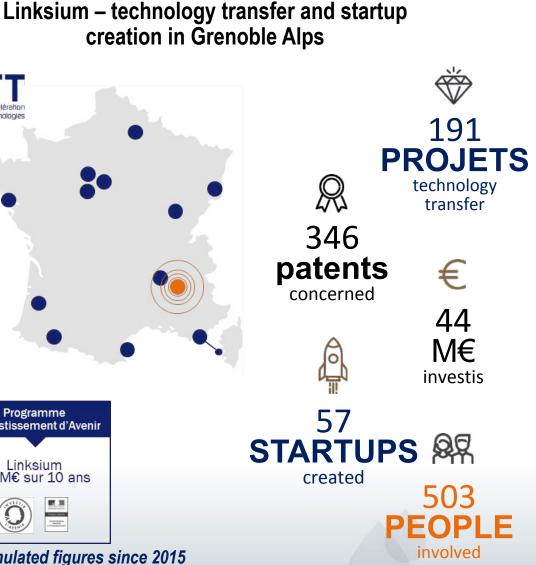
- 4 Research teams;
- **70** Permanent members (Researchers, Academics, Technical & Administrative support);
- 60-65 PhD students;
- 10-15 Postdocs;


Universite

30-40 Interns and visitors,

Renewable Energies, Hydraulic machinery and cavitation

and

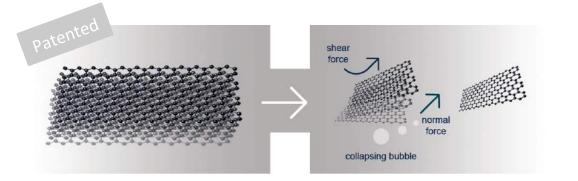

Two-phase flows and Turbulence

Programme d'Investissement d'Avenir Linksium 57 M€ sur 10 ans

13

fransfert de Technolog

Cumulated figures since 2015 Status 30/04/21



2

GRENOBLE GREEN GRAPHENOFLUID

Microfluidic production process

Liquid Phase Exfoliation

Separation of individual graphene

layers by hydrodynamic cavitation

with a microchannel on a chip

Typical concentration 1.50 g/L

Graphene platelets thickness <5 nm

.....

Graphene platelets lateral size 150-200 nm

EVOLUTION OF THE GGG PROJECT

Fundamental Research

2009 Hydrodynamic cavitation 'on a chip'

2015 – 2018 Application to graphite exfoliation First installation Production : 1 L/week

- PhD X. Qiu 2018
- Patent registered

2019 – 2020

Installing production capacity at labscale Production : 1 L/day First application testing

R&D Engineering Dr. S. Ponomareva

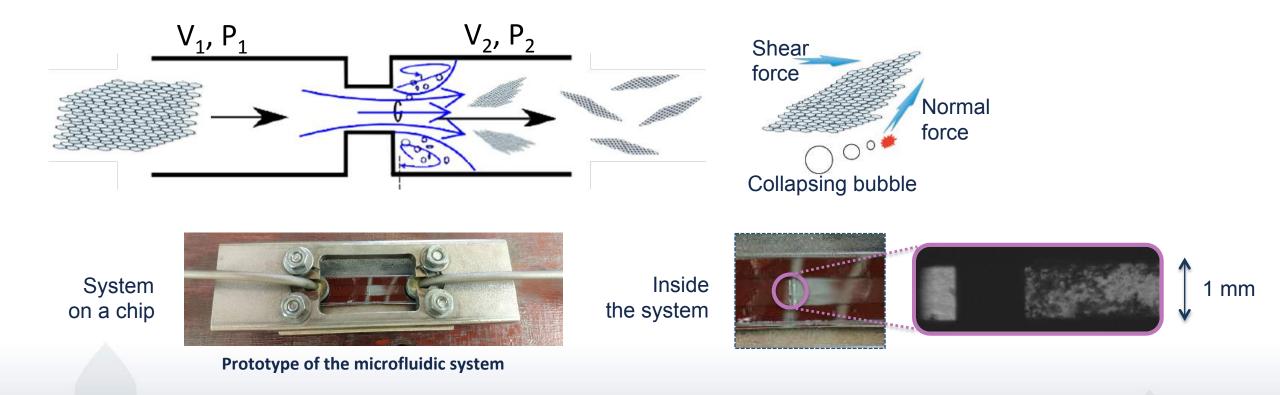
- Validation TRL 5
- Patent extended

Next steps

2021 – 2022 Tests for **applications** (corrosion, lubrication, electrophorese, base fluid)

Business license

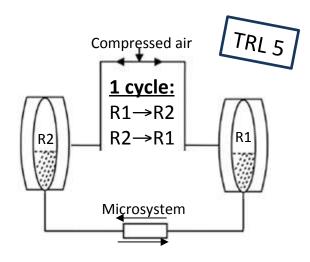
R&D activity (vacuum filtration, conductive inks, cooling liquids, green solvent) Dr. A. Mohanty



HYDRODYNAMIC CAVITATION ON A CHIP

Graphene nanosheets are exfoliated from graphite particles by an innovative microfluidic process using *hydrodynamic cavitation* 'on a chip'

EXPERIMENTAL SET UP



Graphite 50 g/L

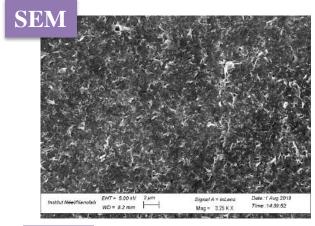
- Integrated microfluidic system
- Exfoliation in water with surfactant
- 5 microchannels in parallel
- 3% nanoplatelets exfoliation mass efficiency
- Flow Rate : 1 L per day

Compact installation

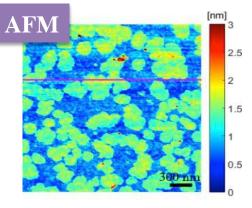
- Production capacity: **5.5 g** per week
- Energy consumption: **2.2 kW.h** per week
- Working pressure: <10 bar
- Size of the mobile installation: 2 m³

GGG NANOPLATELETS PRODUCTION

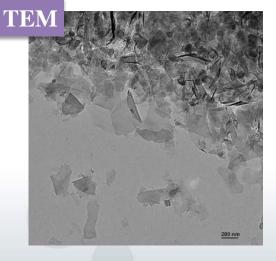
GGG exfoliation offers very high quality graphene nanoplatelets in an aqueous suspension


Graphenofluid containing SLG and MLG

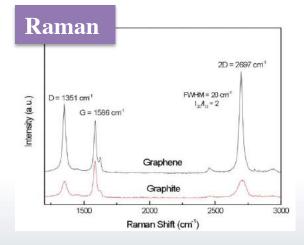
Typical concentration	from 1 g/L to 5 g/L
Graphene platelets thickness	3 nm < t < 10 nm
Graphene platelets lateral size	150 - 350 nm
Lateral size distribution	80% of platelets < 250 nm
Stability	> 12 months without sedimentation
Solvents	Aqueous solution with surfactants; Development with green solvents in progress.


MAIN CHARACTERISATIONS

Characterisations at the lab proved the platelets to be nano-sized and single layer graphene



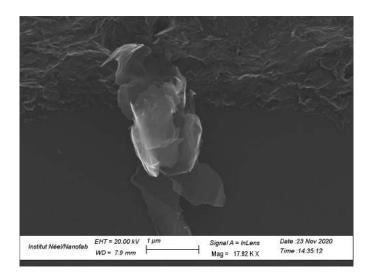
Lateral size distribution below 500 nm

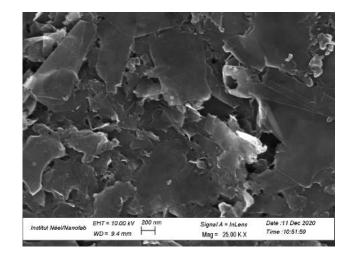


Nanoplatelets consist of less than 10 graphene layers

Particles thickness less than 3 nm

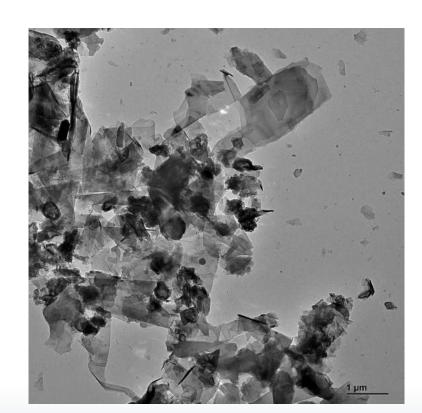
Significant decrease in particles lateral size, between 150 and 350 nm


Presence of nanoplatelets with single layer graphene confirmed


MAIN CHARACTERISATIONS

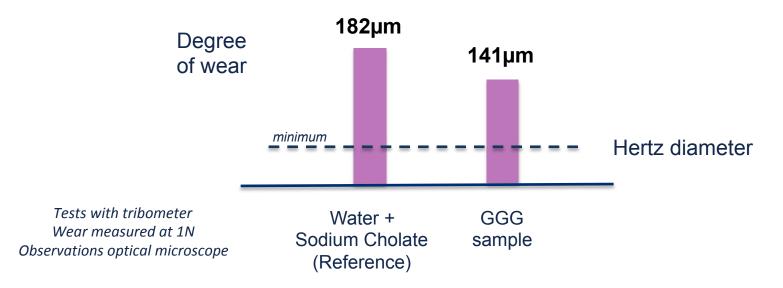
GGG : a booklet of snapshots

SEM X 25000



MAIN CHARACTERISATIONS

GGG : a booklet of snapshots



TRIBOLOGICAL CHARACTERISATIONS

20% wear reduction observed

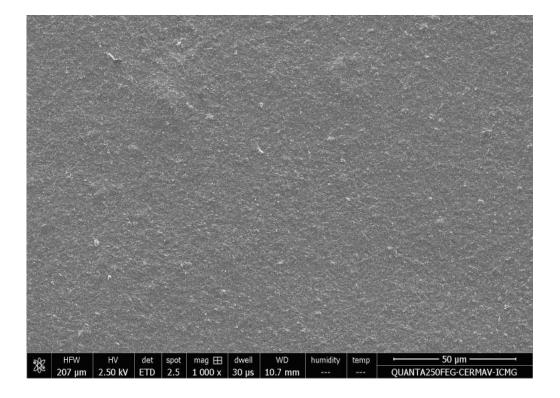
- GGG exhibits stable shear behaviour (F_{tan} / $F_{\prime\prime}$) against water or aqueous suspensions
- Some GGG suspensions have exhibited a 20% decrease of the wear

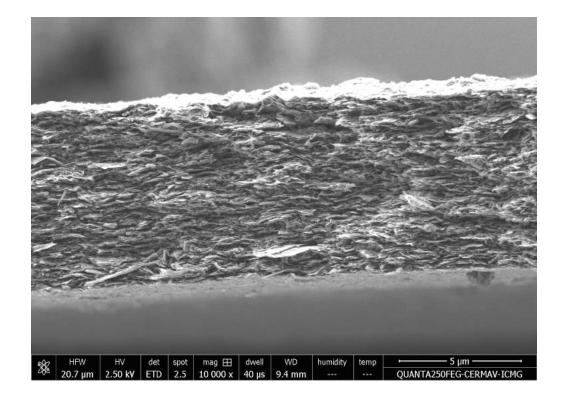
decrease of wear has been confirmed from electrophoretic deposited thin films, submited to 600N (ø ball = 5 mm)

THERMAL CHARACTERISATIONS

No thermal conductivity enhancement observed

- It is well known that the thermal conductivity of a nanofluid is proportionnal to the solid volume concentration Φ
- Graphenofluids with a few g/L solid concentration correspond to $\Phi \approx 0.2$ %
- The expected relative increase of the thermal conductivity of a graphenofluid is negligible : $\Delta k/k_o \approx 0.6$ %
- As expected, the thermal conductivity measurements (hot wire) of GGG was of the same order of magnitude as the thermal conductivity of the base fluid : 0.610 ± 0.015 W/m/K.

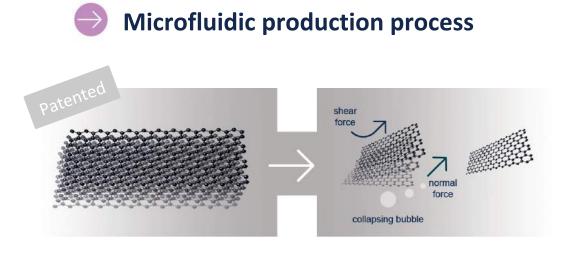



scratch tests in progress

NEW : VACUUM FILTRATION

Sheet electrical resistance < 10 Ω /sq

solid thin films from dilute dispersions



BENEFITS

- Well-defined and **reproducible procedure** confirmed by independent tests;
- Integration of programmable logic controller for optimization of exfoliation process;
- Small and mobile installation;
- Low energy consumption;
- No hazardous substances.

Graphene Nanoplatelets Suspension

- **Reproducible nanosized platelets** inside the exfoliated and centrifuged solution;
- Confirmed by **strict characterization** and independent tests.

AVAILABLE FOR TECHNOLOGY TRANSFER

A patented process

- The GGG process is a patented solution
- Covering the method of exfoliating the particles
- The research lab owns specific know-how associated with the production process
- Extensions are valid in Europe, USA, Canada and China

Available for technology transfer

FR3051376A1 France
📄 Download PDF 🛛 🧕 Find Prior Art 🛛 🗕 Similar
Other languages: French Inventor: Frederic Ayela, Damien Colombet Current Assignee : Universite Grenoble Alpes
Worldwide applications 2016 - <u>FR</u> 2017 - WO EP CA CN US
Application FR1654418A events ⑦
2016-05-18 • Application filed by Universite Grenoble Alpes
2016-05-18 • Priority to FR1654418A
2017-11-24 • Publication of FR3051376A1
Status Pending

CONCLUSION

Looking for industrial partners for application testing

- The proof of concept has enabled to validate the **production of graphene nanosheets** in a liquid solution (graphenofluid).
- The scale-up of the microfluidic system has been performed in the laboratory.
- Current exfoliation capacity at high flow rate microfluidic system is **5.5 g of graphene per week**.
- Looking for an **industrial partner** to carry out proof of concept for a first application (lubrication, coating, etc.).
- Looking for an industrial partner for technology transfer of the graphene production.

Linksium technology transfer & startup building Grenoble Alpes

Prof. Frédéric AYELA

Frederic.Ayela@legi.cnrs.fr Tel: +33 (0)4 76 82 50 29 1209-1211 rue de la piscine 38400 St-Martin d'Hères, FR

Mrs. Christine Melay

christine.melay@linksium.fr Tel: +33 (0)6 21 77 19 90 31 rue Gustave Eiffel 38000 Grenoble, FR

www.linksium.fr/en/projects/ggg-en