Laboratoire des Écoulements Géophysiques et Industriels




Nos tutelles

CNRS

Nos partenaires

Rechercher


Accueil > Actualités > Soutenances de doctorat > Doctorats 2016

Lundi 17 octobre 2016, soutenance de thèse de Fatimata SY - 10h30, Amphithéâtre K118 (LEGI), site Bergès

Turbulence de Grille Oscillante à Basses Températures

Encadrants
- M. Bernard Rousset, CEA de Grenoble, Co-Directeur de thèse
- M. Mickaël Bourgoin, Directeur de recherche CNRS, ENS Lyon / LEGI, Co-Directeur de thèse

Résumé

Cette thèse a pour objectif l’étude comparée de la turbulence isotherme en hélium I (HeI, fluide classique) et en hélium II (HeII, dont une partie du fluide est inviscide) par une analyse lagrangienne. Les analogies et/ou différences du comportement dynamique en écoulement classique ou superfluide devraient ainsi nous renseigner sur les caractéristiques multi-échelles intrinsèques de la turbulence.

Ce type de recherche, qui constituait une première mondiale en début de thèse, semble promis à un bel avenir (à titre d’exemple, des mesures similaires de suivi lagrangien en HeI/HeII, en aval d’un barreau oscillant, sont actuellement en cours à Charles Université, Prague). Nous avons opté pour l’écoulement canonique de grille oscillante car il est isotrope, sans vitesse moyenne (autorisant ainsi un temps d’observation long) et homogène par plan. Nous basons nos mesures sur la visualisation de microsphères creuses de verre, dont la densité est voisine de celle de l’hélium liquide.

Cette expérience étant nouvelle, il a fallu procéder à sa conception et à son dimensionnement, à sa mise en place ainsi qu’à sa calibration. Le cryostat que l’on a conçu est entièrement en verre, permettant ainsi une observation multi-angles de l’écoulement. Le système de visualisation utilisé est basé sur l’imagerie haute cadence en éclairage "backlight" (diffusion avant). A partir de la reconstruction des trajectoires des particules, nous avons pu réaliser des analyses lagrangiennes à une particule (à un temps et à deux temps), mais aussi étudier la dispersion relative de paires de particules. La résolution spatiale et temporelle de nos mesures nous a permis de pleinement caractériser les échelles inertielles de la turbulence, tandis que les échelles sont plus marginalement résolues.

Dans ces conditions, nous trouvons que les caractéristiques de la turbulence en HeI sont en accord avec les mesures de la littérature dans des écoulements similaires en fluide classique. Ce même comportement est également observé en HeII.