

5th European conference on Microfluidics μ'Flu18. Strasbourg, 28 February 2018.

<u>Hydrodynamic Experimental and Numerical</u> <u>Study of Micro-fabricated Regenerator.</u>

PhD student (Speaker): Tutors CEA/SBT:

Tutors LEGI:

SOCHINSKII Arkadii LUCHIER N. (Director) MEDRANO-MUNOZ M. AYELA F. (Co-director) COLOMBET D.

Introduction:

- Context.
- Previous works.
- Objectives.

Numerical study:

- Mesh, mathematical model and solver.
- Direct numerical simulation.
- Results and discussion.

Experimental study:

- Micro-machining of regenerators samples.
- Experimental installation.
- Results and discussion.

Conclusion et perspectives.

Regenerator matrix

Regenerators are employed in Pulse Tube Refrigerators (PTR) or Stirling cycle machines. Its matrix is often composed of
a) Superposed metallic lattices(Ø30-110 μm) further called wound woven matrix.
b) metallic spheres (Ø300 μm).

Fig. Costa(2013)*

3

*Costa(2013) – Costa S., Barrutia H., Esnaola J., Tutar M. Numerical study of pressure drop phenomena in wound woven matrix of Stirling regenerator. Energy conversion and management. 2013.

Hydrodynamic pressure losses in traditional regenerator matrix

Friction factor f (Darcy-Weisbach) describes **pressure drop losses (\Delta P)** in regenerator matrices.

Ergun(1952) gave general empirical correlation for friction factor f for stationary laminar flow in porous matrix: $f = 133 \cdot Re^{-1} + 2,33$

Gedeon(1996) experimentally obtained *f* for stationary flow through the Regenerator's wound woven matrix (fig.) composed of metallic wires Ø53µm with porosity $\varepsilon = 62\%$:

 $f = 129 \cdot Re^{-1} + 2,91 \cdot Re^{-0,103}$ | 1 < Re < 6000

Costa(2013) numerically obtained *f* for stationary flow through the Regen. wound woven matrix (fig.) of Ø80-110µm and $\varepsilon = 47$ - 64%.

 $f = 123 \cdot Re^{-1} + 3,2 \cdot Re^{-0,104}$

Fig. Wound woven matrix of Stirling **regenerator** - Costa(2013)

10 < Re < 400

Optimisation and miniaturisation is complicated!

Hydrodynamic pressure losses in micro-machined regenerator matrix

Fig. Vanapalli (2007)*

Vanapalli(2007)* studied the influence of form on a hydraulic pressure losses in a matrice of pillars etched in Si wafer. **Porosity** was fixed to $\varepsilon = 75\%$ and **aspect ratio** ξ of opening width e and etching depth h close to $\xi = e/h = 0,1$.

a) Circles
$$f = 103, 5 \cdot Re^{-0,44}$$

b) Sinusoidal $f = 29, 65 \cdot Re^{-0,94}$ Quite optimistic!
c) Eye $f = 87, 10 \cdot Re^{-0,80}$
d) Rhomboid $f = 175, 20 \cdot Re^{-0,94}$

Objective for our study is to show influence of porosity ε on **f** micromachined regenerator matrices.

5

*Vanapalli(2007) – Vanapalli S.,ter Brake H., Jansen H., et al. Pressure drop of laminar gas flow in a microchannel containing various pillar matrices . J. Micromech.Microeng. 2007.

Dimensional analysis

Friction factor with : U_m - mean velocity.

$$f = \frac{\Delta P}{\frac{1}{2} \rho \cdot U_m^2} \frac{D_h}{L_L}$$

Hydraulic diameter with: S_{cont} - wetted surface , l_p - wetted perimeter, h – etching depth.

$$D_h = \frac{4\varepsilon V}{S_{cont}} = \frac{4\varepsilon \cdot L_L \cdot L_T \cdot h}{2l_p \cdot h + 2\varepsilon \cdot L_L \cdot L_T}$$

Length/width ratio of rhombus:

$$\alpha = atan\left(\frac{a}{b}\right) = 33^{\circ}$$

Aspect ratio ξ (for 2D ξ ->0):

$$\xi = \frac{e}{h} \sim \frac{2 \cdot L_L \cdot L_T \cdot \varepsilon}{2 \cdot l_p \cdot h}$$

 $\frac{L_L \cdot L_T - \boldsymbol{a} \cdot \boldsymbol{b}}{L_L \cdot L_T}$ L, e 2e **T** b

= 3

Reynolds numbers

1<Re<100:

Porosity:

 $Re = \frac{U_m \cdot D_h}{\mu/\rho}$

Fig. **REV** – Representative Elementary Volume .

Plan.

Introduction:

- Context.
- Previous works.
- Objectives.

Numerical study:

- Mesh, mathematical model and solver.
- Direct numerical simulation.
- Results and discussion.

Experimental study:

- Micro-machining of regenerators samples.
- Experimental installation.
- Results and discussion..

Conclusion et perspectives.

Direct Numerical Simulation (DNS)

Equations for stationary incompressible flow:OpenFOAM Solver: $\nabla \cdot U = 0$ $\nabla \cdot U = 0$ $(\nabla \cdot U)U = -\nabla \cdot p + \vartheta \cdot \nabla^2 \cdot U$ avec $\vartheta = \frac{\mu}{\rho}$ (laminar)

Linear pressure gradient is imposed to settle the flow.

Boundary Conditions (BC):

- Inlet/Outlet: "cyclic" for pressure p and velocity U(x,y).
- Walls: U(wall)=0.
- Gap: "Symmetry plane"

Fig. Mesh example for REV with $\alpha=33^{\circ}$, $\varepsilon = 40\%$ and BC imposed.

Velocity field U(x,y) for different Re DNS for REV α=33°, ε=80%

DNS friction factor f for REV with α=33° and 60°

Introduction:

- Context.
- Previous works.
- Objectives.

Numerical study:

- Mesh, mathematical model and solver.
- Direct numerical simulation.
- Results and discussion.

Experimental study:

- Micro-machining of regenerators samples.
- Experimental installation.
- Results and discussion.

Conclusion et perspectives.

Micro-machining of Regenerator

1. Lithography of UV polymer (S1818 or AZ4562).

2. Deep Reactive Ion Etching DRIE (h=100-250µm).

3. Anodic bonding with Pyrex.

Clean rooms:

- Plateforme Technologique Amont.

- NanoFab, Institut Néel.

Microstructure of regenerator

Regenerator's sample photo.

Microstructure photo (MEB).

Signal A = SE2 Mag = 265 X

20 µm*

EHT = 5.00 kV WD = 20.0 mm 21 Nov 2016 11:52:39 Ultra Plus

ा छत

The photo of microstructure.

Experimental test setup

P_in, P_out : pressure gauges.

Tc__{in}, Tc__{out} : thermocouples.

Q – flowmeter.

Vtmp – buffer volume.

Fig. Photo of expérimental setup .

Fig. Schema for experimental measurements .

Confirmation of experimental setup by test of empty channels

- Square channel $\xi=1$

-- 2 parallel plates $\xi=0$

$$f_{\blacksquare} = 56,96 \cdot Re^{-1}$$

$$f_{//} = 96 \cdot Re^{-1}$$

Experimental study of regenerator's matrices with α=33°and e=20µm

Conclusion

Conclusion:

- The influence of porosity ε is shown numerically and confirmed experimentally. For identical pillars, matrices with lower porosity have lower friction factor. α =const: ε ↑ -> f↑

- For fixed porosity ε , matrices composed of pillars with lower angle α have lower friction factor. $\varepsilon = const$: $\alpha \uparrow \rightarrow f \uparrow$

- The limits for friction factor *f* in micro-machined matrix are given by two parallel flat plates (*f*=96/Re) for aspect ratios ξ ->0 and square channel (*f*=56,96/Re) for ξ ->1.

- Friction factor *f* of micro-machined regenerator's matrices with α =33° and porosities ε <70% seems to be favorable comparing with wound woven matrices (superposed metallic wire lattices).

Perspectives

Perspectives:

- Implantation of resistance thermometers inside the regenerator's matrix to study the heat transfer efficiency (Nusselt number) and its dependence on porosity and pillars shape.

- Passive module of PTR etched in Si.

fig. Photo of micro-machined regenerator's sample equipped by thermometer .

Thank you for your attention!

Contact speaker: Arkadii.Sochinskii@univ-grenoble-alpes.fr

Acknowledgments:

Labex LANEF for funding of this PhD research.

Annexe 1: Meshing.

Anexe2: Experimental analysis for matrices with $\alpha = 33^{\circ}$; $\epsilon = 40,60^{\circ}$; 1<Re<60. $f_{40\%} = 109, 6 \cdot Re^{-1}$ $f_{60\%} = 115, 2 \cdot Re^{-1}$ DNS *ε* **=40%**,*ξ*=0 DNS ε **=60%**, ξ=0 e=20µm Reg3_DR13,*ξ*=0,102, Reg2_DR13,*ξ*=0,099, $f = 134, 2 \cdot Re^{-1}$ $f = 104, 0 \cdot Re^{-1}$ ε =61,8%, D_h=44,9μm ε=41,7%, D_h=43,3μm Reg3_DR12, ξ =0,193, Reg2_DR05, ξ =0,178, $f = 124, 3 \cdot Re^{-1}$ $f = 115, 6 \cdot Re^{-1}$ $\varepsilon = 45,1\%, D_{h} = 45,2\mu m$ ε=65,2%, D_h=45,3μm e=40µm Reg5_DR05, $\xi = 0,314$, Reg4 DR05, *ξ*=0,290 $f = 124, 2 \cdot Re^{-1}$ $f=103,9\cdot Re^{-1}$ $\varepsilon = 42,0\%, D_{h} = 73,4\mu m$ ε**=63,8%**, *D_h*=77,8μm Reg5_DR12, ξ =0,333, $f = 133, 3 \cdot Re^{-1}$ Reg7_DR05, *ξ*=0,115, $f = 107, 6 \cdot Re^{-1}$ ε =62,0%, D_h=72,8μm ε=45,1%, D_h=29,5μm e=10µm Reg8_DR05, $\xi = 0, 131,$ $f = 116, 4 \cdot Re^{-1}$ Reg7_DR13, ξ =0,088, $f = 113, 7 \cdot Re^{-1}$ ε=65,2%, D_h=33,2μm ε = 46,0%,D_h=26,4μm $f_{70\%} = 121, 0 \cdot Re^{-1}$ DNS ε **=50%**,ξ=0 $f_{50\%} = 111, 6 \cdot Re^{-1}$ DNS ε **=70%**, ξ=0