Introduction	Set-up	Modal analysis	Geometrical condition	Conclusion
00	0	00000	0000	0

Conditions for local generation of NonLinear Internal Waves in a pycnocline: a numerical study.

Nicolas Grisouard¹ Chantal Staquet¹, Theo Gerkema²

 ¹ Laboratoire des Écoulements Géophysiques et Industriels Université Joseph Fourier, Grenoble I, FR
² Royal Netherlands Institute for Sea Research, Texel, NL

24 April 2009

New & Pingree 1990: in the Bay of Biscay (BoB), solitary waves arise (too) far from the continental slope

Figure: SAR images of the BoB gathered (New & Da Silva 2002)

Nicolas Grisouard, C. Staquet, T. Gerkema

Explanation (New & Pingree 1990): "local" generation, with an IW beam impinging the thermocline.

Figure: Ray paths in the BoB near 47°N (New & Da Silva 2002)

Introduction	Set-up	Modal analysis	Geometrical condition	Conclusion
0•	0	00000	0000	0
Objectives c	of the prese	ent study		

What we have now:

- observations in the ocean: BoB, Konyaev 1995 (Indian ocean), New & Da Silva 2002 (remote sensing), Da Silva *et al.* 2007 (Portugal), Da Silva *et al.* 2008 (Mozambique Channel),
- a few theoretical models (Thorpe 1998, Gerkema 2001, Akylas *et al.* 2007, Maugé & Gerkema 2007).

What is missing:

• direct observations of the generation of solitary waves, whether in the oceans, in the lab or using DNS.

What we will present:

- DNS using an idealized setup,
- $\bullet\,$ simple rules to understand the selection of the mode of the $\rm NLIWs.$

Introduction	Set-up ●	Modal analysis	Geometrical condition	Conclusion O
The set-up				

Total depth *H*, stratification:

- upper layer, N = 0, $h_p/H = 1/40$,
- $\begin{array}{l} {\color{black} 2} \end{array} \text{ pycnocline,} \\ {\color{black} \delta_{\rho}}/{\color{black} H} = 1/80, \\ {\color{black} \Delta \rho}/{\color{black} \rho_{ref}} = {\color{black} \Delta_{\rho}} \end{array} } \end{array}$
- lower layer, constant N_0 .

Forcing of the velocity on the left boundary, vertical scale Λ .

Code: MITgcm.

Introduction	Set-up	Modal analysis	Geometrical condition	Conclusion
00	0	0000	0000	0
- ·				
(-onoratio	n ot mode	≥ 1 NH N//c		

Experiment E1: $\Delta_p = 2.05$ %, $\Lambda/H = 0.75 \Rightarrow$ mode-1 NLIWs.

Introduction	Set-up O	Modal analysis ○●○○○	Geometrical condition	Conclusion O
The modal	analysis			

Taylor-Goldstein equation with Ω (frequency of the interfacial displacement), illustration for E1:

Figure: Inverted Hovmöller diagram & corresponding periodograms

Nicolas Grisouard, C. Staquet, T. Gerkema

- $\Omega \approx 3 \times \omega_{\textit{forcing}}$
- phase speed of the 1st mode c₁(Ω) compared to the horizontal phase speed of the Iw beam:

$$\frac{\mathsf{c}_1}{\mathsf{v}_{\mathsf{beam}}}\simeq 1.3$$

Introduction 00	Set-up O	Modal analysis	Geometrical condition	Conclusion O
Application •	to mode-2	NLIWs		

- \Rightarrow mode-2 NLIWs, $\Omega \approx 3\omega_{forcing}$
- phase speed of the 2nd mode c₂(Ω) compared to the horizontal phase speed of the IW beam:

$$rac{c_2}{v_{beam}}\simeq 0.94$$

Introduction 00	Set-up ○	Modal analysis	Geometrical condition	Conclusion O
Application	to mode-3	NI IW/s		

 $\Lambda/H = 0.188 \Rightarrow$ "fast" interfacial modes, "slow" IWB

• \Rightarrow mode-3 NLIWs,

 $\Omegapprox 2\omega_{\it forcing}$

 phase speed of the 3rd mode c₃(Ω) compared to the horizontal phase speed of the IW beam:

$$\frac{c_3}{v_{beam}}\simeq 1.06$$

ntroduction	Set-up	Modal analysis	Geometrical condition	Conclusion
0	0	00000	0000	0
Summary	a condition	for the gener	ntion of mode n	

To generate mode-n NLIWs of frequency Ω in the pycnocline, make sure that these two match:

- horizontal phase speed of the IW beam of frequency $\omega_{forcing}$,
- horizontal phase speed of the mode-*n* IW of frequency Ω (> $\omega_{forcing}$).

What happens at the beginning of the generation?

Introduction	Set-up ⊙	Modal analysis	Geometrical condition	Conclusion ○
		_		

Close observation of the impact zone

Let us have a closer look at the pycnocline:

Refraction of the beam in the pycnocline

Nicolas Grisouard, C. Staquet, T. Gerkema Conditions for local generation of NLIWs in a pycnocline

Introduction	Set-up	Modal analysis	Geometrical condition	Conclusion
00	0	00000	0000	0
A simplified	view on th	ne problem		

Three approximations will be made:

- beam \Rightarrow plane wave
- linear dynamics (early stages of the generation)
- three-layer model, conservation of $\int N^2(z)dz$:

Mode-2 NLIWs: $\lambda_x \tan(\theta_{pycno}) = \lambda_z^{pycno} = 2\delta_p$

In E2:
$$\frac{\lambda_z^{pycno}}{2\delta_p} \simeq 0.88$$

Nicolas Grisouard, C. Staquet, T. Gerkema

Mode-3 NLIWS: $\lambda_x \tan \theta_{pycno} = \lambda_z^{pycno} = \delta_p$

Introduction	Set-up	Modal analysis	Geometrical condition	Conclusion
00	0	00000	000	0

To generate mode-*n* NLIWS, make sure that:

$$rac{\mathsf{n}-1}{2} imes rac{\lambda_\mathsf{z}^\mathsf{pycno}}{\delta_\mathsf{p}} = 1 \qquad (n \geq 2)$$

The vertical structure of the IW field in the pycnocline has to be similar to a confined mode-n IW (Bragg-like resonance condition).

Introduction 00	Set-up O	Modal analysis	Geometrical condition	Conclusion •
Summary				

Two different conditions for the generation of mode-n NLIWS.

- Condition generation using a modal analysis: if the ϕ -speed of the IWB match the ϕ -speed of the mode-n internal wave of frequency Ω trapped in the pycnocline, mode-n NLIWs of frequency $\simeq \Omega$ can be generated.
- **Bragg-like resonance condition:** given the strength and thickness of the pycnocline, if the incident beam has such a wavelength that it triggers a mode-*n* structure in the pycnocline, mode-*n* NLIWS can be generated.
- Are these two independent conditions compatible ?
- In both models, what happens between the impact on the pycnocline and the fully developed NLIWS ?
- Needs further checking from the ocean (ongoing), experiments (ongoing), other numerical works...

Introduction	Set-up O	Modal analysis	Geometrical condition	Conclusion O
Bonus:	comparison	of E1 with	previous theoretical	models

• Gerkema 2007:

$$\gamma = \frac{\sqrt{g\Delta_p h_p}}{N_0 H} \left(= \frac{\text{pure interfacial waves}}{1^{st} \text{ internal mode without pycnocline}} \right)$$

Here : $\gamma \simeq$ 0.132 (instead of $\gamma \simeq$ 0.12 in 2001's paper).

Akylas et al. 2007:

$$\alpha = \frac{N_0 \Lambda}{\sqrt{g \Delta_p h_p}} \left(= \frac{\text{horizontal } \phi - \text{speed of IWB}}{\text{pure interfacial waves}} \right)$$

Here : $\alpha \simeq$ 4.07 (instead of $\alpha \simeq$ 6.28 in 2007's paper).

 μ_1 isn't defined yet. A ϕ -shift can still be seen in E1:

 $\lambda_x \tan \theta_i = 4\delta_p$? That would extend the definition of μ_n :

$$\mu_n = rac{(n-1+\delta_{1n}/2)\lambda_x an heta_i}{2\delta_p} = 1 \qquad (\delta_{1n} = 1 \Leftrightarrow n = 1)$$

Nicolas Grisouard, C. Staquet, T. Gerkema