
Power Performance and Application to
Monitoring

Patrick Milan, Matthias Wächter and Joachim Peinke

Abstract The concept of power performance is introduced as the ability of a wind
turbine to extract power from the wind. The general performance estimates such as
the power coefficient or the theoretical power curve are introduced in laminar con-
ditions. Following Betz’ limit, an upper limit for the power available in the wind is
derived, as well the main sources of energy loss.
This laminar theory is too simple to describe operating wind turbines, and turbulent
and atmospheric effects call for statistical tools. An IEC norm defines the inter-
national standard to measure and analyze power performance. The resulting IEC
power curve gives a first estimation, and can be used to evaluate the annual energy
production. An alternative is proposed with the Langevin power curve, which quan-
tifies the high-frequency dynamics of a wind turbine power production to changing
wind speeds. This brings further insight on the overall performance, and allows for
applications such as performance monitoring or power modeling.

1 Introduction

The only purpose of a wind power system is to extract energy from the wind. From
this statement, building wind turbines might sound like an outdated challenge. The
first designs were successfully developed in the Antiquity to provide mechanical
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energy around the globe. The integration of the first wind turbines into electrical
networks goes back to the late 19th century, soon after the first power lines were
erected. Wind energy is one of the oldest sources of energy. Despite a long history, it
remains relatively poorly understood. While its industry recently entered a new age
of its evolution, raise more questions and challenges. Before understanding fully
how to harness the wind, it is necessary to understand how the wind works. The
staggering level of complexity of turbulent and atmospheric effects accounts for
many of the remaining challenges that encounters the wind energy industry.

Besides the technical challenge of designing and building rotating machines over
100 meters in diameter, must be considered their integration into a turbulent, ever-
changing wind flow. While the wind signal that can feel a wind turbine displays
complex statistics, its mechanical extraction and transformation into electrical en-
ergy adds to the complexity. This justifies why it is so difficult to define unambigu-
ously power performance for wind power systems. A basic theory was developed,
that sets aside the turbulent fluctuations, following Betz’ developments from the
1920’s. This represents the main focus of section 2. Besides giving a good first es-
timation, this laminar theory remains unrealistic to solve the current challenges.
More recently, statistical tools were developed in order to integrate the features of
turbulence into a more realistic theory of power performance, as introduced in sec-
tion 3. Although these tools represent large simplifications of the actual dynamics
of a wind turbine, they bring useful insights for various applications. An overview
of some central applications is introduced in section 4, such as prediction of annual
energy production or dynamical monitoring.

This chapter is titled Power Performance and Application to Monitoring. Most of
its content is oriented towards an introduction to power performance. Power perfor-
mance is a central aspect of wind energy, and somehow carries its own interest. But
it is in its applicability that lies its central interest. Uncomplicated quantities like
the power coefficient or power curves are the main estimates of the global health of
a wind turbine, and can serve as simplified mathematical models. Such models as
those introduced in this chapter, although very general and unspecialized, can assist
more exclusive applications like monitoring, power prediction or grid integration,
that remain in essence very specialized topics. This sets the direction, in between
physics and wind power systems, away from dedicated applications but always in
connection with them, towards a better understanding of the wind and how to har-
ness it.

2 Power performance theory

This section presents the concept of power performance for wind turbines, starting
from momentum theory to power curves. It is meant to give an introduction to the
underlying theory, before applications are presented in sections 3 and 4. While this
chapter deals only with horizontal-axis three-bladed electrical wind turbines, there
is no major limitation to its extension to other designs of wind power systems.
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2.1 Momentum theory for wind turbines

In this section 2.1, a basic understanding of fluid mechanics will be applied to wind
turbines. For a more detailed description on momentum theory, the reader is kindly
referred to [6]. This theoretical approach sets ground for the further power curve
analysis. The complexity of turbulence is first set aside, so as to understand the fun-
damental behavior of a wind turbine in a uniform flow at steady-state. More com-
plex atmospheric effects represent active research topics, whose detailed analysis is
outside the scope of this introduction, cf. [5].

As a wind turbine converts the power from the wind into available electrical
power, one can assume the following relation

P(u) = cp(u)×Pwind(u) , (1)

where Pwind(u) is the power contained in the wind passing with speed u through
the wind turbine, and P(u) is the electrical power extracted. The amount of power
converted by the wind turbine is given by the so-called power coefficient cp(u),
which represents the efficiency of the machine. As the input Pwind(u) cannot be
controlled, improving power performance means increasing the power coefficient
cp(u). The power contained in a laminar incompressible flow moving along the
x−axis with constant speed u through a vertical plane of area A is

Pwind(u) =
d
dt

Ekin,wind =
d
dt

(
1
2

mu2
)

=
1
2

dm
dt

u2 =
1
2

d(ρV )

dt
u2

=
1
2

ρ
d(Ax)

dt
u2 =

1
2

ρAu3 . (2)

Let us consider a mass of air moving towards a wind turbine, which can be repre-
sented by an actuator disc1 of diameter D. When crossing the wind turbine, the wind
is affected as parts of its energy is extracted. This extraction of kinetic energy results
in a drop in the wind speed from upstream to downstream. The velocity far before
the wind turbine (upstream), at the wind turbine and far behind (downstream) are
labelled respectively u1, u2 and u3. An illustration is given in Fig. 1, see also [6].

Mass conservation requires that the flow-rate ṁ = Aiρui be conserved and

A1ρu1 = A2ρu2 = A3ρu3 , (3)

where Ai are the respective areas perpendicular to the flow. A2 is the area swept
by the rotor blades A2 = A = πD2/4. As a consequence of the wind speed slowing

1 An actuator disc is an infinitely thin disc through which the air can flow without resistance, as
proposed by Froude and Rankine’s momentum theory [13].
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Fig. 1 Idealized flow situation around a wind turbine (WT) according to [21]. The wind speeds
before, at and after the wind turbine are respectively u1, u2 and u3.

down, i.e. u3 < u2 < u1, the area of the stream-tube2 has to expand, and A3 > A2 >
A1. This can be observed in Fig. 1.

Also, the energy extracted by the wind turbine can be determined by the differ-
ence of kinetic energy upstream and downstream of the wind turbine

Eex =
1
2

m(u2
1−u2

3) , (4)

resulting in a power extraction

Pex =
d
dt

Eex =
1
2

ṁ(u2
1−u2

3) . (5)

The wind power cannot be totally converted into mechanical power because the
wind turbine continuously takes energy out of the wind flow, which reduces its
velocity. However, the flow needs to escape the wind turbine downstream with a
speed u3 > 0. If all the power content of the wind would be extracted, the wind
speed downstream would then become zero. As a consequence, the air would ac-
cumulate downstream and block newer air from flowing through the wind turbine,
so that no more power could be extracted. This means that the wind flow must keep
some energy to escape, which naturally sets a limit for the efficiency of any wind
power system. The power coefficient cp(u) must be inferior to 1. An optimal ratio of
wind speeds µ = u3/u1 can be found that allows for the highest energy extraction,
as introduced in section 2.2.

2 A stream-tube is defined here as the stream of air particles that interact with the wind turbine.
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2.2 Power performance

In the plane of the rotor blades, an intermediate value of wind speed

u2 =
u1 +u3

2
(6)

is found3. Knowing this value one also knows the flow-rate in the rotor plane area
that is now given by

ṁ = ρAu2 . (7)

Inserting equations (6) and (7) into equation (5) yields

P(µ) =
1
2

ρAu3
1×

1
2
(1+µ−µ

2−µ
3)

= Pwind(u1)× cp(µ) . (8)

The theoretical definition of the power coefficient is then

cp(µ) =
1
2
(1+µ−µ

2−µ
3) , (9)

where µ = u3/u1, as shown in Fig. 2. The optimal power performance is obtained
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Fig. 2 Power coefficient cp as a function of the wind speed ratio µ = u3/u1.

for a ratio µ such that the derivative of cp(µ) with respect to µ is zero

3 Following Froude-Rankine, it can be shown that this value is the optimal value.
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d
dµ

cp(µ) =

(
−1

2

)
×
(
3µ

2 +2µ−1
)
= 0 . (10)

This leads to µmax = 1/3 and a corresponding Cp(µmax) = 16/27≈ 0.593, as shown
in Fig. 2.

This limit is called the Betz limit, as it was found by Albert Betz in 1927
[2]. In other words, a wind turbine can extract at most 59.3% of the power
contained in the wind. This can be obtained when the wind speed downstream
is one-third of the wind speed upstream.

A widely used representation of power performance is given by the relation of cp
to the tip speed ratio λ defined as

λ =
ωR
u1

, (11)

where ω and R are the angular frequency and radius of the rotor. λ is the ratio
of the rotational speed at the tip of the blades to the upstream wind speed. The
dimensionless cp−λ curve is introduced in section 2.3.

Betz’ momentum theory only considers the mechanical transfer of energy
from the wind to the rotor blades. The next step of the conversion from me-
chanical to electrical energy has not been taken into account, as well as all
energy losses. The more complex design of wind turbines causes lower values
of cp, as discussed in section 2.3. The power coefficients of modern commer-
cial wind turbines reach values of order 0.5. Also, criticism of Betz theory is
given in [14, 15], leading to a less well defined upper limit of cp.

2.3 Limitations of Betz theory - energy losses

Although it is based on a simplified approach, the Betz limit is a widely used and
accepted value. But more realistic considerations indicate that real wind turbine
designs have even lower efficiency due to additional limitations. In this section,
the three main limitations to reach the optimal value of cp = 16/27 are introduced.
Additional considerations, e.g. the finite number of blades and losses due to the drag
and stall effects on the blades are discussed in [6, 3]. All the derivations introduced
in this section 2.3 are based on appendix 6. This section only aims to give a first
idea. For a more detailed understanding of the mathematical equations presented
here, the reader is kindly referred to the appendix first.
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2.3.1 Bouncing losses

Betz’ consideration does not take into account that there is not only a reduction of
wind speed downstream, but also an additional angular momentum that is trans-
ferred to the air flow, as shown in Fig. 3.

Fig. 3 Flow around a wind turbine. After passing the turbine the velocity field has a rotational
component due to the rotating rotor blades.

This effect follows Newton’s third law, as a reaction to the rotational motion of
the rotor. The energy loss is more important for smaller tip speed ratios, following
a derivation in appendix 6. This follows equation (36) where a small velocity ωr
requires a larger force Fr (the subscript r indicates the rotational direction) to obtain
the same power. So for slow rotating wind turbines (λ small), these losses are much
more severe than for fast rotating machines. For instance, for λ ≈ 1 an optimum
value of cp of only 0.42 can be reached instead of the Betz optimum of 0.59. cp
approaches the Betz optimum with increasing tip speed ratio.

2.3.2 Profile losses

Another important source of energy loss is the quality of the airfoil profile. Accord-
ing to equations (33) and (36) in appendix 6, a cut dr at radius r yields a power
extraction

dP = zωr
ρ

2
c2× t×dr [(CLcos(β )−CDsin(β )] . (12)
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For a perfect (ideal) airfoil the drag vanishes and

dPideal = zωr
ρ

2
c2× t×dr×CLcos(β ) . (13)

The efficiency η can now be defined as the ratio between equation (12) and equation
(13), i.e. dP/dPideal . The general definition of the efficiency is given by

η = 1−ξ . (14)

The profile losses ξpro f follow the relation

ξpro f ∝ rλ . (15)

In contrast to the bouncing losses, the profile losses mainly affect fast rotating ma-
chines. For higher tip speed ratios, the lift to drag ratio CL/CD must be optimized.
Furthermore the losses increase with the radius, such that the manufacturing quality
of the blade tips is of primary importance for power performance.

2.3.3 Tip losses

A good quality of the tips especially means that they should be as narrow as possible
because this corresponds to an (ideal) airfoil with length infinity (R/t = ∞). For real
blades there is always a flow around the end of the blade (forming an eddy that is
advected by the flow) from the high pressure area to the low pressure area. This is
partly levelling the pressure difference and consequently the lift force. The tip losses
obey approximately the following relation

ξtip ∝
1

zλ
. (16)

Different to the profile losses an increasing tip speed ratio decreases the tip losses,
as well as an increased number of blades.

2.3.4 Impact on power performance

Fig. 4 shows an overview of the different kinds of losses and their influence on
the value of cp. One can see that bouncing losses cause the largest reduction in the
power coefficient for small values of λ , similar to the finite number of blades. This
is the opposite for the profile losses. Three-bladed wind turbines can reach optimal
cp values of order 0.50 for typical values of λ ≈ 6− 8, which naturally sets the
strategy for optimal power performance in terms of rotational frequency ω .
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Fig. 4 Illustration of the influence of different sources of energy loss on the efficiency of a wind
turbine.

2.4 Theoretical power curve

Along with the cp − λ curve, a standard representation of a wind turbine power
performance is given by a so-called power curve. The power curve gives the rela-
tion between the simultaneous wind speed u and power output P. Following usual
practice, the wind speed u will refer to the upstream horizontal wind speed u1 from
now on (such that u = u1). Also, the net electrical power output P that the wind tur-
bine actually delivers to the grid is considered, integrating all possible losses. The
two quantities u and P will follow these specifications until the end of the chapter.
Following equation (8), the theoretical power curve reads

P(u) = cp(u)×Pwind(u)

= cp(u)× 1
2 ρAu3 . (17)

In most of the modern wind turbine designs, the regulation of the power output is
performed through changes both in the rotational frequency of the generator and in
the pitch angle of each blade4. The rotational frequency of the generator is phys-
ically linked to the wind speed, such that it cannot be changed freely. However,
the pitch angle of the blades can be controlled at will, and almost independently of
the wind speed, to reach the chosen control strategy, and hence represents the cen-
tral mean of control for the operation. Pitching plainly consists of a rotation of the

4 Other wind turbine designs involve fixed rotational frequency (called fixed-speed wind turbines)
or fixed pitch angle (called fixed-pitch wind turbines). A more detailed description on control
strategies is given in [3].
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blades by a pitch angle θ in the plane of their cross-section. We will refer only to
this design in this section 2.4.

The power production is then controlled by changing the lift forces on the rotor
blades [6, 3]. The power production can be reduced or stopped by pitching the blades
towards stall5. In modern wind turbines, this is achieved by a so-called active pitch
control. The power coefficient cp depends strongly on this pitch angle θ and on the
tip speed ratio λ , i.e. cp = cp(λ (u),θ). As λ can typically not be controlled, cp is
optimized via θ to a desired power production. In particular for high wind speeds,
cp is lowered to protect the wind turbine machinery and prevent from overshoots in
the power production.

This pitch regulation is commanded by the controller of the wind turbine, which
constitutes of several composite mechanical-electrical components that operate ac-
tively for the optimum power performance6. For the common pitch-controlled wind
turbines, the control strategy gives four distinct modes of operation:

• for u≤ ucut−in,7 the power contained in the wind is not sufficient to maintain the
wind turbine into motion, and no power is produced;

• in partial load ucut−in ≤ u ≤ ur,8 the wind turbine works at its maximum power
performance, i.e. cp is maximized, and the pitch angle θ is normally maintained
constant;

• in full load ur ≤ u ≤ ucut−out , 9 the wind turbine power output is limited to the
rated power Pr. In this mode of operation, the pitch angle θ is adjusted in real-
time to maintain P≈ Pr;

• for u > ucut−out the pitch angle θ is maximized to the feathered position so as to
eliminate the lift forces on the blades. A braking device can be used in addition
to block the rotation for safety reasons. As a consequence, the power production
is stopped.

An illustration of the theoretical strategy for cp(u) and P(u) is given in Fig. 5.

It is important to precise that this theoretical estimation is valid for a laminar
flow, which never occurs in real situations. The more complex atmospheric
winds call for more complex descriptions of power performance. Following
the path of turbulence research, statistical models are introduced in section 3
to deal with this complexity.

5 Stall effects are obtained when the angle of attack of an airfoil exceeds a critical value, resulting
in a sudden reduction in the lift force generated. A detailed study on airfoil lift effects can be found
in [20].
6 Additional considerations such as mechanical loads or power stability are usually taken into
account as well [3], but reach out of the scope of this chapter.
7 ucut−in represents the minimum wind speed such that the wind turbine can extract power, typically
in the order of 3−4m/s.
8 ur represents the rated wind speed at which the wind turbine extracts the rated, maximum allowed
power Pr , typically in the order of 12−15m/s.
9 ucut−out represents the maximum wind speed at which the wind turbine can safely extract power,
typically in the order of 25−35m/s.
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Fig. 5 (a) Theoretical power curve P(u); (b) Theoretical power coefficient cp(u) for a pitch-
controlled wind turbine with ucut−in = 4 m/s, ur = 13 m/s and ucut−out = 25 m/s.

3 Application to operating wind turbines

The theory of wind power performance was introduced in section 2. Although this
theory sets a good foundation for wind energy applications, the complexity of at-
mospheric effects calls for a more advanced description. This section 3 presents the
typical complex data of wind speed u and power output P recorded on wind turbines
in section 3.1. It is followed by two approaches to estimate power curves in sections
3.2 and 3.3, respectively the IEC and the Langevin procedures.

For information, all the results presented were derived from measurements on
operating multi-MW commercial wind turbines, with a sampling frequency
1Hz (unlike stated otherwise). All power values are normalized by the rated
power Pr in order not to confuse the reader. All results can straightforwardly
be converted back to actual power values.



12 Patrick Milan, Matthias Wächter and Joachim Peinke

3.1 Atmospheric turbulence - a complex challenge

The introduction in section 2 assumed a steady, laminar wind inflow u1 = constant.
Although it is a necessary assumption to derive Betz limit, atmospheric flows are
turbulent. Atmospheric winds combine the complex aspects of turbulence on small
scales and of climatology on larger scales. The statistics of wind measurements
display complex properties like unstationarity or intermittency (such as gusts). An
illustration on wind statistics is presented here, as well as their impact on power
output statistics.

Two typical time series for the simultaneous measurement of wind speed u and
power output P are displayed in Fig. 6 and 7. The ten-minute average and standard
deviation are displayed, illustrating how the IEC norm reduces the complexity of
the measurement signals (see section 3.2).

Fig. 6 Excerpt of a wind speed measurement at
frequency 1Hz for one hour. The ten-minute av-
erage and standard deviation are displayed re-
spectively with the solid and dashed lines.

Fig. 7 Excerpt of a power output measurement
at frequency 1Hz for one hour. The ten-minute
average and standard deviation are displayed
respectively with the solid and dashed lines.

The time series can be plotted together, i.e. power output versus wind speed for
the same measurement, as shown in Fig. 8.

One can see from Fig. 8 that when no time-averaging is performed, the power
conversion is a highly dynamical system even on very short time scales. The power
signal reacts quickly to the wind speed signal, and can be considered turbulent as
well. An important aspect for the wind energy industry is the impact of gusts10 on
wind turbines fatigue loads, as well as on power stability. Gusts can be estimated
from the statistics of the increments of wind speed

10 Although no unique, clear definition of gust exists, one can see a wind gust as a rapid change of
wind speed (and possibly direction). Gusts are extreme events.
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Fig. 8 1Hz measurement of power output versus wind speed during 106 sec. The data is plotted in
black for the first 960.000 points, then in white for the last 40.000 points.

uτ(t) = u(t + τ)−u(t) , (18)

where τ is the time increment, or scale of interest. uτ(t) then represents the change
in wind speed between time t and time t + τ . Similarly, the increments of power
output can be defined as

Pτ(t) = P(t + τ)−P(t) . (19)

Following what is usually done in research on turbulence, the probability density
function (PDF) of uτ is displayed in Fig. 9, as well as the PDF of Pτ in Fig. 10. For
information, the increments are systematically normalized by their standard devia-
tion στ , such that only the shape of the PDF is of interest.

Compared to a normal, i.e. Gaussian distribution, the normalized PDFs of uτ

and Pτ can be seen as intermittent11, especially for the short time scales τ ≈ 1−
100 sec. The PDFs are most intermittent for small values of τ , indicating that the
intermittent dynamics act on short time scales. This means that the probability of
sustaining a major change of wind speed or power output is higher over short time

11 The notion of intermittency is related to the probability of a process to sustain extreme events. It
can be identified as a large deviation from the Gaussian distribution far away from the mean value.
Extreme events such as gusts yield intermittent PDFs.
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Fig. 9 PDF of normalized wind speed incre-
ments for various time increments τ (increas-
ing τ downwards). The values of τ are given
in seconds. The various PDFs are intentionally
shifted vertically for clarity. A Gaussian distri-
bution is given as a reference (solid line).
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Fig. 10 PDF of normalized power output incre-
ments for various time increments τ (increas-
ing τ downwards). The values of τ are given
in seconds. The various PDFs are intentionally
shifted vertically for clarity. A Gaussian distri-
bution is given as a reference (solid line).

intervals. When increasing the scale τ , the increment PDFs of u and P then become
less intermittent and tend towards the Gaussian distribution12.

While this is a well-known result for turbulent winds [5], this aspect is seldom
emphasized for wind turbines power output, see [8].

The information displayed in Fig. 10 is important to understand wind turbines
behavior and for the wind energy industry in general, as it shows a non-zero
probability of having extreme changes in power output. For example for τ =
64 sec, events Pτ ≈ 10στ ≈ 0.75Pr were recorded, meaning that the power
output can increase by about 75% of the rated power within a minute. Also
for τ = 8 sec, events Pτ ≈ 20στ ≈ 0.6Pr occur, meaning that the power output
can increase by about 60% of the rated power within 8 seconds.

PDFs of power output increments appear to be even more intermittent than PDFs
of wind speed increments. This can be justified by the cubic relation of the power
output to the wind speed. As a matter of fact, when the wind speed doubles, the
power output should theoretically increase by a factor 8. This justifies why wind
gusts are transferred and amplified to the power production which, as a consequence,
suffers rapid changes relatively often. This certainly accounts for the shorter lifetime
of wind turbines than originally designed. Also, these rapid changes in power pro-

12 Following the central-limit theorem, the PDF of a large-enough dataset of independent, random
samples approaches the Gaussian distribution [12].
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duction are fed into the grid, and raise the matter of the power stability for wind
energy integration.

3.2 The international standard: the IEC power curve

The standard power performance procedure for wind turbines was defined by the
International Electrotechnical Commission in 2005 in the norm IEC 61400-12-1.
For a detailed description of this norm, the reader is kindly referred to the com-
plete proceeding [10]. This procedure provides a unique methodology to ensure
accuracy, consistency and reproducibility in the measurement and in the analysis
of power performance. It consists first of the minimum requirements for a power
performance test, and second of a procedure to process the measured data without
extensive knowledge.

3.2.1 Measurement procedure

First, are described the necessary preparations for the performance test, such as cri-
teria for the measurement equipments, guidance for the location and setup of the
meteorological mast that will be used to measure the wind speed and other pa-
rameters like the wind direction, temperature and air pressure. The sector of the
measurement is also described as the range of wind directions that are valid for a
representative measurement, such that wind directions where the met mast is in the
wake of the wind turbine must be excluded. A detailed assessment of the terrain at
the test site is presented in the additional site calibration procedure which reports
for additional obstacles (other than the wind turbine).

The first goal of the IEC norm is to ensure that the data collection displays a
sufficient quantity and quality for an accurate estimation of the power perfor-
mance.

3.2.2 IEC power curve

Second, the measured data is processed13. The data processing is mainly performed
in two steps.

13 Additional correction of the measured data should be performed using temperature and pressure
measurements.
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After adequate normalization of the data, the first step consists in averaging
the measured data over time intervals of 10 minutes. The IEC power curve
is derived in a second step from the ten-minute averages using the so-called
method of bins, i.e. the data is separated into wind speed intervals of width
0.5 m/s.

In each interval i, bin averages of wind speed ui and power output Pi are calcu-
lated according to

ui =
1
Ni

Ni

∑
j=1

unorm,i, j , Pi =
1
Ni

Ni

∑
j=1

Pnorm,i, j , (20)

where unorm,i, j and Pnorm,i, j are the normalized 10-minute average values of wind
speed and power, and Ni is the number of 10 min data sets in the ith bin.

For the power curve to be complete and reliable, each wind speed bin must in-
clude at least 30 minutes of sampled data. Also, the total measurement time must
cover at least a period of 180 hours. The range of wind speeds must range from 1
m/s below cut-in wind speed to 1.5 times the wind speed at 85% of the rated power
of the wind turbine. The norm also provides an estimation of uncertainty as the stan-
dard error of the normalized power data, plus additional uncertainties related to the
instruments, the data acquisition system and the surrounding terrain. A typical IEC
power curve is presented in Fig. 11.
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Fig. 11 Power curve (black line with corresponding error bars) obtained according to the IEC
norm. The grey dots represent the 10-minute average values.
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The IEC norm also defines the AEP (Annual Energy Production), as presented
in section 4.2. The AEP is a central feature for economical considerations, as it
gives a first estimate of the long-time energy production of a wind turbine. As it
sets a unique ground for wind power performance worldwide, the IEC norm helps
building a general understanding between manufacturers, scientists and end-users.
This statement comes to be ever more important as the wind energy sector grows.
Hence, focusing on this standard is paramount to any study on power performance.

3.2.3 Turbulence-induced deviations

As a downside to its simplicity, the IEC power curve method presents a limitation. In
contrast to a good definition of the requirements in section 3.2.1, the definition of the
power curve in section 3.2.2 suffers a mathematical imperfection. In order to deal
with the complexity of the wind speed and power signals, the data is systematically
averaged over time. Although a statistical averaging is necessary to extract the main
features from the complex processes, the averaging procedure over 10-minute inter-
vals lacks a clear physical meaning, beyond its statistical definition. As the wind14

fluctuates on various time scales (down to seconds and less), a systematic averaging
over ten minutes filters out all the short-scale turbulent dynamics. Combining these
turbulent fluctuations with the non-linear power curve P(u) ∝ u3, the resulting IEC
power curve is spoiled by mathematical errors. To show this, one can first split the
wind speed u(t) sampled at 1Hz into its mean value and the fluctuations around this
mean value

u(t) = u(t)+u′(t) , (21)

where x(t) represents the average (arithmetic mean) value of x. Assuming that
u′(t)� u(t), a Taylor expansion of P(u(t)) reads [4]

P(u(t)) =P
(

u(t)
)

+u′(t)
(

∂P(u)
∂u

)
u=u(t)

+
u′(t)2

2!

(
∂ 2P(u)

∂u2

)
u=u(t)

+
u′(t)3

3!

(
∂ 3P(u)

∂u3

)
u=u(t)

+o
(
u′(t)4) . (22)

Averaging equation (22) yields

14 To some extent the power output also fluctuates on short time scales, but its high-frequency
dynamics are limited by the inertia of the wind turbine.
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P(u(t)) =P
(

u(t)
)

+0

+
u′(t)2

2

(
∂ 2P(u)

∂u2

)
u=u(t)

+
u′(t)3

6

(
∂ 3P(u)

∂u3

)
u=u(t)

+o
(
u′(t)4) , (23)

because u′(t) = u(t)−u(t) = 0. This means that the average of the power is not
equal to the power of the average, and must be corrected by the 2nd and 3rd-order
terms. As the IEC power curve directly relates the 10-minute averages of wind speed
and of power output, it neglects the higher-order terms in the Taylor expansion. The
2nd-order term is the product of the variance σ2 = u′(t)2 of u(t)15 and the second-
order derivative of the power curve16. This demonstrates that the IEC power curve
cannot describe in a mathematically rigorous way the nonlinear relation of power
to wind speed when coupled with wind fluctuations (stemming from turbulence), at
least not without higher-order corrections.

As a consequence of this mathematical over-simplification, the result depends
on the turbulence intensity I = σ/u, so on the wind condition during the mea-
surement [4]. It is illustrated in Fig. 12, where the IEC power curve deviates
from the theoretical power curve with increasing turbulence intensity, as pre-
dicted by equation (23). As it does not characterize the wind turbine only, but
also the measurement condition, raises the question of its reproducibility and
stability.

3.3 A new alternative: the Langevin power curve

An alternative to the standard IEC power curve is proposed in this section 3.3. As
the IEC norm defines the measurement procedure with relevance (see section 3.2.1),
the same conditions will be considered for the Langevin analysis. The difference lies
in the different approach to process the measured data.

15 σ2 = (u−u)2 = u′(t)2.
16 Assuming a cubic power curve P(u) ∝ u3, P(u) has non-zero derivatives up to 3rd-order. More-
over, the transition point to rated power may have non-zero derivatives of arbitrary order, see Fig.
12.
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Fig. 12 IEC power curves for various turbulence intensities I = 0.1, 0.2, 0.3 (dashed lines). The
full line represents the theoretical power curve. This result was obtained from numerical model
simulations from [4].

One additional point on the sampling frequency is however important for the
Langevin analysis. Because the method resolves the dynamics of a wind tur-
bine in the order of seconds, a minimum sampling frequency in the order of
1Hz is necessary for the measurements of wind speed and power output.

3.3.1 A dynamical concept

The power characteristic of a wind turbine can be derived from high-frequency mea-
surements without using temporal averaging. One can regard the power conversion
as a relaxation process which is driven by the turbulent wind fluctuations [19, 16].
More precisely, the wind turbine is seen as a dynamical system which permanently
tries to adapt its power output to the fluctuating wind. For the (hypothetical) case
of a laminar inflow at constant speed u, the power output would relax to a fixed
value PL(u)17, as illustrated in Fig. 13. Mathematically, these attractive power val-
ues PL(u) are called stable fixed points of the power conversion process.

17 The subscript L stands for “Langevin” as PL(u) will be associated to the formalism of the
Langevin equation.
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Fig. 13 Illustration of the concept of stable fixed point PL(u). For constant wind speed, the power
output would relax to a stable value PL(u). This sketch is inspired from [1].

3.3.2 The Langevin equation

The Langevin power curve18 is derived from high-frequency measurements of wind
speed u(t) and P(t). All necessary corrections and normalizations from the IEC
norm [10] should be applied on the two time series.

The wind speed measurements are divided into bins ui of 0.5 m/s width, as done
in [10]. This accounts, to some degree, for the non-stationary nature of the wind,
yielding quasi-stationary segments Pi(t) for those times t with u(t)∈ ui. The follow-
ing mathematical analysis will be performed on these segments Pi(t). From now on,
the subscript i will be omitted and the term P(t) will refer to the quasi-stationary seg-
ments Pi(t). The power conversion process is then modeled by a first-order stochas-
tic differential equation called the Langevin equation19

d
dt

P(t) = D(1)(P)+
√

D(2)(P)×Γ (t) . (24)

In this model, the time evolution of the power output is controlled by two terms20.

D(1)(P) represents the deterministic relaxation of the wind turbine, leading
the power output towards the attractive fixed point PL(u) of the system. For
such, D(1)(P) is commonly called the drift function.

18 In former publications on the topic, the Langevin power curve was called dynamical power
curve or Markovian power curve. It is nonetheless the same approach.
19 This equation is the reason for the name of the Langevin power curve.
20 D(1) and D(2) are the first two Kramers-Moyal coefficients.
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The second term
√

D(2)(P)×Γ (t) represents the stochastic (random) part of the
time evolution, and serves as a simplified model for the turbulent wind fluctuations
that drive the system out of equilibrium. The function Γ (t) is a Gaussian-distributed,
delta-correlated noise with variance 2 and mean value 0. D(2)(P) is commonly called
the diffusion function. A mathematical approach to the Langevin equation can be
found in [18].

3.3.3 The drift function and the Langevin power curve

The deterministic drift function D(1)(P) is of interest as it quantifies the relaxation of
the power output towards the stable fixed points of the system. When the system is in
a stable state, no deterministic drift occurs21, and D(1)(P) = 0. Following equation
(25), D(1)(P) can be understood as the average time derivative of the power signal
P(t) in each region of wind speed ui and power output P.

The drift and diffusion functions can be derived directly from measurement
data as conditional moments [18]

D(n)(P) = lim
τ→0

1
n!τ
〈(P(t + τ)−P(t))n |P(t) = P〉 , (25)

where n= 1,2 respectively for the drift and diffusion functions. The averaging
〈·〉 is performed over t, as the condition means that the calculation is only
considered for those times during which P(t) = P.

This means that the averaging is done separately for each wind speed bin ui and
also for each level of the power P. One could speak of a state-based averaging on u
and P, in contrast to the temporal averaging performed in the IEC norm. A typical
drift function is displayed in figure 14.

The dynamics of the power signal can be directly related to the local sign
and value of D(1). A positive drift indicates that the power tends to increase
(arrows pointing up in Fig. 14), in regions where the wind turbine does not
produce enough power for the given wind speed. On the contrary, a negative
drift corresponds to a decreasing power (arrows pointing down), in regions
where the wind turbine produces too much power for the given wind speed.
At the intersection are the points where D(1) = 0, indicating that when at this
value, the power output is in a stable configuration (the average time derivative
is zero). The collection of all the points where the drift function is zero is
defined as the Langevin power curve, and will be further labelled PL(u).

21 To separate stable (attractive) from unstable (repulsive) fixed points, also the slope of D(1)(P)
must be considered.
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Fig. 14 Drift function D(1)(P). Each arrow represents the local value of D(1)(P) in magnitude
(length of the arrow) and direction (pointing up for positive values). The stable fixed points where
D(1)(P) = 0 are given by the black dots.

The stable fixed points PL(u) of the power conversion process can be extracted
from the measurement data as solutions of

D(1) (PL(u)) = 0 . (26)

An illustration is given in Fig. 15.
Following the mathematical framework of equations (24) and (25), an estimation

of uncertainty for PL(u) can be performed [7]. One can see that for most wind speeds
the power curve has very little uncertainty. Nevertheless, larger uncertainties occur
in the region of transition to rated power. There the power conversion is close to
stability over a wider range of power values, as a consequence of the changing
control strategy from partial load to full load operation (see Fig. 5). It is a region of
great interest as the controller of the wind turbine is highly solicited for the transition
to rated power.

3.3.4 Advantages of the Langevin approach

The Langevin equation (24) is a simplifying model for the power conversion pro-
cess. The question of its validity for wind turbine power signals was positively an-
swered in recent developments [11], as the power signal of a wind turbine could
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Fig. 15 Langevin power curve (black dots with corresponding error bars) and IEC power curve
(solid line).

be successfully modelled. Predicting power signals from the Langevin equation is
introduced in appendix 7. Also, the drift function D(1) is well-defined for a large
class of stochastic processes, and is not limited only to the class of the Langevin
processes.

Also, the definition of the drift function does not suffer the systematic errors
caused by temporal averaging. For such, the Langevin power curve character-
izes the wind turbine dynamics only, regardless of the wind condition during the
measurement22. The results are therefore machine-dependent only, and not site-
or measurement-dependent, as the intensity of turbulence has no influence on the
Langevin power curve.

Additionally, this approach can show complex characteristics of the investigated
system, such as regions where the system is close to stability, as mentioned above,
or multiple stable states, see also [1, 9]. For these various reasons, the Langevin
power curve represents a promising tool for power performance monitoring, as will
be introduced in section 4.

22 Assuming that the measurement period is sufficiently long to reach statistical convergence.



24 Patrick Milan, Matthias Wächter and Joachim Peinke

3.4 Power curve stability under different wind measurement
technologies

Wind measurements are ordinarily performed using a cup anemometer for the speed
and a wind vane for the direction. Yet new techniques appear in wind energy indus-
try as alternatives, such as LIDAR (LIght Detection And Ranging) anemometry23. It
represents a promising technology for wind measurements as it makes remote mea-
surements possible. This becomes particularly interesting for larger heights, where
the efforts for measurement towers reach critical levels. This holds especially for
power curve measurement, considering the growing heights of recent wind turbines.

LIDAR measurements presented here are performed using a Leosphere Wind-
Cube system. It operates as a pulsed laser Doppler anemometer, see Fig. 16. An
infrared laser beam is inclined by approximately 30◦ against the vertical direction
and takes beamwise Doppler measurements of the wind velocity. These measure-
ments are performed in the four principal directions, and a three-dimensional wind
vector is then derived from the four most recent measurements. The device achieves
a sampling rate of 0.67 Hz. Because of the pulsed laser operation, measurements
can be obtained in up to ten height levels simultaneously, within a range between 40
and about 200 m.

Fig. 16 Operation principle of the Leosphere WindCube. Sketch c©Leosphere, Inc.

Power curve measurements were performed using both LIDAR, cup and ultra-
sonic anemometers. The measurement was deployed in a distance of 2.5 rotor diam-
eters away from a prototype multi-MW class offshore wind turbine. The temporal
resolution of the power data, the wind speed recorded from the cup and ultrasonic
anemometers was 1 Hz, while the LIDAR achieved 0.67 Hz. Further details on the

23 Another alternative is given by ultrasonic anemometers which can estimate at once the wind
speed and direction.
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measurements can be found in [22]. From these measurement data the IEC and
Langevin power curves of the wind turbine could successfully be derived. Figure 17
shows the Langevin power curve from LIDAR wind measurement.
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Fig. 17 Langevin power curve of a multi-MW class offshore prototype wind turbine, derived from
LIDAR wind measurement [22].

The IEC and Langevin power curves are in excellent agreement when derived
from LIDAR, cup and ultrasonic anemometer measurements [22].

For the near future, a substantial increase in the use of wind LIDARs can be
expected. These measurements therefore will also open the possibility of precise
and uncomplicated derivation of power curves, thanks to the portability of LIDAR
devices.

4 Applications - power performance monitoring

Two methods were introduced to estimate power curves in section 3. Because the
two methods differ by the time scales they investigate24, the IEC method is more
suited for long-term analysis, while the Langevin method focuses more on short-
time dynamics, bringing deeper insight on the inner mechanical behavior. This al-
lows for a complementary assessment of the overall performance.

The two methods also differ by their dimension, as explained in section 4.1.
This aspect works constructively with their respective time scales, making the IEC

24 For reminder, the IEC method focuses on time scales of 10 minutes, while the Langevin approach
investigates the dynamics in the order of few seconds.
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power curve more suitable for an estimation of annual energy production (AEP),
and making the Langevin power curve more suitable to detect dynamical anomalies.
These two applications are presented respectively in sections 4.2 and 4.3.

4.1 One-dimensional versus two-dimensional power curves

The two different ways to discretize data brings the most difference between the two
different approaches.

The IEC method discretizes the two-dimensional domain {u,P} into wind speed
bins of size δu = 0.5m/s. As the domain is discretized only for the wind speed, the
IEC power curve depends on its unique variable u, resulting in a unique point every
0.5m/s. The IEC power curve is hence one-dimensional, it is the line PIEC(u).

However, the Langevin approach discretizes the domain {u,P} on both wind
speed and power output. The drift function D(1)

i (P) depends on the two variables
ui and P, making D(1) a two-dimensional estimate. This justifies why several stable
fixed points are possible for a given wind speed. An example is presented in Fig. 18.
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Fig. 18 Drift function D(1)
i (P) (arrows), Langevin power curve PL(u) (dots) and IEC power curve

PIEC(u) (line).
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The two-dimensional framework of the Langevin analysis allows to observe lo-
cal25 dynamics. An example can be seen in Fig. 18 for u = 13m/s, as the wind
turbine tends to P = 0.9 ·Pr when in partial load operation and to P = Pr when in
full load operation. Limited by its unique dimension, the IEC power curve can only
display the average value in between. Multi-stable behaviors, created for example by
a multiple-gear gearbox, switching generator stages or changing control strategies
cannot be resolved by the IEC power curve.

4.2 Annual energy production

The one-dimensional limitation of the IEC power curve becomes an advantage for
long-term energy production, as PIEC(u) relates unambiguously a unique value of
power for each wind speed. As the AEP estimates the energy produced over a year,
it can be seen as a prediction estimate. A prediction of power production at high-
frequency is also possible using the Langevin approach, as introduced in appendix
7. This is a more complicated approach that is outside the scope of this section.

The estimation of the AEP extrapolates the power production of a wind turbine
characterized by its power curve in a given location. This section 4.2 does not give
an exact transcription of the AEP procedure from the IEC norm [10], but rather
a comprehensive introduction on how power production can be estimated simply
from a wind speed measurement. For such, the AEP procedure introduced here is
not the official AEP procedure following IEC, but a similar version. In both cases,
the availability of the wind turbine is assumed to be 100%.

4.2.1 Estimating the wind resource

Any location scheduled to host a wind turbine can be categorized in advance by
a characterization of its wind resource. A local measurement of wind speed from
a met mast at hub height26 of the hypothetical wind turbine must be performed,
typically over one year27. From this wind speed measurement u(t), a ten-minute (or
hourly) averaging is applied on u(t). The probability density function (PDF) f (ui)
of the ten-minute average values ui is established. For clarity, the values ui will be
labelled u. f (u) returns the probability of occurrence of the wind speed u. For long
enough measurements, f (u) is known to fit a Weibull distribution [17]

f (u;λ ,k) =
k
λ

( u
λ

)k−1
e(−u/k)k

, (27)

25 Local in wind speed and power output.
26 Typical hub heights of commercial multi-MW class wind turbines are in the order of 100m,
justifying the interest for a portable LIDAR sensor, see section 3.4.
27 A measurement of wind speed over one year covers the various wind situations resulting from
various seasonal behaviors.
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where k and λ 28 are called respectively the shape and scale factors 29. Visual exam-
ples of such wind speed distributions are given in [6].

4.2.2 Estimating the AEP

A given wind site is characterized for the AEP by its wind speed PDF f (u), while a
given wind turbine is characterized by its IEC power curve. As PIEC relates un-
ambiguously a given wind speed U to the corresponding average power output
PIEC(U), the power curve serves as a transfer function from wind speed to aver-
age power output. An estimation of the average power output P can be obtained
following

P =
∫

∞

0
f (u)×PIEC(u)du , (28)

and an estimation for the energy production over a period T reads

T ×P = T
∫

∞

0
f (u)×PIEC(u)du . (29)

Over one year, T = 8766 hours and

AEP = P×8766 , (30)

where P is given in Watt and AEP is given in Watt hour.

Thanks to its simple mathematical procedure, the AEP is commonly used to
make rough predictions of energy production, as well as for financial estima-
tions. It can predict how much energy a wind turbine will generate on a given
site before installing it. This allows for an optimal choice of design for the
optimal location. This result however remains a rough estimation.

4.3 Detecting dynamical anomalies

The intention of dynamical monitoring is to detect dynamical anomalies that appear
on operating wind turbines. Monitoring refers to the time evolution of the power
performance here. A good monitoring procedure should be reliable30, as fast as

28 One should note here that λ is not the tip speed ratio of a wind turbine, but a parameter of the
Weibull distribution.
29 The IEC norm [10] refers to the Rayleigh distribution, which is a special case of the Weibull
distribution for k = 2.
30 An over-sensitive procedure might indicate non-existing anomalies, while an under-sensitive
procedure would fail to detect a major malfunction.



Power Performance and Application to Monitoring 29

available, and possibly also inform on the source of the anomaly. While monitoring
procedures come to be ever more complex, the approach presented here is based
only on a power curve estimation. This approach is not intended to give a full-
featured method, but rather an illustration of the amount of information given by
power curves. More advanced studies on the topic of power curves for monitor-
ing are being developed, but remain outside the scope of this introduction as they
represent active research topics.

The monitoring procedure simply consists in computing PL(u) at an initial time
that will serve as a reference31. Potential changes in time of PL(u) are considered
anomalies, or malfunctions inside the wind turbine that spoil the conversion dy-
namics. While this strategy is very simple, the challenge lies in defining the right
threshold for a change in PL(u) to be considered an anomaly. This threshold, along
with other parameters such as the necessary measurement time or time reactivity of
the method depend on the wind turbine design and location.

To illustrate the ability of the method, the monitoring procedure was applied on
a numerical simulation. The simulation was applied on measurement data, where
an anomaly was introduced. This artificial anomaly limits the power production to
P≈ 0.55 ·Pr for intermediate wind speeds, as represented by the grey rectangles in
Fig. 19 and 20. More clearly, when in this rectangle, the power signal was sometimes
forced to reduce towards 0.55Pr. From this artificial data, PL(u) and PIEC(u) were
then computed and compared to the original data. This is illustrated in Fig. 19 and
20.

Fig. 19 Comparison of PIEC(u) before the
anomaly (black in background) and after the
anomaly (grey in front). The artificial anomaly
was applied in the grey rectangle.

Fig. 20 Comparison of PL(u) before the
anomaly (black in background) and after the
anomaly (grey in front). The artificial anomaly
was applied in the grey rectangle.

31 The reference time is chosen when the wind turbine is believed to work with full capacity.
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Similar anomalies were observed on several real wind turbines. (justifying the
reason for this artificial anomaly). For information, the total energy production was
reduced to 96.6% compared to the original energy production due to the presence
of the anomaly. Fig. 20 illustrates the higher reactivity of PL(u). While in Fig. 19
PIEC(u) only shows a minor deviation in the region of the anomaly, PL(u) clearly
detaches from the typical cubic curve to adjust to the new dynamics. PL(u) can
detect changes in the dynamics of the conversion process, unlike PIEC(u) that is
better suited for the AEP.

The Langevin power curve is more reactive to changes in the dynamics. As the
IEC power curve averages over 10 minutes intervals, the information about
high-frequency dynamics is lost. Also, the second averaging in wind speed
prevents from seeing multi-stable behaviors.

In addition, the Langevin power curve does not depend on the turbulence
intensity, unlike the IEC power curve, see section 3.2.3. A deviation in the
Langevin power curve indicates a change in the conversion dynamics, regard-
less of the wind situation. This makes the Langevin power curve a promising
tool for dynamical monitoring.

5 Conclusion

This chapter was first dedicated to power performance for wind turbines. A general
overview was introduced in section 2, mainly the application of momentum theory
to wind turbines, as developed by Betz. This simplified analysis sets an upper limit
of ≈ 60% for the power available in the wind, regardless of the design of the wind
power system. Additional losses due to more realistic considerations bring an even
lower availability for the power extraction, up to ≈ 50% for modern commercial
designs. Estimates of power performance like the power coefficient or the theoretical
power curve were defined for the case of a laminar wind flow.

Facing complex turbulent and atmospheric effects, wind turbines cannot be de-
scribed satisfactorily using a laminar theory. Statistical tools were introduced in sec-
tion 3 to integrate these complex effects into the analysis. The international proce-
dure to estimate a reliable power curve was introduced by the IEC norm 61400-12-1.
It sets good guidelines on how to perform measurements on operating wind turbines,
and provides a uniform standard. It handles the measured signals of wind speed and
power output through an averaging procedure both in time and on the wind speeds.
It results an uncomplicated IEC power curve that accounts somewhat for the turbu-
lent effects. Unfortunately, the result depends on the measurement condition, such
that the IEC power curve does not characterize the wind turbine performance only,
but also the wind condition. This procedure allows however for a gross estimation
of long-time energy estimation like the AEP, as introduced in section 4.2.
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An alternative is proposed that is based on stochastic analysis. Instead of aver-
aging over time, the power signal is approximated to solve a Langevin equation.
A drift function is introduced, that quantifies the reaction dynamics of a wind tur-
bine to turbulent wind fluctuations. It results a so-called Langevin power curve,
which represents the stable fixed points of the conversion dynamics. The Langevin
power curve and the drift function give a simplified model of how the wind turbine
actively adapts the power production to the changing wind speed. Unlike the IEC
power curve, the Langevin power curve does not depend on the measurement con-
dition, and characterizes the wind turbine only. Also its two-dimensional structure
allows for a more flexible result and can resolve multi-stable dynamics. This makes
the Langevin approach a promising application for performance monitoring, as dis-
cussed in section 4.3. Modeling of power signals is also made possible through the
Langevin equation, as briefly introduced in appendix 7.

As the wind energy industry grows rapidly, wind turbine designs might (or might
not) change radically in the next decades. The freedom of change in the overall de-
sign is however limited by the physical aspects of the wind itself. The three-blade
design emerged as it extracts the most power over the range of wind speeds that
occur most often at hub height. Improvements in material engineering allow for
larger wind turbines every year. With taller wind turbines, the impact of turbulence
induced by the surface roughness of the ground is reduced. This also justifies the
recent effort to build offshore wind turbines, that can benefit from smoother winds.
Yet the wind remains in essence turbulent, and the wind resource is consequently
intermittent. This chapter aimed to identify the response of a single wind turbine
to such driving condition. On a larger scale, current challenges involve a smooth
integration of a rapidly increasing amount of intermittent wind power into electrical
networks. While a single wind turbine is insignificant on the scale of an entire net-
work, a better understanding of single wind turbines, wind parks and global wind
installations remains paramount for a future integration of wind energy at a global
level.
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6 Appendix 1: aerodynamics of rotor blades

The essential (mechanical) element of a wind turbine is the rotor, that transforms the power of the
wind into a rotational or mechanical power. The ideal requirements are:

• the rotation should be steady and smooth;
• dynamical loads should be minimal;
• the regulation should be done without sudden jumps.

The number of blades, their profile and design should guarantee these features. Modern wind tur-
bines rotate due to the lift forces FL acting on the airfoils. For an airfoil the effective area32 can be
expressed in terms of the depth t and the wingspan b (normally equal to the rotor radius R), such
that

32 This effective area is the one that enters the formula to calculate drag and lift forces.
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FD = CD(α)
1
2

ρc2(t ·b)

FL = CL(α)
1
2

ρc2(t ·b) , (31)

where α is the angle of attack, as displayed in Fig. 21. The lift-drag ratio FL/FD relates to the
quality of the airfoil. The larger the ratio, the better the quality.

Fig. 21 Cut through an airfoil to illustrate the forces acting on it. The depth t is given by the
distance between the leading and the trailing edge. The wingspan b is the length of the airfoil, here
perpendicular to the illustrated plane.

In Fig. 21, the velocity vector c gives the wind velocity in the frame of reference of the airfoil.
The wind velocity is u2 in the frame of the ground, but the rotational motion of the rotor must be
considered for the motion of the wind with respect to the blades. Hence, c is the superposition of
the horizontal axial velocity u2

33 and of the rotational velocity v = ωr, such that

c2(r) = (2u1/3)2 +(ωr)2 . (32)

The rotor feels the effective wind speed c. This is illustrated in Fig. 22.
Instead of integrating the lift and drag forces on the entire airfoil, one can estimate the local

force on each infinitesimal element. Also, the total force is divided into its rotational component Fr
and its axial component Fa. Considering a cut dr at r in the polar plane of the rotor, the resulting
force is

Fr =
ρ

2
c2 · t ·dr [CLcos(β )−CDsin(β )]

Fa =
ρ

2
c2 · t ·dr [CLcos(β )+CDsin(β )] . (33)

Also, on can estimate

tan(β ) =
ωr
u2

=
ωR
u1

r
R

u1

u2
=

3
2

λ
r
R
. (34)

The idea is to construct the blades in such a way that for each radial annulus they extract the (Betz)
optimal power out of the wind

Fr,Betz =
16
27
· ρ

2
·u3

1 · (2πrdr) . (35)

33 For the Betz optimum, u2 = 2/3u1.
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Fig. 22 Cut through a rotating airfoil. The rotational velocity ωr is perpendicular to the axial
velocity vector u2. β denotes the angle between the resulting velocity c and the rotational direction.

This power also reads

dP = z×Fr×ωr , (36)

where z denotes the number of blades, ωr the velocity in rotational direction and Fr the force in
this direction34. Inserting equation (33) and combining equations (35) and (36), the optimal value
of the depth t as a function of r can be determined. Assuming that CD�CL and a sufficiently large
tip speed ratio (for details see [21]), the profile of the airfoil t(r) reads

t(r) ≈ 16π

9
R2

zCLrλ 2

∝ z−1 ·C−1
L · r

−1 ·λ−2 . (37)

This has an important consequence on the design of rotor blades. The depth decreases with increas-
ing number of blades, larger lift coefficient, increasing radius and especially increasing tip speed
ratios. This explains why fast rotating wind turbines tend to have only two or three narrow blades
while old western-mill machines have many, rather broad blades.

7 Appendix 2: a relaxation model for the power output

As introduced in section 3.3.2, the power output of wind turbines is assumed to be solution of a
Langevin equation

d
dt

P(t) = D(1)(P)+
√

D(2)(P)×Γ (t) . (38)

For reminder, the power value P and the functions D(1) and D(2) are conditioned on the wind
speed bins, as done in the main text. The subscript i indicating the wind speed bin was dropped
for simplicity. D(1) represents the deterministic dynamics of the conversion process, that always
push the power output towards the Langevin power curve PL(u). Additional random fluctuations

34 The force in the axial direction does not contribute to the power production of a wind turbine
but to the thrust on it.
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are superposed as a simplified model for all the microscopic degrees of freedom acting on the
conversion process35. A simple but rather realistic ansatz for D(1) would be

D(1)(P) = α (Ptheo(u)−P(t)) , (39)

where D(1) linearly drives the power output towards the instantaneous value of the theoretical
power curve Ptheo(u(t)), which might read

Ptheo(u) =

Pr

(
u
ur

)3
for u < ur ,

Pr for u≥ ur .
(40)

Assuming equation (39) and a constant diffusion function D(2)(P) = β 36, the Langevin equation
becomes a relaxation model for the power output

d
dt

P(t) = α (Ptheo(u(t))−P(t))+
√

β ×Γ (t) . (41)

Equation (41) is a phenomenological model for the power signal. This special case of the Langevin
process is mathematically called an Ornstein-Uhlenbeck process [18].
Equation (41) is a simplified model for the power output, where the wind turbine design is de-
scribed through the parameters α and β , as well as the power curve Ptheo(u). The parameter α is
related to the reaction time of the model wind turbine37 , while β quantifies the strength of the
stochastic noise. Γ (t) is a Gaussian-distributed white noise with mean value 0 and variance 2,
which can be generated easily from most mathematical softwares. Using a wind speed time series
u(t) as an input for the model equation38, a time series of power output P(t) can be generated at
the same sampling frequency. An example is provided in Fig. 23.
From Fig. 23, it can be seen that the relaxation model manages to estimate the power output of a
wind turbine to a first approximation. Fluctuations and their statistics are more difficult to repro-
duce than long-time behavior, which is mostly driven by the changes in wind speed rather than
by the stochastic fluctuations. More advanced methods are being developed, as introduced in [11],
where D(1) and D(2) are not assumed but estimated from measurement data.

35 The Langevin equation relates directly the incoming wind speed and the power output. Many
other variables are involved in intermediate steps of the conversion, which should be modeled by
a set of mutli-dimensional deterministic differential equations. All these degrees of freedom are
modeled by the one-dimensional stochastic Langevin equation instead.
36 A constant diffusion function yields additive noise. More complex systems such as turbulence-
driven systems display multiplicative noise and a non-constant diffusion function.
37 A realistic model integrates a finite reaction time due to the inertia of the wind turbine to chang-
ing wind speeds.
38 An initial condition P(t = 0) for the power output is also necessary. However, the result depends
only poorly on this value, as the dynamics will adjust rapidly to the given wind speed.
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Fig. 23 (a) Power signal measured. (b) Power signal modeled following equation (41) with α =
0.005, β = 0.5, ur = 13 m/s and Pr = 1. The wind speed signal used was measured simultaneously
as the measured power output.


