Laboratoire des Écoulements Géophysiques et Industriels




Nos tutelles

CNRS

Nos partenaires

Rechercher


Accueil > Actualités > Soutenances de doctorat > Doctorats 2015

Mercredi 14 octobre 2015, soutenance de thèse de Pedro RAIMUNDO - 10h00, Amphithéâtre AIG/8, site IFP Energies Nouvelles - Lyon

Analyse et modélisation de l’hydrodynamique locale dans les colonnes à bulles

Thèse dirigée par Alain Cartellier et codirigée par Davide Beneventi.

Résumé

Les colonnes à bulles sont largement utilisées dans les domaines du génie chimique et biologique, grâce à leur configuration simple, exempte de toute partie mobile. Néanmoins, leur extrapolation aux échelles industrielles engendre des modifications de l’hydrodynamique globale (vitesse du liquide, taille des bulles) qui sont encore difficile à prédire avec les outils numériques disponibles.

La thèse a pour objectif d’établir une base de données sur l’évolution radiale et axiale de l’hydrodynamique locale (taux de vide, taille de bulles, vitesse liquide), dans différentes tailles de colonnes allant de 0.15 à 3m de diamètre, pour des vitesses superficielles gaz comprises entre 3 et 35 cm/s, générant des taux de vide atteignant les 35%. Les mesures de taux de vide local, de vitesse de bulles et de la taille verticale des bulles sont réalisées à l’aide d’une sonde optique 1C. De plus, une nouvelle méthode pour mesurer la taille horizontale des bulles à fort taux de vide et en écoulement fortement multidirectionnel est proposée dans cette thèse. Cette méthode est basée sur la corrélation croisée spatiale de signaux provenant de deux sondes optiques placées parallèlement à la même élévation, et à une distance l’une de l’autre devant nécessairement être plus faibles que les bulles les plus petites présentes dans l’écoulement. Les mesures de taille de bulles sont validées en les comparant à un traitement d’images par endoscopie. Pour des vitesses superficielles de gaz supérieures à 9cm/s, un bon accord est trouvé entre les trois méthodes (sonde optique 1C, corrélation croisée et endoscopie). La taille des bulles augmente légèrement lorsque la vitesse superficielle gaz augmente, par contre elle n’est pas impactée de manière significative par le diamètre des colonnes. Une plus grande ségrégation radiale est tout de même visible dans les plus grandes colonnes testées.

Un modèle 1D radial développé pour un écoulement invariant le long de l’axe de la colonne est utilisé pour tester différents formalismes de forces de traînée, utilisant les données expérimentales de taille moyenne de bulles. Les simulations montrent que pour prédire correctement le flux gazeux expérimental, il est nécessaire d’introduire un « swarm factor » (Simonnet et al, 2008) diminuant le coefficient de traînée à fort taux de vide. De plus, des simulations 3D URANS avec Fluent® sont réalisées avec la loi de traînée validée par le modèle 1D précédemment cité. Un bon accord est observé entre les valeurs expérimentales et simulées des profils radiaux de taux de vide et de vitesse liquide, pour des diamètres de colonne allant de 0.4m à 3m, et pour des vitesses superficielle gaz de 3 à 35 cm/s.