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Quantitative laboratory observations of internal wave reflection
on ascending slopes
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Internal waves propagate obliquely through a stratified fluid with an angle that is fixed with respect
to gravity. Upon reflection on a sloping bed, striking phenomena are expected to occur close to the
slope. We present here laboratory observations at moderately large Reynolds number. A particle
image velocimetry technique is used to provide time-resolved velocity fields in large volumes.
Generation of the second and third harmonic frequencies is clearly demonstrated in the impact zone.
The mechanism for nonlinear wavelength selection is also discussed. Evanescent waves with
frequency larger than the Brunt-Väisälä frequency are detected and experimental results agree very
well with theoretical predictions. The amplitude of the different harmonics after reflection is also
obtained. © 2006 American Institute of Physics. �DOI: 10.1063/1.2197528�
I. INTRODUCTION

The oblique propagation of internal waves follows from
the dispersion relation that monochromatic perturbations of
frequency � have to satisfy

� = ± N sin � , �1�

where N is the Brunt-Väisälä frequency

N =�−
g

�0

��

�z
, �2�

g being the gravity, ��z� the ambient density profile, and �0 a
reference density. This dispersion relation shows that for a
fixed frequency, the direction in which energy propagates
with respect to the horizontal, �, is fixed. Moreover, Eq. �1�
determines that phase and energy propagate in perpendicular
directions. For setup with Brunt-Väisälä frequency N inde-
pendent of z, observations of internal waves have invariably
showed2,14 this transverse and oblique propagation.

The above dispersion relation is obtained, away from
any turbulent portions of the domain, by substituting a plane
wave A exp�ik�x sin �+z cos ��� of wave umber k and ampli-
tude A in the wave equation governing the horizontal veloc-
ity u,

uttxx + uttzz = − N2uxx, �3�

where subscripts denote partial derivative, x and z refer to
Cartesian coordinates, and t denotes time. The vertical
velocity w, the perturbation pressure p, the stream function
�, and the perturbation density satisfy the same hyperbolic
equation �3�.

The presence of a solid horizontal bottom, a free surface,
or an oblique slope results in a reflected wave with the same
intrinsic wave frequency as the incident one. Linear internal
wave reflection on a sloping bottom has been treated analyti-

4,17,22
cally by different authors. The striking consequence of
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the geometric focusing of linear internal waves has also been
reported.10–12 Under appropriate conditions, it leads to inter-
nal wave attractors in confined stably stratified fluids. For
critically incident waves for which the slope and energy
propagation angles coincide, the linear inviscid analysis be-
comes singular and an infinite amplitude of the reflected
wave was predicted.17

Experiments on internal wave reflection were first per-
formed by Cacchione and Wunsch1 using conductivity probe
measurements. A tidal-like excitation was generated in a
5-m-long tank by a horizontally oscillating paddle; the inci-
dent and reflected waves from a 15° slope were separated
using periodogram estimates to compute wave amplitude and
wave number. Although these pioneering results were of
poor quality �compared to what is possible nowadays�, their
shadowgraph experiments showed, nevertheless, striking mi-
crostructures along the slope, reminiscent of an array of vor-
tices along the slope’s boundary layer. Thorpe and Haines23

measured dye band displacements on a 20° slope providing
qualitative agreement with linear theory and also noticed
three-dimensional boundary layer structures. Subsequently,
Ivey and Nokes6 estimated the mixing efficiency above a 30°
slope submitted to modal excitation and visualized with the
rainbow Schlieren technique: the weakening of the back-
ground stratification was measured and the corresponding
change in potential energy compared to the mechanical work
provided by the wave maker. The internal wave reflection
mechanism has also been studied in close connection with its
importance for the creation of nepholoid layers by McPhee
and Kunze.13 More recently, Dauxois, Didier, and Falcon2

performed Schlieren experiments on critical reflection, fo-
cusing on the boundary layer upwelling events and providing
good qualitative agreement with the previous weakly nonlin-
ear study.3 Finally, using synthetic Schlieren measurements,

16
Peacock and Tabaei showed the second harmonic genera-
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tion. To our knowledge, no local quantitative amplitude mea-
surements of internal wave reflection have been performed
so far.

Recently, the weakly nonlinear theoretical issue has been
put forward. It has been shown by Dauxois and Young3 that
the singularity can be healed using matched asymptotic ex-
pansion. Their analysis describes the buildup of the reflected
wave along the slope for a incident plane wave. Always from
the theoretical point of view, the reflection of internal waves
was revisited by Tabaei, Akylas, and Lamb20 for the case of
a narrow incident beam but for noncritical angles. In this
case, they have predicted the generation of harmonics in the
steady regime; this result has not been addressed experimen-
tally yet. Besides, fully nonlinear numerical simulations have
also been performed to examine the behavior of large-
amplitude internal gravity waves impinging on a
slope.8,9,18,19,24

Here we present the results of laboratory experiments in
which a beam of internal waves is reflected on an oblique
slope. Experiments were carried out in the 13-m-diam Cori-
olis platform, in Grenoble, filled with salted water. The large
scale of the facility allows us to strongly reduce the viscous
dissipation along wave propagation and, moreover, quantita-
tive results are obtained thanks to high-resolution particle
image velocimetry �PIV� measurements.

The paper is organized as follows. In Sec. II, we present
the experimental setup and discuss all control parameters. In
Sec. III, we show the experimental results. We explain in
Sec. III A the spectral analysis used to distinguish the differ-
ent harmonics. In Sec. III B, we discuss the mechanism of
wavelength selection. Section III C is devoted to the evanes-
cent waves, while Sec. III D discusses amplitude measure-
ments. Section IV concludes and gives some perspectives.

II. EXPERIMENTS

A. Experimental setup

We developed an original internal wave exciter inspired
by Ivey et al.7 in order to produce a two-and-a-half wave-
lengths beam. A PVC sheet was compressed on both sides by
seven squared arms �Fig. 1� fixed on a long central axis via
eccentric wheels. The axis was set in rotation by a stepping
motor, generating a longitudinal oscillation motion of 8 cm
amplitude along the 60 cm width of the paddle. The fre-
quency of excitation, proportional to the angular speed of the
motor, could be precisely monitored in order to vary the
angle of propagation of internal waves. The wavelength was
also varied from 11.3 to 12.6 cm. The paddle itself was in-
clined at an angle �=13° with the horizontal to increase
excitation efficiency. If the main part of the energy is indeed
transmitted to a beam of internal wave of frequency �,
higher harmonics n� are also excited by the oscillating
paddle. Nevertheless, as their frequencies are higher, their
propagation angles are also larger. Taking advantage of this
fact, a screen has been appropriately located above the
bottom-end of the glass plate so that all harmonics are re-

flected to the left, and do not perturb the region of interest.
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The emitted plane wave hits a 2�3 m glass plane �see Fig.
1�, back-painted in black to avoid parasite laser beam reflec-
tions.

The above experimental setup was put in the 13-m-diam
Coriolis tank filled from below with salt water and stratified
by computer-controlled volumetric pumps from two 75 m3

tanks, one filled with salt water and the other one with pure
water. A fast conductivity probe and a temperature probe
were lowered slowly into the tank using a controlled vertical
microstepping motor to measure the stratification. The den-
sity probe was calibrated using an Anton Paar densitometer
accurate to 0.0001 kg/m3 and 0.01 °C. The linearity of the
resulting density gradient was of very good accuracy, and
only the upper 5 cm and the bottom 10 cm were not linearly
stratified. Observations have thus been performed in the in-
termediate region where the Brunt-Väisälä frequency is a
very well defined constant.

The stratification of 2.2% over the 1 m depth of the tank
led to a Brunt-Väisälä period 2�N−1=13.6 s. All experi-
ments we discuss here were performed without rotation of
the tank, and thus involve pure internal waves.

We used the PIV facility of the Coriolis Platform to ob-
tain top and side views of the velocity field. The fluid was
seeded with 400 microns diameter particle polystyrene beads
that were carefully prepared by a process of cooking that
decreases slightly the density and successive density separa-
tions. One thus obtains a flat distribution of densities match-
ing that of the salt stratification. This process ensures that
there are equal number densities of particles at each depth. A
surfactant was added to prevent the polystyrene beads from
clustering. It has been shown that the relaxation time for
particles to attain velocity equilibrium15 is about 0.02 s,
which is much shorter than the characteristic time scale of
the flow. As usual, the particles are considered as passive
tracers of the fluid motion.

FIG. 1. Picture of the experimental setup. The 3-m-long oscillating paddle
generates incident internal waves that are impinging on the inclined glass
plane visible on the left. One also clearly sees the screen that avoids the
propagation toward the glass plane of harmonics also generated by the
paddle. This picture was taken before the 13-m-diam tank has been filled
with 1 m of stratified salt water.
With this method, motion is visualized by illuminating
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particles with a laser sheet, which are followed by a digital
camera. The laser is intentionally kept out of focus �approxi-
mately 1 cm sheet width�, enabling tracking of particles de-
spite some cross sheet displacement. Velocity fields within
the plane of the laser sheet are obtained by comparing pat-
terns in two subsequent image frames �taken 1 s apart�.

The 6 W green argon laser was placed above the free
surface, and the light was reflected on a 45 degree mirror
placed in the water �see Fig. 2�. Thanks to a second under-
water 45 degree mirror, the images were acquired by a
1024�1024 pixels CCD camera also located above the free
surface. The cross-correlation PIV algorithm designed by
Fincham and Delerce5 was used to convert the images into
vector fields �stored in the standard file format NetCDF�.
This algorithm provides good anti-aliasing and peak-locking
rejection procedures. Our resolution went to subpixels distor-
tions, corresponding to submillimetric displacements of the
fluid. Typical maximal displacement in an image pair corre-
sponds to 5 pixels, with a measurement precision of
0.2 pixel for an individual field �4% relative precision�. This
is mostly a random error, so the precision on averaged fields
is higher. Finally, the analysis of the NetCDF files was per-
formed with Matlab software.

Typical experimental runs lasted about 20 min. The first
10 periods were considered as an initial transient. Data were

FIG. 2. Sketch of the vertical cross-section of the experimental setup. The
sinusoidal thick line on the top left indicates the position of the oscillating
paddle, while the gray region defines the incident beam impinging on the
sloping glass plane. The optic fiber, indicated by the solid line on the left,
shines a laser light that is reflected on the underwater 45 degree mirror,
making a thin vertical laser sheet necessary for the PIV measurements.
Finally, the dashed line shows the position of the screen that avoids the
propagation toward the glass plate of harmonics also generated by the
paddle. A slit in the screen allows the laser sheet to pass through. All dis-
tances are in centimeters.
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thus only recorded throughout the second stage during which
the steady regime was attained.

B. Characteristics of the incident wave beam

The set of chosen excitation periods �see Table I and Fig.
3� leads through the dispersion relation �1� to different angles
of propagation � ranging from 13° to 25°. As the slope angle
� is set to 22°, these cases allow us to analyze subcritical
��	��, supercritical ��
��, or critical ����� reflections.
Finally, as the wave maker is slightly tilted �13°� from the
horizontal, one has to take into account that the wavelength
varied slightly from one run to another, around a typical
value of �0=12 cm.

Previous experimental studies of internal wave reflection
have reported the importance of viscous dissipation2,16 to
explain the observed steady-state solution. Here, by contrast,
the large scale of the experiment allowed us to work at a
large Reynolds number. By taking the wavelength and the
velocity amplitude of the incident internal wave beam, one
gets for the Reynolds number Re�100, which suggests that
viscous dissipation might be negligible during the propaga-
tion toward the slope of the beam itself. This is what can be
verified in Fig. 4, where one has used a synchronous
detection-like idea. We have filtered the PIV signal at the
excitation frequency � �see Sec. III A for additional details�.
As the energy is expected to obliquely propagate with an
angle � with respect to the horizontal, the relevant quantities
are the velocity fields vs�s ,��=u cos �−w sin � and
v��s ,��=u sin �+w cos �. Both have been measured and the
first one is reproduced with false color in Fig. 4�a�. The
longitudinal section presented in Fig. 4�b� with a solid line
emphasizes that the amplitude of the incident beam is con-

FIG. 3. Definition of variables. Three different coordi-
nate systems will be successively used: the gravity-
oriented one �x ,z�, the slope-oriented one �x� ,z��, and
finally the incident-beam-oriented one �s ,��. The PVC
sheet compressed periodically along the dotted line pro-
vides a shear flow orthogonal to this line, and thus tilted
at a constant angle � with the vertical. This flow in-
duces waves propagating at an angle � with the hori-
zontal, determined by the dispersion relation �1� while
� is the slope angle.

TABLE I. Summary of experimental runs with all control parameters. T is
the excitation period, � the angle of energy propagation, � the angle of the
slope defined in Fig. 3, and � the wavelength of the incident beam. umax is
the maximum horizontal velocity that has been measured.

Run 1 2 3 4 5

T �s� 60 49 41.5 36 32

� �deg� 13 16 19 22 25

� �deg� 22 22 22 22 22

� �cm� 11.3 11.7 12.0 12.2 12.6

umax �cm/s� 0.412 0.566 0.775 1.000 1.225
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stant. The dashed line, which shows the velocity field v�

along the longitudinal section of Fig. 4�a�, is vanishingly
small, as expected. This is an important necessary condition
to discuss quantitatively the reflection process. Moreover, the
picture emphasizes that incident phase planes, which corre-
spond to the same color, are parallel to the direction of the
incident group velocity, the latter being indicated by the
dashed line. This is a clear demonstration of the orthogonal-
ity of the group velocity and the wave vector. Finally, Fig.
4�c� presents vs along the solid line of Fig. 4�a� and reveals
that the width of the beam contains two wavelengths. This is

FIG. 4. �Color� False-color pattern of the along-beam vs�x ,z� velocity for
�=16° and �=22° in a vertical �x ,z� section. The shaded triangle corre-
sponds to the region below the glass plate, unperturbed by the internal
waves. The maximum velocity in this figure is 0.07 cm s−1. Panels �b� and
�c� show the along-beam and cross-beam sections, respectively, indicated by
the dashed and solid lines in panel �a�. The longitudinal variation vs is
shown in panels �b� and �c� with solid lines, while the dashed lines corre-
spond to the transversal variation v�. The longitudinal coordinate s and the
transversal one � are defined in Fig. 3.
an important point to draw a comparison with theoretical
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predictions derived for plane waves.3 Again, the dashed line
attests that the velocity field v� is vanishingly small.

III. EXPERIMENTAL RESULTS

A. Spectral analysis

An important characteristic of the reflection of internal
waves is the generation of different harmonics, theoretically
predicted a long time ago,3,22 but only very recently experi-
mentally observed.16 However, the amplitudes of the differ-
ent harmonics can be very different and, consequently,
hardly distinguishable even though their propagation angles
are different. A typical example is presented in Fig. 5�a�.

This is why we developed a Fourier temporal analysis of
the results, with filtering at the fundamental and higher har-
monics frequencies. Given the two components of the veloc-
ity field provided by the PIV analysis, we compute the fil-
tered velocity fields. For the horizontal one u�x ,y , t�, one
thus defines the different quantities

�u�n =
2

t1 − t0
	

t0

t1

u�x,z,t�cos�n�t + �dt . �4�

In the time interval �t0 , t1�, the amplitude of the nth harmonic
�u�n is of course a function of the spatial variables x and z,
but also of a constant phase , chosen with respect to the flat
position of the sinusoidal paddle. This procedure is equiva-
lent to band-pass filtering the PIV time series at each point in
the domain.

Figures 5�b�–5�d� show that this procedure is an excel-
lent tool to distinguish the different harmonics. Indeed, for
this almost critical reflection case �run 4, �=22°, �=22±1°�,
it is clearly apparent in Fig. 5�b� that the reflected beam at
frequency � is absent except a small slightly supercritical
along-slope ray. Nevertheless, Figs. 5�c� and 5�d� show the
emitted second and third harmonics propagating with steeper
angles. The angles of propagation with respect to the hori-
zontal for the second harmonic beam are �2=48±1°, in
agreement with the theoretical value

�n = sin−1�n sin �� �5�

for n=2. The third harmonic is evanescent; its characteristics
will be discussed in Sec. III C. Both harmonics are generated
in the finite domain region, adjacent to the bottom, where the
incident beam hits the slope. One should not take into ac-
count the few rays located at the left of the arrows �see Figs.
5�c� and 5�d��: they were generated by the oscillations of the
screen. The emitted second harmonic between the two ar-
rows can still be spatially distinguished from these artifacts.
It is important to emphasize that the color scales differ by a
factor 5 between the first two panels and the last two.

In summary, Fig. 5 exemplified that, even though the
second and third harmonics are almost invisible from the
instantaneous velocity field, they are very clearly apparent
after the filtering procedure. This filtering method is conse-
quently appropriate even when the amplitude is very small.

20,22
To our knowledge, even if it were previously predicted,
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this is the first case in which the third harmonic has been
observed, and even more importantly, this is the first report
of experimental quantitative measurements.

It is important to notice that the vertical velocity field is
presented in Figs. 5�c� and 5�d�, rather than the horizontal
one as in the first two panels. Indeed, as the second and third
harmonics propagation angles are much steeper, the horizon-
tal velocity field is of lower quality.

An alternative possibility to keep the spatial conforma-
tion of the reflection process while distinguishing the differ-
ent harmonics is to consider the specific kinetic energy den-
sity field of each harmonic, which can be deduced from Eq.
�4� as

�E�n�x,y,� = 1
2 ��u�n

2 + �w�n
2� . �6�

An example is shown in Fig. 6 for the subcritical run 2.
One clearly distinguishes the incident beam impinging on the
slope, and reflected downslope. It is clear that such energy
plots give less contrasted results than the velocity ones as in
Fig. 5. They are nevertheless extremely useful for amplitude
estimates along cross sections of the beam, as discussed
below.

B. Mechanism of wavelength selection

The spectral decomposition presented in the previous
section allows precise wavelength measurements across the

FIG. 5. �Color� False-color velocity pattern in the vertical �x ,z� plane for
velocity field u�x ,z , t� while panel �b� shows the phase-averaged velocity �u�
of the vertical velocity, �w�n, in the case of run 4 �see Table I�. The two whit
the rays at the left of this region should thus not be taken into account: they
is 2 mm s−1, and in panels �c� and �d�, 0.4 mm s−1.
different beams, even in the impact zone. As the reflection
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surface is expected to play a key role in wavelength selection
via boundary effects, we have focused our study in the
boundary region along the slope.

In Fig. 7�a�, the contour plots of the filtered first har-
monic �incident� and of the third harmonic �emitted� are su-
perimposed in order to show the along-slope wavelength se-
lection. It is clearly visible that the distance between the
emitted phase lines has been strongly reduced compared to
the incident ones. We emphasize that the wavelength selec-
tion mechanism appears to occur along the slope, where the

ritical run 4 �see Table I�. Panel �a� presents the instantaneous horizontal
els �c� and �d� show, respectively, the second �w�2 and third �w�3 harmonics
ws define the impinging region of the incident beam. In panels �c� and �d�,
been generated by the screen. The maximum velocity in panels �a� and �b�

FIG. 6. False-color energy pattern. The specific kinetic energy density of the
first harmonic, �E�1, is shown in the vertical �x ,z� plane for the subcritical

−3 2 −2
the c

1. Pan
e arro
have
run 2 �see Table I�. The maximum value is 5�10 cm s .
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superposition of the incident and the reflected beams gener-
ates nonlinear interactions. Assuming that this inner region
plays a key role in the reflection of internal waves,3 the only
relevant dynamical behavior of the wave field has to be taken
at z�=0, where the incident and the emitted waves can both
be written as ��z�=0�=A exp�i�kx�x�−�t��, the amplitude A

being different for the incident and reflected waves. Nonlin-
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ear interactions may lead to second or third harmonics terms
such as �2�z�=0�=A2 exp�2i�kx�x�−�t�� or �3�z�=0�
=A exp�3i�kx�x�−�t��. The along-slope wavelength of the
third harmonic is thus reduced by a factor 3, as highlighted
in Fig. 7�a� by the phase line intersections with the slope.

To gain further insight, Fig. 8 presents quantitative mea-

FIG. 7. �Color� Superposition of the
vertical velocities contour plots of the
incident first harmonic �normal� and of
the emitted third harmonic �bold�.
Panel �a� presents the critical case �run
4� while panel �b� shows the subcriti-
cal case �run 2�. The solid lines show
the phase lines of the incident first har-
monic �w�1 while the dashed ones cor-
respond to the phase lines of the emit-
ted third harmonic �w�3. The two
arrows in panel �a� indicate precisely
the along-slope cross-section used in
Fig. 8.
surements of this effect in the supercritical case 5. The cross-
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sections of the first three harmonics at a fixed distance from
the slope are presented. The difference in x� location is of a
purely geometrical origin and decreases, of course, when the
cross-section is taken closer to the slope. These pictures are
analogous to the theoretical results presented by Tabaei, Aky-
las, and Lamb in Figs. 9�a�–9�d� of Ref. 20.

Let us stress that the above quantitative comparisons are
possible despite the large difference between the incident and
emitted amplitudes. The automatic elimination of wrong vec-
tors in the measurements by the high-quality cross-
correlation PIV algorithm �designed by Fincham and
Delerce5� is the key point here to achieve this goal. The
measurements are indeed sufficiently precise to provide
meaningful results even when the relative energy ratio be-
tween successive harmonics is approximately 0.1. This last
ratio is of course directly linked to the parameter �, used in
Refs. 3 and 20 for the small-amplitude asymptotic expansion
to describe theoretically the reflection process. This is con-
sequently not a limiting factor.

The nonlinear wavelength selection can be clearly high-

FIG. 8. Along-slope sections of the energy of the incident first harmonic �a�,
second harmonic �b�, and of the emitted third harmonic �c� in the supercriti-
cal case �run 5�. The sections were obtained at 7 cm from the slope, as
indicated by the arrows in Fig. 7�a�. Note the difference in units for the
ordinates.
lighted using the above three pictures. Indeed, Fig. 9 presents
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their spatial Fourier transform and clearly emphasizes that
the wavelength of the nth harmonic is n�, explaining the
wave-vector tripling visible in Fig. 7�a� as theoretically pre-
dicted by Tabaei, Akylas, and Lamb.20

Experimental results in subcritical cases have unexpect-
edly revealed an apparent different mechanism for the wave-
length selection, when the slope angle � is larger than �, the
angle of energy propagation. A typical example is shown in
Fig. 7�b�. The second harmonic has disappeared and the
wavelength of the third harmonic is equal to the incident
wave when it is projected along the slope. This possibility
was already mentioned by Thorpe22 since third-order nonlin-
ear interaction along the slope �z�=0� may lead to third har-
monics of the form �3�z�=0�=A exp�i�kx�x�−3�t��, where
the temporal frequency is tripled while the spatial frequency
is kept constant. This is, to our knowledge, the first experi-
mental evidence of this possible nonlinear interaction. The
transition from the supercritical �third harmonics along-slope
wave-vector tripling and second harmonics along-slope
wave-vector doubling� to the subcritical case �third harmon-
ics along-slope wave-vector conservation and absence of
second harmonics� is visible in Fig. 7�a�, where for the criti-
cal case, both wavelengths are present at the frequency 3�
�same along-slope wavelength on the left of the impact zone,
tripled on the right�. However, this transition remains unex-
plained.

C. Evanescent harmonics

The angles of propagation of the different harmonics
have been measured on the filtered patterns. All the results
are listed in Table II for the five runs of Table I. The values
are also plotted in Fig. 10 as a function of the pulsation �
and of the harmonic number n. Figure 10�a� attests that the
first and second harmonics are in perfect agreement with
what is theoretically expected: all corresponding symbols are
on the straight line �=N sin �. This is not the case for the
third harmonic in the last three runs. When the sine of the
propagation angle is plotted versus the number of the har-
monic as in Fig. 10�b�, one also sees that the third harmonic

FIG. 9. Spatial Fourier transform of the along-slope sections presented in
Fig. 8. The solid line corresponds to �E�1 �Fig. 8�a��, the dashed one to �E�2

�Fig. 8�b��, and the dotted one to �E�3 �Fig. 8�c��. This picture emphasizes
the wave-vector tripling.
is not aligned with the first two for runs 3–5.
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As discussed, for example, by Tabaei et al.,20 the maxi-
mum incident angle � for which the nth harmonic can propa-
gate is sin−1�1/n�. For larger angles, the corresponding har-
monic will be evanescent since the frequency would be
larger than the Brunt-Väisälä top band frequency. For �

sin−1�1/3��19°, the third harmonic is thus found to be
evanescent: this is the case for runs 3–5 of Table II, explain-
ing the three symbols not on the line in Fig. 10�a�. In these
cases, the third harmonic generated in the impact zone can-
not propagate, and is thus trapped along the slope. This is
what is shown in Fig. 11. Evanescent modes were also found
experimentally21 in a different context, namely nonlinear
nonresonant interaction between two internal wave rays.

If the evanescence of the wave is clarified, an angle of
propagation, not vertical, can be measured as shown for run
5 in Fig. 11. Another case is also visible in Fig. 5�d�. It is
possible to theoretically explain this angle as follows.

TABLE II. Experimentally measured angles of propagation for the three
different harmonics. The precision of the measurements is smaller than half
a degree. The characteristics of the five runs are given in Table I.

Run 1 2 3 4 5

�1 �deg� 12 16.5 19.5 22.5 25

�2 �deg� 26 35 41 48 54

�3 �deg� 43 52 ?65 85 81.5

sin �1 0.21 0.28 0.33 0.38 0.42

sin �2 0.44 0.57 0.66 0.74 0.81

sin �3 0.68 0.79 0.91 1.00 0.99

FIG. 10. Angular dispersion for the different harmonics. Panel �a� presents
the sine of the different angles of propagations vs the wave frequency �.
The different symbols corresponds to the first �triangles�, second �plus�, and
third harmonic �stars�. The solid line corresponds to the theoretical law �
=N sin � for 2�N−1=13.6 s. Panel �b� presents the same data as a function
of the number of the harmonics for runs 1–5 �plus, stars, circles, dots, and

squares, respectively�. Error bars are smaller than the symbol size.
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Considering the linear equation �3� valid for internal
waves within the Boussinesq approximation, let us look for
stream-function solutions �, evanescent in the z� direction,
i.e., orthogonally to the slope, but propagating in the x and z
direction �see Fig. 3 for the definitions of these variables�.
Introducing the two components of the wave vector �kx ,kz�
and �, the attenuation �or evanescence� length, we thus look
for solutions as

��x,z,t� = �0ei�kxx+kzz−�t�e−z�/� �7�

=�0e�ikx+sin �/��x+�ikz−cos �/��z−i�t, �8�

since z�=z cos �−x sin �. Introducing the above ansatz in
Eq. �3� leads to a complex equation. Separating real and
imaginary parts and defining �=� /N, we get

�2 =
cos2 �

kx
2

�2 − sin2 �

�2 − 1
, �9�

kz = kx tan ��1 − �−2� . �10�

For �
1, we can thus define the angle of propagation of the
evanescent wave �ev=atan�kx /kz�. Equation �10� leads to

�ev��,�� = atan
 cotan�

1 − �−2� . �11�

Figure 12 attests that the experimental results agree very well
with formula �11� for runs 4 and 5. Unexpectedly, the case

FIG. 11. �Color online� False-color velocity pattern. The vertical third har-
monic �w�3 is shown in the �x ,z� plane for run 5. The maximum velocity is
0.4 mm s−1.

FIG. 12. Angle of propagation of the evanescent third harmonic for runs 4

and 5.
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�=19°, for which the third harmonic is at the limit of eva-
nescence, is, however, not described by the above model.
Note also that an alternative theoretical description is pro-
posed in Ref. 20.

D. Amplitude measurements

The determination of wave amplitudes is complicated by
the beam-like appearance of the displacement field. Indeed,
local temporal spectral analysis is not sufficient to provide
reliable energy measurements, as phase and group speed are
orthogonal. Spatial integration across the beam are needed to
accurately evaluate the amount of energy involved in each
harmonics.

First, to validate the method of measurement, the mean
displacement amplitude A=�u2+w2 /� of the incident beam
is plotted as a function of the incidence angle. The wave
maker being tilted at a constant angle �=13° with the hori-
zontal, it induces a shear motion perpendicular to itself �see
Fig. 3�. The propagating part of this motion is thus expected
to be proportional to sin��+��. The very good agreement
shown in Fig. 13 justifies a posteriori the method.

Determining the importance of the different harmonics
emitted after the reflection process is an important issue to
understand and hence describe theoretically the reflection
process. After exploring several possibilities, it appears that
the best method to quantitatively characterize the measure-
ments is the following one. First, it is important to distin-
guish the two components of velocity vectors, parallel to the
slope and orthogonal to it. The second one vanishes clearly
close to the slope, thus satisfying the expected boundary con-
ditions. Away from the slope, because of the possibilities of
evanescence it is very delicate to get reliable amplitudes. On
the contrary, the along-slope component of the velocities is
easier to deal with. It has no reason to vanish close to the
slope and definitely did not. We have thus measured the am-
plitude of the wave by determining the maximum value of
the different harmonics. Results are collected and shown in
Fig. 14. The velocity amplitudes for the second and third
harmonics are four times smaller than for the first harmonic,
even for runs 4 and 5 when the third harmonic is evanescent.
It is important to emphasize that the difference between the

FIG. 13. Experimental measure of the displacement amplitude of the emit-
ted wave as a function of the emission angle � for the five runs of Table I.
second and third harmonics is small.
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IV. CONCLUSION

In this paper, we have reported quantitative laboratory
measurements of the propagation of internal waves. Our ex-
perimental setup produces an incident beam of high quality.
Its large scale allows us to reach large Reynolds numbers,
such that the effects of dissipation on the propagation are
negligible. This is no longer true for the critical reflection
mechanism, which involves a strong reduction of the wave-
length, hence increased viscous effects. Thus, one obtains a
steady regime compatible with the hypothesis of previous
theoretical models.3,20

The wave vector of the frequency nth harmonics, pro-
jected along the slope, is found to be proportional to n in the
supercritical case. This is in agreement with the theory.20 A
different selection mechanism is, however, observed in the
subcritical case, for which the wave number is equal to the
incident one. This is in contradiction with Ref. 20 but in
agreement with a more simple analysis previously proposed
by Thorpe.22

Harmonics with frequency higher than N cannot propa-
gate and remain trapped near the slope. We document their
existence and explain their spatial structure.

The long two-dimensional internal wave exciter pro-
duces very weak transversal y variations, apparently justify-
ing two-dimensional predictions in the �x ,z� plane. Consid-
ering a rotating tank would require us to address the much
tougher, fully three-dimensional equation, and it is not a pri-
ori clear what will happen. Work along these lines is in
progress.
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