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1 Introduction

Bose-Einstein condensation occurs for bosons when, for a temperature low enough (typically
a few kelvins for a liquid condensate and a few nanokelvins for a gaseous condensate), a
macroscopic fraction1 of the bosons gathers in the quantum state of lowest energy, forming
a Bose-Einstein condensate (Bec). In this case, the behavior of the fluid can be described
in the case of a dilute gas by the nonlinear Schrödinger equation (Nls), also called the
Gross-Pitaevskii equation. It can be shown that the dynamics of the Nls is very close
to shallow water dynamics with surface tension. One of the striking features of Becs is
the possibility of point vortices to appear, which dynamics is explained in some the oldest
textbooks of fluid dynamics (see e.g. [5]). Surprinsingly, although vortices in Becs have
been extensively studied, some of the most simple Gendankenexperiments have yet to be
studied. In [6] for example, the (apparently) simple problem of the motion of a single vortex
along a plane boundary in a semi-infinite, uniform Bec is studied, eleven years after the
first experimental realisation of a Bec ([3]) and eighty-two years after Einstein’s translation
of the letter Bose wrote him about what would later be called Bose-Einstein statistics ([1]).
An opportunity is then to be seized by classical fluid dynamicists, who can make the study
of quantum fluid dynamics benefit from their experience. The idea of the present project,
unlike [6] who use an almost all-analytical approach, is to develop a numerical code to
integrate the Nls in polar coordinates and to perform a few numerical experiments about
vortices in a two-dimensional circular box (a “glass”). In this report, we will first present
some aspects of quantum fluid dynamics for geophysical fluid dynamicists to understand the
analogies between the two fields. The code written during the project will then be presented
in Section 3. In Section 4, a few numerical experiments will be presented to validate the
code, study various simple configurations and see what the code can do. In a last section,
conclusions will be drawn and possible extensions of this work will be proposed.

2 Two-dimensional Bose-Einstein condensates

2.1 The nonlinear Schrödinger equation

In a dilute gas of N particles, each particle barely interacts with the others and in first
approximation, its wave function does not feel the presence of the other particles. In this
case, it is possible to approximate the total wave function Ψ as the product of all the

1to be understood as a fraction not involving negative powers of ten
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individual wave functions ψ̃i:

Ψ(r1, r2, . . . , t) =

N∏

i=1

ψ̃i(ri, t).

As the particles are all identical and in the same fundamental state, all ψ̃i have the same
form which we can write as

ψ̃i(ri, t) =
ψ(ri, t)√

N
.

The reason why we chose this particular scaling is that the normalization relation, which is
that the probability of finding the ith particle in the whole physical domain D is equal to
1, can be written as ∫

S
|ψ|2 dS = N. (1)

Therefore, |ψ|2 can be considered as the particle density.
We mentioned earlier that the particles barely interact with each other. In a dilute gas,

this approximation is accurate but let us refine this model by introducing the fact that these
particles indeed never interact except when their positions exactly coincide (collisions), in
which case they feel a repulsive interaction. The hamiltonian of the system is therefore

H =

N∑

i=1

(
− ~

2

2m
∇

2
i + V (ri)

)
+

1

2

∑

i<j

U0δ(ri − rj),

where ~ is the reduced Planck constant2, m is the mass of a single particle, V (ri) is the
external energy potential and ∇i is the gradient operator relative to the set of coordinates
ri. Integration of ψ∗Hψ across the whole domain (where ∗ means complex conjugate) gives
the energy of the system:

E =

∫

S

(
~

2

2m
|∇ψ|2 + V (r)|ψ|2 +

1

2
U0|ψ|4

)
dx dy, (2)

The wave function minimizes E under the constraint of Equation (1) and satisfies the Nls:

i~
∂ψ

∂t
=

[
− ~

2

2m
∇

2ψ + V (x, y)

]
ψ + U0|ψ|2ψ, (3)

which entirely describes the dynamics of the Bec. The first term of the right member is
the usual Schrödinger equation and the last term is the one introduced by the interaction
terms, which is also the nonlinear term. In our case, we will consider a two-dimensional
circular glass of radius R associated with a set of polar coordinates (r, θ) which origin lies
in the center, in other words:

V (r ≥ R, θ) = +∞, V (r < R, θ) = V (constant).

In this case, the probability of finding a particle outside the glass is strictly equal to zero
and we will therefore only focus on the interior of it.

2
~ ≃ 1.054571628 × 10−34 J.s



2.2 The Madelung transformation

Before looking at the behavior of the Nls solutions, it might be useful for the reader who
is more used to geophysical fluid dynamics to see how the dynamics of the Nls equation
can seem familiar. ψ written in its polar form is

ψ(r, t) =
√
n(r, t)eiα(r,t).

In this case, n and α are real, n is positive and can be easily interpreted as the particle
density, as implied by Equation (1):

n(r, t) = |ψ(r, t)|2.

Now multiplying Equation (3) by ψ∗ and adding the result to its complex conjugate, one
finds that n indeed satisfies a conservation law:

∂n

∂t
=

i~

2m
(ψ∗

∇
2ψ − ψ∇

2ψ∗) = −∇ · j,

with j = −(i~/2m)(ψ∗
∇ψ − ψ∇ψ) is the probability current also written as

j =
~

m
ℑ(ψ∗

∇ψ) =
~

m
n∇α.

A velocity vector can be defined such that j = nu, or

u =
~

m
∇α =

~

m

ℑ(ψ∗
∇ψ)

n
.

As u is a gradient, we have ∇ × u = 0, i.e. the flow is irrotationnal. Equation (4) is then

∂tn+ ∇ · (nu) = 0, (4)

which is formally identical to the continuity equation in fluid dynamics. It is also possible
to derive an equation similar to the Euler equations, although we will restrict ourselves to
just mentioning it in the general case ∇V 6= 0:

Du

Dt
= − 1

m
∇V − U0∇n+

~2

2m2
∇

{
∇

2(
√
n)√

n

}
. (5)

The similarity to the Euler equations in classical fluid dynamics is made clearer when writing
it in the following form:

Du

Dt
= −∇Φ − g∇η +

σ

ρ
∇

{
∇

2η

(1 + |∇η|2)3/2

}
,

where Φ is the potential of the external conservative forces acting on the fluid other than
gravity, η the free-surface height, ρ the density and σ the surface tension. The term −∇Φ
is related to −∇V in Equation (5). The hydrostatic pressure gradient −g∇η is related
to −U0∇n which would be absent of Equation (5) if U0 would be zero: the action of the
nonlinear effects is then to avoid high concentrations of particles and “flatten” the particle



distribution, like pressure does for the height of a fluid surface. One can also notice that
now, n is not related to ρ but to η. Finally, the last term of Equation (5), although not
formally identical, can be related to the surface tension term of the last equation. Effects
on the dynamics of the distribution of the particle density that are similar to those induced
by surface tension at the surface of a fluid will be involved throughout this report, the most
striking feature being the existence of density waves that behave like surface capillary-
gravity waves in a classical fluid. As a remark, the flow can be compressible.

2.3 Non-dimensional problem

Before writing the Nls in a non-dimensional form, we first have to define characteristic
quantities.

2.3.1 A characteristic length: the healing length

We have noticed in Section 2.2 that the nonlinear effects tend to homogenize the particle
distribution. But the external potential is such that the wave function vanishes at the
boundary of the domain. In the steady state, the particle density must therefore experience
an evolution between the boundary condition and the interior of the Bec, this evolution
being given by the steady Nls. For simplicity reasons, we consider here a plane, infinite
wall which boundary lies along the y axis. We then have ψ ≡ 0 for x ≤ 0 and the steady
Nls is now

− ~
2

2m

d2ψ

dx2
+ V ψ + U0ψ

3 = 0. (6)

This Ode is somehow similar to the following Ode:

1

2
f ′′ + f − f3 = 0,

which solution is the tanh function. In order to put Equation (6) in a similar form, we
write ψ =

√
n0ψ̂ where n0 is the background density away from the boundary and ψ̂ is the

dimensionless wave function. We also set V = −U0n0, the external potential being now a
direct result of all the individual interactions acting as a mean-field. Equation (6) becomes

− ~
2

2mU0n0

d2ψ̂

dx2
+ ψ̂ − ψ̂3 = 0.

The solution to this equation is then ψ̂ = tanh
(
x/(

√
2ξ)
)

where

ξ =
~√

2mn0U0
. (7)

ξ is the healing length and will be our characteristic length. As shown in Figure 1, ξ
√

2 is the
typical distance on which the density relaxes from zero at the boundary to its background
value n0. We see again an action of the nonlinear term: without it, the Ode to solve
would simply be the equation of an harmonic oscillator and the solutions would be the
eigenmodes one finds for free particles trapped in a box, exhibiting oscillatory behaviors.
We see as in Section 2.2 that the particle density is flattened by the extra term brought by
the interactions between particles.
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Figure 1: Particle density at rest from the boundary in x = 0 to its background density n0.

2.3.2 Non-dimensional variables, non-dimensional NLS and invariants

We can now define a full set of non-dimensional variables by scaling length by ξ, time by
mξ2/~ and wave function by

√
n0. By doing so and keeping V = −n0U0 in the interior of

the box, we get the non-dimensional version of the Nls:

∂ψ

∂t
=
i

2
∇

2ψ +
i

2

(
1 − |ψ|2

)
ψ. (8)

We dropped the hat for the non-dimensional wave function. Scaling energy by n0~
2/m,

Equation (2) can be written in a non-dimensional form:

E =
1

2

∫

S

(
|∇ψ|2 − |ψ|2 +

1

2
|ψ|4

)
dS.

In our two-dimensional, polar symmetry, the energy can be written as

E =
1

2

∫ 2π

0

∫ R

0

(
r

∣∣∣∣
∂ψ

∂r

∣∣∣∣
2

+
1

r

∣∣∣∣
∂ψ

∂θ

∣∣∣∣
2

− r|ψ|2 +
r

2
|ψ|4

)
dr dθ.

We have derived two invariants so far, the number of particles N and the total energy
E. A third invariant, the total angular momentum L, can be defined as

L =

∫

S
ψ∗(−i r × ∇)ψ dS

The only non-zero component of L being the one normal to the (r, θ) plane, we have

L = −i
∫ 2π

0

∫ R

0
ψ∗ ∂ψ

∂θ
r dr dθ,

which is our third invariant.
Finally, the velocity can be made non-dimensional by scaling it by ~/(mξ). Its non-

dimensional definition then simply becomes

u = ∇α.



2.4 Solutions of the nonlinear Schrödinger equation

2.4.1 Waves

Let us study the wave spectrum of the Nls for small perturbations relative to an uniform
basic state of density n0 = 1 with no mean velocity of the Bec:

ψ = 1 + φ with |φ| ≪ 1.

Equation (8) becomes

∂φ

∂t
=
i

2
∇

2φ− i

2

(
φ+ φ∗ + |φ|2

)
(1 + φ)

=
i

2
∇

2φ− i
φ+ φ∗

2
+O(|φ|2).

Neglecting high-order terms and taking the complex conjugate of the previous expression
gives the following system





∂φ

∂t
=
i

2
∇

2φ− i
φ+ φ∗

2
,

∂φ∗

∂t
= − i

2
∇

2φ∗ + i
φ∗ + φ

2
.

We can rewrite the previous system as a linear matrix equation

∂

∂t

[
φ
φ∗

]
= M

[
φ
φ∗

]
with M =

i

2

[
∇

2 − 1 −1
1 1 − ∇

2

]
. (9)

Let the solution be assumed to oscillate at frequency ω and let [u, v]e−iωt be the eigenvector
of M associated with the eigenvalue −iω. As we will see in Section 3, the normal modes
to use in polar coordinates are u, v ∼ einθJn(kr) and as3 ∇

2(einθJn(kr)) = −k2einθJn(kr),
Equation (9) is now

(M + iω)

[
u
v

]
=
i

2

[
−k2 − 1 + 2ω −1

1 1 + k2 + 2ω

] [
u
v

]
= 0. (10)

For this system to have a non-trivial solution, its determinant has to be zero, which yields
the dispersion relation

ω2 =
k2

2
+
k4

4
.

This dispersion relation is formally similar to the dispersion relation of gravity-capillary
waves in shallow water which reads (in dimensional units)

ω2 = gH|k|2 +
σH

ρ
|k|4,

with H the mean water height. The first term in Equation (2.4.1) is a non-dispersive term
due to the nonlinear term of the Nls. In the long-wave approximation (k → 0), it is
dominant and the dispersion relation is similar to the dispersion relation of long gravity
waves or of acoustic waves. The second term becomes significant for shorter waves and in
such a case, the waves disperse like gravity-capillary waves with short waves traveling faster
than long waves. A visual comparison can easily be made in Figure 2.

3in polar coordinates, this equation is in fact the Bessel equation of order n multiplied by einθ



(a) Waves in a Bec (b) Water waves

Figure 2: Density waves in a Bec (a) compared with gravity-capillary waves in (deep) water
(b). Due to the dispersion relation, short waves travel faster than long waves. The initial
condition for the wave function used in picture (a) is ψ = eiθ tanh((R− r)/

√
2) in the code

described in Section 3 and the waves are created by the transient.

2.4.2 Vortices

We noticed in Section 2.2 that the flow was intrinsically irrotational. Writing that, we
neglected possible singularities that could make the flow rotational on these points and we
will see on an example how and why it is the case. Let us suppose that locally, the wave
function can be written as

ψ = x+ iy = r exp(iθ). (11)

In this case, the wave function has a zero in r = 0 where the density vanishes. The velocity
is then

u = ∇θ =
1

r
θ̂.

In classical fluid dynamics, this velocity field would be the one induced by a point vortex
inducing a divergence of the azimuthal velocity when r → 0, which would be regularized
giving some spatial extent to the core of the vortex. Here, this singularity is a fundamental
feature of the field and it is required that these zeros are points and not lines or surfaces,
as a result of the cancellation of both real and imaginary parts. It is also required that
these two components cancel along lines and that these lines cross only on points. Take for
example ψ = x+ ix: this function admits a line of zeros defined by x = 0 where both real
and imaginary parts cancel but no velocity is induced by it. If we take the simple example
described by Equation (11), use Stoke’s theorem to rewrite the circulation and compute the
circulation of the velocity field around the origin, we get:

Γ =

∮

C
u · dr =

∫∫

S
(∇ × ∇θ) · dS = 2π.

Two things have to be noticed here. First, that the circulation is quantized. In general, for
any vortex, it can only be an element of {2πp, p ∈ Z} ({2πp~/m, p ∈ Z} in dimensional
units). Second, that although Equation (11) looks harmless, a singularity is hidden at the
origin as the phase is multivalued, which makes the quantity ∇ × ∇θ infinite in just one
point.



One can wonder how far Equation (11) is a realistic expression for a vortex. A more
refined but still approximate expression for the density structure around a steady point
vortex is |ψ|2(r) = r2/(r2 + 1) (see e.g. [2]), so Equation (11) is a good approximation in
the center of this vortex. One might also want to push the robustness of this feature and see
what happens when the density around the vortex is perturbed. Let us consider a simple
perturbation for the wave function:

ψ(x, y) = x+ i(a1x+ a2y). (12)

The corresponding density is

n(x, y) = (1 + a2
1)x

2 + 2 a1a2 xy + b2 y
2

and the lines of constant density are now ellipses. In polar coordinates (x = r cos θ, y =
r sin θ), the wave function reads:

ψ(r, θ) = r(cos θ + i(a1 cos θ + a2 sin θ))

and its phase is
α = arctan(a1 + a2 tan θ),

which does not depend on r. This means that the radial velocity will be zero and the
velocity will then be purely azimuthal, just like for the undisturbed vortex. As far as we
know, this peculiar feature has surprisingly never been noticed. The azimuthal velocity is
then

uθ(r, θ) =
1

r

∂α

∂θ
=

1

r

a2
2

cos2 θ + (a1 cos θ + a2 cos θ)2

=
a2

2 r

n(r, θ)
.

For a given r, the azimuthal velocity is maximum where the density is minimum, which is
due to the conservation of the number of particles.

We have reviewed all the physical phenomena involved in this study. We will now
describe the code that has been developed in order to perform simple numerical experiments.

3 The code

3.1 Operator splitting method

Operator splitting methods 4 are commonly used to solve the Nls, mostly because they
are simple to implement in that case. The general idea is that the resolution of the Nls is
splitted in two steps, starting from a time t:

4see e.g. [7]



Step 1: integration of ψ(r, θ, t) through equation

∂ψ

∂t
=
i
(
1 − |ψ|2

)

2
ψ

over a time step dt. As the variation of ψ is equal to iKψ where K is real, |ψ| remains
unchanged under this operation and the integration is then exact. After this step, we get
an intermediate ψint:

ψint(r, θ) = ψ(r, θ, t) exp

(
i(1 − |ψ(r, θ, t)|2)dt

2

)
.

Step 2: integration of ψint(r, θ) through equation

∂ψ

∂t
=
i

2
∇

2ψ (13)

over a time step dt. If the integration is performed in the spectral space, this step is also
exact and gives ψ(r, θ, t + dt). It will be explained in more detail in the next section.

As a remark, both steps are individually exact and energy preserving, although this will
be discussed for the second step, but the combination of the two is not, therefore we need to
choose dt small enough. A time step of dt = 5×10−3 ensures the stability of all simulations
presented here.

3.2 Integrating the Laplacian

We here solve Equation (13) with ψint as initial condition for the wave function. In polar
coordinates, this function can be decomposed as

ψint =

+∞∑

q=−∞

+∞∑

j=1

(aq,j)int e
iqθ Jq(kq,jr). (14)

Here, q is the index of the angular mode, j the index of the radial mode, Jq the qth-
order Bessel function of the first kind and kq,j a coefficient scaling Jq such that ∀(q, j),
Jq(kq,jR) = 0 (which ensures that ψint(r = R, θ) ≡ 0). The index j is therefore the
number of zeros in the interval [0, R] of the considered Bessel function (see Figure 3 for a
visualization of various Jq(kq,jr)’s). Finally, the set of aq,j is the set of weights that will
characterize ψint and therefore depend on time. It turns out that applying the Laplacian
to Equation (14) gives the Bessel equation and as in Section 2.4.1, we get:

∇
2ψint = −

+∞∑

q=−∞

+∞∑

j=1

k2
q,j(aq,j)int e

iqθJq(kq,jr).

Plugging this in Equation (13) and isolating every mode gives:

daq,j

dt
= −

ik2
q,j

2
aq,j ∀ (q, j)
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Figure 3: (a) First four orders of the Bessel functions of the first kind, each of them scaled
in order to have three zeros in [0, R]. (b) First four radial scalings of the Bessel function of
the first kind of order 1.

and therefore, the integration from (aq,j)int to aq,j(t+ dt) in a time step dt is exactly:

aq,j(t+ dt) = (aq,j)int exp

(
−
ik2

q,jdt

2

)
.

The recipe is then a classical one: go to the spectral space, integrate every coefficient
aq,j(t) and go back to the physical space. It turns out that going to the spectral space and
back is the most difficult part here. To isolate an azimuthal mode q, a Fourier transform of
ψint in the azimuthal direction is performed, thanks to the orthogonality relation

∫ 2π

0
e−ilθ eiqθdθ = 2πδql,

δql being the Kronecker symbol. Numerically, a Fft in the azimuthal direction is performed
and no dealiaising is done. The output of the transform is then, for each q ∈ Z:

F [ψint]q(r) = 2π

∞∑

j=1

aq,j(t)Jq(kq,jr).

The radial modes described by the index j must now be isolated: the Fourier transform
has isolated one order for the Bessel functions of the first kind, but not the different ways
of scaling these function such that they would be zero in r = R. In other words, one has
to isolate every function that is plotted in Figure 3(b), which is done using the following
orthogonality relation:

∫ 1

0
xJq(ζq,jx)Jq(ζq,px)dx =

δjp
2
J2

q+1(ζq,j),



where ζq,j is the jth zero of Jq(x). By definition, ζq,j = kq,jR and applying the variable
change r = Rx, one gets the relation that is actually used for each j:

∫ R

0
rJq(kq,jr)Jq(kq,pr)dr =

R2δjp
2

J2
q+1(kq,jR).

The corresponding operation performed on F [ψint]q is a Hankel transform of order q, which
is mathematically defined, for a function f(x), as:

Hq[f ](k) =

∫ +∞

0
xf(x)Jq(kx)dx.

In our case, we use a quasi-discrete Hankel transform (Qdht). The algorithm, exposed in
detail and with clarity in [4], needs the input function to be evaluated at values of the radius
rq,j = kq,jR/kq,Y +1, where Y is the number radial modes that will be computed. This grid
is specific to each q and we have to perform the Qdht for each one of them. It means that
starting from an arbitrary ψ evaluated on a given grid, once this function has experienced
a Fourier transform in the angular dimension, each projection on the azimuthal modes has
to be interpolated on the grid {rq,j} with 1 ≤ j ≤ Y used by the Qdht of order q, which is
a source of inaccuracy. The Matlab spline interpolation method has been chosen. Y has
been chosen to be equal to half the number of points in the radial direction in order for the
interpolation to be computed quite easily, the idea being that even for the highest radial
modes, the oscillations of the Bessel function can be described by a few points between
two zeros. This latter choice has not been the subject of any extensive study and shall be
handled with care and suspicion.

We have isolated every (q, j) couples and are now in the spectral space. Before going
back to the physical space, we just have to multiply every (aq,j)int by the propagator
exp(−ik2

q,jdt/2). The next step is then to perform inverse quasi-discrete Hankel transforms
(iQdht) for each q, then re-interpolate the results back on the initial regular grid and finally
perform an inverse Fft. We are now in the physical space with the function ψ evaluated
at time t+ dt.

3.3 Summary of the algorithm

Starting from ψ(t), the different steps to get ψ(t+ dt) are:

1. multiply ψ by exp(i(1 − |ψ|2)dt/2) ⇒ ψint

2. perform a Fft of ψint along the azimuthal direction ⇒ F [ψint]q,

3. for each q, interpolate F [ψint]q on the intermediate grid defined by rq,j = kq,jR/kq,Y +1

with 1 ≤ j ≤ Y ,

4. for each q, perform the Qdht of order m ⇒ Hq[F [ψint]q],

5. for each (q, j), multiply Hq[F [ψint]q] by exp(−ik2
q,jdt/2) ⇒ Hq[F [ψ(t+ dt)]q],

6. for each q, perform the iQdht of order q,

7. for each q, interpolate the previous results on the regular grid ⇒ F [ψ(t + dt)]q,

8. perform an iFft of F [ψ(t+ dt)]q along the azimuthal modes direction ⇒ ψ(t+ dt).



4 Numerical experiments

4.1 General features of the settings

In all numerical experiments that are presented in this report, the radius of the glass is
R = 10, the number of points in the radial and azimuthal directions are nr = nθ = 256 and
the number of radial modes is Y = 128, according to the rule we mentioned in Section 3.2.
Initial conditions will all involve vortices put in a background particle density approximating
a steady density distribution, as described in Section 2.3.1 for a different geometry. The
function, approximating what the density distribution should be in the glass, is indeed
inspired by the latter distribution, namely:

ψbg(r) = tanh

(
R− r√

2

)
.

The wave function of an isolated vortex of circulation Γ = 2pπ (p ∈ Z) located in (r0, θ0) is
approximated by:

ψv
{r0;θ0;p}

(r, θ) =
reipθ − r0e

ipθ0

√
1 + |reipθ − r0eipθ0|2

.

It is now possible to generate various configurations involving vortices in a glass. For
example, if one wants to generate an initial condition with one vortex of circulation Γ = −2π
located in (R/2, 0) and one vortex of circulation Γ = +4π located in (R/8, π/2), the initial
condition to set is:

ψ0 = ψbg × ψv
{R/2;0;−1} × ψv

{R/8;π/2;2}.

Both definitions of ψbg and ψv are approximations of the background and vortices wave
functions. The definition of ψbg will be more realistic for large values of R for instance, as it
is inspired by a cartesian configuration with an infinitely long, plane wall. This will result
in the generation of transients in the first moments of the simulations that can pollute the
expected evolution of the system.

4.2 Conservation of the invariants

We will now check on a simple example if the three invariants N , E and L described in
Section 2.3.2 are indeed conserved by our code. A property of the Qdht is to preserve the
invariants but the use of the interpolations introduces errors, therefore the need to control
if these errors are noticeable or not. We will set up an initial condition with one vortex:

ψ0 = ψbg × ψv
{3R/4;0;1},

as can be shown in Figure 4(a). Figure 4 in general shows how conserved are these quantities
over a long period of time, a duration of more than 300 being three to four times longer
than the experiments that will be shown later. We can see that N is only very slightly
decreasing and that L and E both have a tendency to slightly decrease also, although they
are subjected to oscillations. A possible explanation for these oscillations are that both of
these quantities involve derivatives which are computed with the Matlab function gradient

based on a rustic 2nd-order finite difference scheme. E is especially oscillatory and is in the



same time the function that includes the most derivatives, which is another hint that these
oscillations might indeed be due to a rustic post-processing rather than a problem in the
code.

(a) Initial condition
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Figure 4: Conservation of the three invariants N , E and L on an example with initial
condition shown in (a). Although all curves seem to decrease, their value don’t change
much, as shown by the values displayed on the vertical axes.

Computing the invariants is a way to validate the accuracy of the code as to our knowl-
edge, no analytical solution of simple problems exist in this geometry. We will now run
numerical experiments to study simple problems that could be found in textbooks of clas-
sical fluid dynamics but that are uncharted territory in quantum fluid dynamics.

4.3 Vortex generation

We will see on a simple experiment that pair of vortices can be generated. It is hard to define
an initial condition that would directly generate two vortices, so the following procedure
has been applied: when two counter-rotating vortices are close to each other, they get
closer and merge (see [2]). One can imagine then making two vortices merge, reversing the
velocity field and plugging the resulting wave function in the Nls will later produce two



counter-rotating vortices. It is not that trivial as the Nls dynamics is not reversible (the
time average of the field produced by any initial condition will eventually be proportional
to ψbg). The procedure is then the following:

1. take an initial condition with two counter-rotating vortices:

ψ0 = ψbg × ψv
{R/8:0;1} × ψv

{R/8;π;−1},

and run the simulation for a duration of 10. As described in [2], the two vortices get
closer, merge and disappear,

2. take the complex conjugate of the resulting wave function. By doing so,
√
n(t)eiα(t) 7→√

n(t)e−iα(t) and therefore u = ∇α 7→ u′ = −∇α = −u,

3. run again the simulation with the previous wave function as an initial condition for
a duration of 20. Two vortices, almost exactly identical to the ones defined at the
beginning of the first step of this procedure except with opposite circulation, appear
and disappear again (see Figure 5).

(a) (b)

Figure 5: Phase of the wave function for the generation of vortices. (a) Initial condition
of step 2 in Section 4.3. (b) Vortices having been generated. We recall that the velocity is
deduced from the phase by taking its gradient and that vortices are multi-valued points of
the phase.

The vortices disappear shortly after having been generated. Nonetheless, we will see
that the trajectory of a vortex can be modified, namely by a wave field in the numerical
experiments shown in the rest of the present document. Therefore, a strong wave field
could be able to separate two vortices and bring them far enough from each other such that
they could behave like independent vortices. In the following studies, we will then focus on
numerical experiments about one or two vortices of positive circulation5.

5although considering isolated vortices in such a small glass (R = 10) is still unrealistic!



4.4 Initial vortex with double circulation

We design here an experiment with one vortex of double circulation at a distance r0 = 3R/4
from the center:

ψ0 = ψbg × ψv
{3R/4;π;2}

(cf. Figure 6(a)) and let it run for a duration of 15. We see in Figure 6(b) that this vortex
of double circulation has split into two vortices of simple circulation. Vortices of circulation
higher than 2π in absolute value are therefore very likely to be unstable and in the next
experiments, we will only consider vortices of simple circulation.

(a) Initial density (b) Density after a little while

Figure 6: Initial and final density fields for an initial vortex of double circulation (a) which
splits into two vortices of single circulation (b).

4.5 Motion of a single vortex

4.5.1 Method of images

In classical fluid dynamics, the motion of a point vortex near a wall is described by the
method of images. In the case of a plane wall, the velocity field is the same as if there
was no wall but instead a vortex of equal and opposite circulation and symmetrical position
with respect to the wall, as sketched in Figure 7(a). In this case, the velocity induced by the
virtual vortex and with which the vortex moves is parallel to the wall and equal to Γ/4πb, b
being the distance to the wall. In the case of a vortex in a circular glass, the virtual vortex
still has equal and opposite circulation but is now situated at a distance R2/r0 from the
center of the glass, r0 being the distance of the real vortex to the center (see Figure 7(b)).
The velocity induced by it is again parallel to the wall and equal to Γr0/2π(R2 − r20). The
time for a vortex to loop around the entire box is then

τloop =
4π2(R2 − r20)

Γ
.



(a) Image vortices, plane wall ( c©2003
Mit, Dpt. of Ocean Engineering)

(b) Image vortices, circular glass

Figure 7: Sketch of the method of images for a vortex near a boundary in two different
cases. In Figure (b), the blue vortex is real, the white one is virtual.

As explained in [6] in the case of a plane wall, this model has to include the boundary
layer near the wall, which shifts the position of the wall. A way to understand it (rather
than to prove it) is to consider a volume sketched in Figure 8, of arbitrary length and
delimited by the wall and a line that is

√
2 away from the wall. The particle flux from

the two lateral boundaries cancel each other as the system is invariant by translation along
the wall and the particle flux through the wall is zero. The conservation of the number of
particles tells that the particle flux has to be zero through the boundary facing the interior
of the Bec. Within the healing length, the velocity is along the wall as the area is too
confined to exhibit too complex structures, which means that there is no particle crossing
this boundary either. The free-slip boundary condition that is necessary for the method of
image vortices to be applied is therefore active a healing length away (times

√
2) from the

wall. The correction in our case is then that the effective radius of the glass is R′ = R−
√

2
and that the time for a vortex to loop around the glass is

τ ′loop =
4π2((R −

√
2)2 − r20)

Γ
.

4.5.2 Numerical experiments

A series of numerical experiments has been performed with the same type of initial condi-
tions as in Section 4.2, all starting from θ0 = π where the initial distance to the wall has
been varied. As displayed in Figure 9, the time for a vortex to make a loop is in general
agreement with τ ′loop, whereas there is a systematic discrepancy with τloop. The model with
correction is not valid in two cases. The first case is if the initial vortex position is too
close to the wall, more precisely between the wall and the circle that is

√
2 away from the



Figure 8: Sketch describing the effect of the boundary layer within the volume materialized
by the dashed frame.
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Figure 9: Measure of the time for a vortex to loop around the glass compared with the
result provided by the image method with and without correction of the healing length for
the effective radius Reff . The vertical dashed line marks the virtual wall at
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wall, where the model with correction obviously doesn’t apply. What happens, as shown
in Figure 10(a) is that the vortex can even get “swallowed” in the wall if it is closer to it
than

√
2. The second case is when the vortex is too close to the center. It then moves very

slowly and is easily pushed by the wave field that has been generated mostly during the
transient of the initial moments. As displayed in Figure 10(b), the course of the vortex is
then erratic and again can’t be described by the image vortex model.
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(b) r0 = 7R/8

Figure 10: Trajectories of (a) a vortex, within the healing length, getting swallowed in the
wall and (b) a vortex, far from the wall, being pushed by impulses due to the waves.

All experiments have been run for a duration of 40 and the time for a vortex to make a
loop has been deduced from the angular velocity averaged over that period. An experiment
starting from r0 = 3π/4 has been run for a duration of 1570 (more than 12 loops), in order
to determine if the vortex would get closer to the wall as it would propagate. This would
mean that the vortex would lose energy, probably to the wave field. Even over such a long
period of time, no shift in the distance to the wall has been observed.

4.6 Motion of two co-rotating vortices

In the case of two co-rotating vortices separated by a distance l, the velocity induced by
one vortex at the location of the second one is Γ/(2πl) and it then takes τswap = π2l2/Γ
for the two vortices to swap positions. An experiment is set up with two vortices of single
circulation located symmetrically around the center of the box, as defined by

ψ0 = ψbg(r, θ) × ψv
{R/4;0;1} × ψv

{R/4;π;1},

as shown in Figure 11. In this case, the effect of the wall on each of these vortices has to be
taken into account. Including the velocity induced by the other real vortex and the velocity
induced by the virtual vortex of the corrected image method, the velocity of a vortex is

U =
r0

(R−
√

2)2 − r20
+

1

2r0

and the time for two vortices to swap positions is now

τ ′swap =
2π r20

(
(R−

√
2)2 − r20

)

(R−
√

2)2 + r20
≈ 33.



(a) Initial density (b) Initial phase

Figure 11: Initial condition with two co-rotating vortices.

We run enough iterations for the two vortices to swap positions and just measure this
duration. The measured time is τ ′swap = 53±1, which is 1.6 times longer than the predicted
duration. This discrepancy has not been explained yet, but one can notice that the vortices
are quite close from each other and that the combined effects of what is going on in the
depleted areas surrounding them might have to be taken into account.

5 Conclusion

The Nls equation governing quantum fluid dynamics can be transformed via the Madelung
transformation in a set of equations resembling the set of shallow water, irrotational, com-
pressible equations with surface tension. Quantum fluids support density waves behaving
like capillary-gravity waves in shallow water and vortices are to be found where both real
and imaginary parts of the wave function vanish on isolated points, making the phase of the
wave function multi-valued and therefore singular. A novel method of integrating the Nls

in polar coordinates, based on an operator-splitting method and the combination of Ffts
in the azimuthal directions and quasi-discrete Hankel transforms in the radial direction, has
been developed and partially validated. This allowed to do some physics in a quantum glass:
we have seen that pair of vortices can be generated, justifying the existence of vortices in a
non-rotating Bec and that to limit our study to vortices of single circulation Γ = ±2π was
fully relevant as vortices of double (and more) circulation were unstable and would split
into vortices of simple circulation. We then saw that the motion of a single vortex has to
take into account the presence of the depleted surface between the wall and the interior of
the Bec which reduces the effective diameter of the glass. Finally, we saw that the motion
of two co-rotating vortices that are close to each other noticeably departs from the classical
case.

The possible extensions of this work are numerous and can be sorted into two categories.
The first category involves the dynamics of Becs and more especially the interaction with



waves. We have seen here that it can modify the trajectory of a vortex and we infer that
it can spearate freshly created vortices. We also infer that vortices can be peeled off a
boundary by a wave field, as seen more of less convincingly in Figure 10(a) and that a
vortex can lose energy by creating waves, which would lead to its location getting closer to
the wall. To check the latter is especially challenging as it would require at least two things:
first, to generate cleaner initial conditions for the shape of the wave function in a steady
circular Bec and a cleaner profile for the shape of a vortex. Indeed, the approximateness
of our ψbg and ψv

{r0;θ0;p}
is the source of transients and of generation of waves, making it

difficult to see if waves are generated when a vortex moves. Second, to see if the vortex
will get closer after a while requires to run simulations for a while and then to be confident
about the robustness of the code over long integrations, which brings us to the second
category of extensions of the work, the numerics developed here: with the chosen time step,
the code is stable but its duration can probably be optimized. The choice of nr, nθ and
Y has not been optimized also and the exact effects of the interpolations on the precision
and speed of the code remains unknown. De-aliaising has not been taken care of and in
general, the performances of the method compared with other methods in polar coordinates
are completely unknown.
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