
      

Internal wave generation in uniformly stratified fluids.

Part 2. Moving point sources

By Bruno Voisin

Laboratoire des Ecoulements Géophysiques et Industriels, Institut de Mécanique
de Grenoble, CNRS – UJF – INPG, BP 53X, 38041 Grenoble Cedex, France

The Green’s function method is applied to the generation of internal gravity waves by a

moving point mass source. Arbitrary motion of a source of arbitrary time dependence is

treated using the impulsive Green’s function, while ‘classical’ approaches of uniform motion

of a steady or oscillatory source are recovered using the monochromatic Green’s function.

Waves have locally the structure of impulsive waves, emitted at the retarded time tr and

having propagated with the group velocity; at each position and time an implicit equation

defines tr, in terms of which the waves are written. A source both oscillating and moving

generates two systems of waves, with respectively positive and negative frequencies, and

when oscillations vanish these systems merge into one.

Three particular cases are considered: the uniform horizontal and vertical motions of a

steady source, and the uniform horizontal motion of an oscillatory source. Waves spread

downstream of the steady source. For the oscillatory source they can extend both upstream

and downstream, depending on the ratio of the source frequency to the buoyancy frequency,

and are contained inside conical wavefronts, parts of which are caustics. For horizontal mo-

tion, moreover, the steady analysis (based on the monochromatic Green’s function) reveals

the presence of two insignificant contributions overlooked by the unsteady analysis (based

on the impulsive Green’s function), but which for an extended source may become of the

same order as the main contribution. Among those is an upstream columnar disturbance

associated with blocking.
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1. Introduction

Waves generated by bodies moving in stratified fluids, or by obstacles fixed in stratified

flows, are certainly one of the most striking forms of internal gravity waves. In the atmo-

sphere, characteristic cloud patterns in the lee of mountains or hills over which stratified

winds blow reveal the presence of ‘lee waves’, of primary importance for e.g. meteorology,

aerial navigation, pollution problems and gliding (Miles 1969c). In the ocean, ships moving

in strongly stratified coastal waters undergo significant drag attributable to internal wave

generation, and originally ascribed to the attachment of ‘dead water’ (Ekman 1904).

Acoustic (Morse & Feshbach 1953, pp. 841–842) or electromagnetic (Landau & Lifchitz

1970, §63) waves radiated by acoustic or electromagnetic moving sources are well-known.

The clue to their understanding is the so-called retarded time tr, which represents the time

when the waves received at point r and time t were emitted, and which satisfies, for source

path r0(t), the implicit equation

t− tr =
|r − r0(tr)|

c
, (1.1)

expressing propagation at the sound or light velocity c. Once tr is known the determination

of the waves is straightforward, and results in the so-called Liénard-Wiechert potentials.

For internal waves, dispersion and anisotropy imply the separation, and dependence on

position and time, of the velocities cφ of phase propagation and cg of energy propagation.

Equation (1.1) becomes

t− tr =
|r − r0(tr)|

cg
, (1.2)

with cg an unspecified function of r, t and tr. Little information on the waves is then

obtained in this way, save a parametric equation of surfaces of constant phase deduced by

Stevenson (1973), Peat & Stevenson (1975, 1976) and Woodhead (1983) from the combi-

nation of (1.2) with the Doppler and dispersion relations.

This paper shows how the use of Green’s functions overcomes the difficulty, leading to a

complete solution to the problem of internal wave radiation by moving sources, formulated

in terms of just the retarded time. In so doing it continues the development of the Green’s
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function theory initiated in Voisin (1991b), hereafter referred to as I. Indeed, Lighthill’s

(1967, 1978, §4.12) analysis of the generation of anisotropic dispersive waves deals already

with uniformly moving sources, building the wave field in Fourier space and time from a

superposition of wavepackets of various frequencies and wavenumbers. On the other hand,

the Green’s function method builds the wave field in real space and time, for arbitrarily

moving sources, from a superposition of transients emitted at various times by the various

points of the source. Both theories are, thus, hoped to provide complementary insights

into the problem under consideration.

Throughout the paper it is assumed that waves are linear and three-dimensional, that

the fluid is inviscid, incompressible, unbounded, uniformly stratified (i.e. of constant buoy-

ancy frequency) and non-rotating, and that the Boussinesq approximation holds. First

§2 reviews the extensive literature on the generation of internal waves by moving bodies.

Section 3 applies the Green’s function formalism to arbitrary motion of a point source of

arbitrary time dependence, while in §4 it is specialised to uniform motion of a steady or

oscillating point source. Then, using both approaches, three cases of practical interest are

considered: the uniform horizontal motion of a steady source (§5), with applications to lee

waves (Miles 1969c), the uniform vertical motion of a steady source (§6), with applications

to thermals (Warren 1960), and the uniform horizontal motion of an oscillating source

(§7), with applications to stratified wakes (Gilreath & Brandt 1985).

2. Bibliographical review

Studies of the generation of internal waves by bodies moving in unbounded uniformly

stratified fluids can be classified into (i) theoretical investigations of moving point sources,

(ii) theoretical investigations of moving extended sources, (iii) experimental or numerical

investigations. Here we review all three approaches successively, restricting our attention

to three-dimensional theoretical work and to both two- and three-dimensional experimental

or numerical work.
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2.1. Point sources

Early analyses of moving point sources rely on essentially the same ‘integral’ method, in

which the waves are calculated in Fourier space and evaluated asymptotically by stationary

phase or steepest descent arguments. For uniform horizontal motion of a steady source this

procedure has been introduced by Wurtele (1957) and Wu (1965), with errors, and has been

applied by Crapper (1959) far from the source but near to its path and by Miles (1971),

Dokuchaev & Dolina (1977), Sturova (1978) and Janowitz (1984) throughout the far field,

while Trubnikov (1959) derived only the Fourier integral form of the waves and Sturova

(1974) evaluated it numerically. Uniform vertical motion of a steady source (Warren 1960;

Grigor’ev & Dokuchaev 1970) and uniform horizontal motion of an oscillating source (Rehm

& Radt 1975) have been treated in the same way, and for arbitrary motion the introduction

of Fourier-Laplace transforms has led to an expression of the waves as an integral over time

(Sturova 1980; Chashechkin & Makarov 1984).

A more systematic procedure was offered by Lighthill’s (1967, 1978, §4.12) theory of

the generation of anisotropic dispersive waves. First, the combination of the Doppler and

dispersion relations defines a ‘wavenumber’ surface, of which surfaces of constant phase

are reciprocal polars. These have been studied for horizontal (Redekopp 1975; Rehm &

Radt 1975; Lighthill 1978, §4.12) and vertical (Mowbray & Rarity 1967; Lighthill 1967,

1978, §4.12) motions of a steady source, and for horizontal (Redekopp 1975; Rehm &

Radt 1975) and vertical (Stevenson 1969; Subba Rao & Prabhakara Rao 1971) motions

of an oscillating source. The wave amplitude follows, similarly, from the curvature of the

wavenumber surface. It has been calculated by Makarov & Chashechkin (1981, 1982) for

horizontal and vertical motions of a steady source. If, moreover, the retarded time equation

is added to the Doppler and dispersion relations, arbitrary motion can be considered. On

these grounds, Stevenson (1973), Peat & Stevenson (1975, 1976) and Woodhead (1983)

have built a parametric construction of surfaces of constant phase, and have applied it to

various accelerated or curved motions.

A third angle of attack is to write the waves as four-dimensional Fourier integrals over

wavenumbers and frequency, and to deduce therefrom both the exact form of the waves in
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particular places and the total radiated energy. It has been introduced by Gorodtsov &

Teodorovich (1980, 1981) for uniform horizontal motion, by Gorodtsov (1980) for uniform

vertical motion, and by Gorodtsov & Teodorovich (1983) for some periodic motions.

2.2. Extended sources

The motion at constant speed U of a body of transverse radius a in a fluid of buoyancy

frequency N is ruled by the internal Froude number Fr = U/Na, representing the ratio of

inertial forces to buoyancy forces.

For Fr ¿ 1 (strong stratification), the forcing velocity U is small compared with Na, and

linearisation around the state of rest of both the fluid and the body is appropriate. This

problem has been solved by Grimshaw (1969) and Sarma & Krishna (1972) for impulsively

started motion of a sphere, and by Vladimirov & Il’in (1991) for arbitrary body shape.

The velocity field comprises two terms: transient waves generated by the impulsive start,

and the steady stratified flow around the body. For horizontal motion, because of the

strength of the stratification, this flow is horizontal and irrotational, and reduces to just

the leading-order flow derived by Drazin (1961) and Brighton (1978) from an expansion of

the nonlinear equations of motion in powers of Fr2.

For Fr À 1 (weak stratification), the radius a of the body is small compared with the

distance U/N for stratification effects to be significant. Thus, consistently with the method

of matched asymptotic expansions (Murdock 1977; Baines & Grimshaw 1979) or the triple-

deck analysis (Sykes 1978), the fluid must be separated in two zones (Miles & Huppert 1969;

Miles 1969a, 1971). Near to the body, at distances of order a, the flow is weakly affected by

the stratification; to leading order in 1/Fr it becomes a three-dimensional irrotational flow,

higher orders following from a perturbation procedure developed by Hawthorne & Martin

(1955) for a sphere and by Drazin (1961) for arbitrary body shape. Far from the body, at

distances of order U/N , internal waves are observed with velocities small compared with

U ; linearisation is again appropriate, around a reference state in which the fluid is at rest

and the body moves. Matching those inner and outer solutions in the intermediate zone

a ¿ R ¿ U/N , with R the distance from the body, legitimates using for the waves the
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same representation of the body as for homogeneous flow; once this is known, results of

Gorodtsov (1981, 1991) and Gorodtsov & Teodorovich (1982) describe the radiated energy.

Details of the wave field depend then on the aspect ratio ε = l/a, with 2l the length

of the body. For ε = O(1), the literature considers either a dipole (see §2.1) or a surface

distribution of sources and sinks (Gorodtsov & Teodorovich 1982), which are respectively

far-field (R À a) and exact representations of the body in homogeneous flow. For ε À 1

classical slender-body theory is relevant, as is, for surface-mounted obstacles of height h

and horizontal dimension 2l satisfying U/NhÀ 1 and l/hÀ 1, flat-body theory. Both of

them have been applied by Warren (1960) to vertical motion and by Crapper (1959, 1962),

Janowitz (1984) and Umeki & Kambe (1989) to horizontal motion. When, moreover, for

horizontal motion, the Froude number U/Nl based on streamwise length is small, the

hydrostatic approximation holds (Blumen & McGregor 1976; Smith 1980).

For Fr = O(1) the flow around the body interacts strongly with the wave field, vitiating

the preceding approaches. There is, nonetheless, both experimental (Hunt & Snyder 1980)

and numerical (Hanazaki 1988; Smolarkiewicz & Rotunno 1989; Suzuki & Kuwahara 1992)

evidence that the range of validity of linear theories is remarkably large, extending for

small-Fr theories up to, say, 0.1, and for large-Fr theories down to, say, 2. Anticipating

this, for flat obstacles, Scorer (1956), Smith (1980, 1988, 1989) and Phillips (1984) have

applied the large-Fr linearisation in the whole of the fluid, while Chashechkin (1989)

proposed, whatever Fr , to replace the body by a discrete distribution of sources and sinks

of position and strength fixed by experiment.

2.3. Experiments and numerical simulations

Experiments on and simulations of the motion of bodies in stratified fluids are numerous.

Here we only consider those focused on waves. For complementary reviews focused on flow

effects, the reader is referred to Boyer et al. (1989) in two dimensions and Lin et al. (1992)

in three dimensions, and for more emphasis on wake phenomena to Sysoeva & Chashechkin

(1991) and Chomaz, Bonneton & Hopfinger (1993).

Experiments have involved a wide range of bodies and motions. This includes: a cylin-
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der, in uniform horizontal (Stevenson, Chang & Laws 1979; Stevenson, Woodhead & Kanel-

lopulos 1983; Belotserkovskii et al. 1984; Aksenov et al. 1989), vertical (Stevenson et al.

1983; Gärtner 1983a, b; Gärtner, Wernekinck & Merzkirch 1986) or inclined (Stevenson

1968) motion, or in uniform horizontal or inclined motion with oscillations (Stevenson &

Thomas 1969), or in accelerated or curved motion (Stevenson 1973; Peat & Stevenson 1975,

1976; Woodhead 1983); a sphere, in uniform horizontal (Peat & Stevenson 1975; Makarov

& Chashechkin 1981, 1982; Chashechkin 1989; Hopfinger et al. 1991; Bonneton, Chomaz

& Hopfinger 1993), vertical (Mowbray & Rarity 1967) or inclined (Peat & Stevenson 1975)

motion, or in uniform vertical (Stevenson 1969) or horizontal or inclined (Peat & Stevenson

1975) motion with oscillations; a slender ellipsoid (Gilreath & Brandt 1985), a triangular

ridge of finite width (Castro, Snyder & Marsh 1983; Castro 1987), and two-dimensional

obstacles (Baines & Hoinka 1985), all of which in uniform horizontal motion.

Numerical simulations are comparatively few. They deal with uniform horizontal motion

of a cylinder (Belotserkovskii et al. 1984), a sphere (Hanazaki 1988), rectangular (Foldvik

& Wurtele 1967) or semi-elliptical (Haussling 1977) ridges of infinite width, two- (Clark

& Peltier 1977; Klemp & Lilly 1978; Peltier & Clark 1979, 1983) or three- (Smolarkiewicz

& Rotunno 1989; Rotunno & Smolarkiewicz 1991; Suzuki & Kuwahara 1992) dimensional

bell-shaped obstacles, and a parallelopiped (Sharman & Wurtele 1983).

3. Internal waves generated by an arbitrarily moving source

At time t = 0, the monopolar point mass source

m(r, t) = H(t)m0(t) eiω0tδ[r − r0(t)], (3.1)

situated at point O, starts to move along the path r0(t) while its strength starts to oscillate

with frequency ω0 and otherwise to undergo non-periodic variations m0(t), as sketched in

figure 1. Here r = [x, y, z] denotes position, of horizontal and vertical components rh =

[x, y, 0] and z, and H and δ are the Heaviside step and Dirac delta functions, respectively.

We assume that the fluid is incompressible, unbounded and uniformly stratified (i.e. of

constant buoyancy frequency N), that wave amplitudes are small and that the Boussinesq
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approximation is valid. Then the fluid velocity v(r, t) and pressure perturbation P (r, t)

can be written

v(r, t) =

(
∂2

∂t2
∇+N2∇h

)
ψ(r, t), P (r, t) = −ρ0

(
∂2

∂t2
+N2

)
∂

∂t
ψ(r, t), (3.2)

where ρ0 is the undisturbed density and ψ(r, t) is an ‘internal potential’ satisfying
(
∂2

∂t2
∇2 +N2∇2

h

)
ψ(r, t) = m(r, t), (3.3)

with ∇ = [∂/∂x, ∂/∂y, ∂/∂z] and ∇h = [∂/∂x, ∂/∂y, 0]. In terms of the causal Green’s

function G(r, t) of equation (3.3), defined by
(
∂2

∂t2
∇2 +N2∇2

h

)
G(r, t) = δ(r) δ(t), G(r, t)

∣∣
t<0

= 0, (3.4)

the internal potential is given by the convolution integral

ψ(r, t) =

∫
dτ

∫
d3r′m(r′, τ)G(r − r′, t− τ), (3.5)

which for the source (3.1) becomes

ψ(r, t) = H(t)

∫ t

0

m0(τ) eiω0τG[r − r0(τ), t− τ ] dτ. (3.6)

Internal waves are observed only for t > 0, as reflected by the factor H(t) which is sup-

pressed in the following. Then they result from a superposition of impulses generated at

each time τ and point r0(τ) of the path of the source, as pointed out by Bretherton (1967,

p. 559) and Miles (1969b, p. 438).

Similar integrals govern the radiation of acoustic and electromagnetic waves (Morse &

Feshbach 1953, pp. 841–842; Landau & Lifchitz 1970, §63). For them, the Green’s function

contains a Dirac function δ(r − ct), so that each r receives at each t an impulse emitted

at the retarded time τr, defined by (1.1) with tr replaced by τr. For internal waves there

is no such Dirac function in the Green’s function, but, from group velocity arguments, the

retarded time still exists. To distinguish this particular τ in (3.6) we shall resort to an

asymptotic procedure, based on expansion I (6.15), valid for NtÀ 1,

G(r, t) ∼ − 1

(2π)
3
2Nrh




cos

(
Nt
|z|
r
− π

4

)

(
Nt
|z|
r

)1
2

+
sin
(
Nt− π

4

)

(Nt)
1
2


 , (3.7)
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which separates impulsive internal waves into gravity waves of frequency N |z|/r and buoy-

ancy oscillations of frequency N .

3.1. Non-oscillating source

Consider first a non-oscillating source (ω0 = 0), and assume, with implications to be

discussed later, that for almost all epochs τ in (3.6) it is legitimate to set N(t − τ) À 1.

Then, replacing the Green’s function by its asymptotic expansion yields

ψ(r, t) ∼ − 1

(2π)
3
2N

∫ t

0

m0(τ)

Rh(τ)





cos

[
N(t− τ)

|Z(τ)|
R(τ)

− π

4

]

[
N(t− τ)

|Z(τ)|
R(τ)

]1
2

+
sin
[
N(t− τ)− π

4

]

[N(t− τ)]
1
2





dτ,

(3.8)

where R(τ) = r − r0(τ) denotes the position at τ of the observation point relative to the

source (see figure 1). The wavy nature of the internal potential is now explicit, as is the

separation of gravity waves—identical to those found by Sturova (1980) and Chashechkin

& Makarov (1984)—and buoyancy oscillations.

Now, because of the assumption Nt À 1 implicit in N(t − τ) À 1, the integral (3.8)

can be further evaluated by the method of stationary phase (Bleistein 1984, §2.7). Three

contributions arise, only two of which are meaningful by virtue of N(t − τ) À 1, which

prevents τ from approaching the endpoint t. Associated with the endpoint 0 are transient

waves generated by the impulsive start, and given by

ψt(r, t) ∼−
m0(0)

(2π)
3
2N2rh

r

|z|

1− v0(0)t

r
·
(r
r
− r

z
ez

)
sin

(
Nt
|z|
r
− π

4

)

(
Nt
|z|
r

)1
2

+
m0(0)

(2π)
3
2N2rh

cos
(
Nt− π

4

)

(Nt)
1
2

, (3.9)

where v0(τ) = dr0/dτ is the velocity of the source and ez is a unit vector along the z-axis.

As remarked by Bretherton (1967, p. 557), the gravity waves and buoyancy oscillations

composing such transients differ only by a phase shift and an amplitude factor from the

gravity waves and buoyancy oscillations appearing in the Green’s function. Accordingly,
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for the corresponding pressure and velocity, buoyancy oscillations turn out to be negligible

compared with gravity waves, at least in the early stages of motion when the point source

model makes sense (I, §§7.2 and 8.3).

The third, most significant, contribution represents permanent waves continuously built

up by the motion of the source. It corresponds to the point τs where the phase

Φ(τ ; r, t) = N(t− τ)
|Z(τ)|
R(τ)

(3.10)

of gravity waves is stationary. From the condition of stationarity ∂Φ/∂τ
∣∣
τ=τs

= 0, written

as the implicit equation

t− τs =
R(τs)

v0(τs) ·
[
R(τs)

R(τs)
− R(τs)

Z(τs)
ez

] , (3.11)

of the form (1.2), we identify τs as the retarded time and the associated internal potential,

namely

ψp(r, t) ∼ −m0(τs)

2πN2

R(τs)

Rh(τs)|Z(τs)|

cos

[
N

cg
|Z(τs)| −

π

2
H(−A)

]

|A|12
, (3.12)

with A = R
γ0

c2g
·
(
R

R
− R

Z
ez

)
−
(
v0

cg
× R
R

)2

+ 2
R

Z

v0

cg
· ez
∣∣∣∣∣
τ=τs

, (3.13)

as a Liénard-Wiechert potential for internal waves, where γ0(τ) = d2r0/dτ
2 is the accel-

eration of the source and

cg =
R(τs)

t− τs
= v0(τs) ·

[
R(τs)

R(τs)
− R(τs)

Z(τs)
ez

]
R(τs)

R(τs)
(3.14)

is the group velocity.

Of all the impulses generated by the source at the various points of its path, the principle

of stationary phase has filtered out the only impulse, generated at the retarded time τs,

which can reach the point r at time t. Thus, permanent waves have the same structure as

gravity waves due to a point impulsive source, investigated in I, except for the replacement

of r and t byR(τs) and t−τs. This is in particular true of the frequency ω and wavenumber

vector k, deduced from (3.10) as

ω =
∂Φ

∂t

∣∣∣∣
τ=τs

= N
|Z|
R
, (3.15)
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k = −∇Φ
∣∣
τ=τs

=
N

cg

R

R
×
(
R

R
× ez

)
sgnZ =

ω

cg

(
R

R
− R

Z
ez

)
, (3.16)

and of the wavelength

λ =
2π

k
= 2π

cg
N

R

Rh
. (3.17)

Here the subscript p has been omitted, and all the quantities involving a time τ are taken

implicitly at time τs. Moreover, as a consequence of the motion of the source, a new

relation can be written between ω and k, namely the Doppler relation

ω = v0 · k, (3.18)

and the phase N |Z|/cg, evaluated at τs, which appears in (3.12), is just the phase ω(t−τs)

obtained by Stevenson (1973), and for constant velocity v0 of the source it reduces to the

phase −k · (r − v0t) obtained by Lighthill (1967, 1978, §4.12).

The corresponding pressure and velocity follow from the differentiation of the internal

potential according to (3.2), taking into account that the only significant asymptotic terms

arise from the variations of the phase, governed by (3.15)–(3.16); they can, alternatively, be

deduced from the pressure and velocity I (7.7)–(7.8) associated with the Green’s function.

Both methods yield

P (r, t) ∼ ρ0Nm0

2π

Rh

R2

cos

[
N

cg
|Z|+ π

2
H(A)

]

|A|12
, (3.19)

v(r, t) ∼ Nm0

2πcg

Rh

R2

R

R

cos

[
N

cg
|Z|+ π

2
H(A)

]

|A|12
. (3.20)

As for the point impulsive source, the pressure and velocity oscillate in phase and verify

v ∼ P

ρ0cg

R

R
. (3.21)

Permanent waves take up the whole region 0 < τs < t where the retarded time exists

and makes sense. Transient waves, negligible there, are observed outside. On the boundary

τs = 0 both wave systems merge, in such a way that buoyancy oscillations do not change

while gravity waves combine into one half of the permanent waves (3.12). In the framework
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of the method of stationary phase this corresponds to the coalescence of the point of

stationary phase with an endpoint. A uniform expansion describing the vicinity of the

surface τs = 0 would then involve error functions (Bleistein 1966); this is just the result

obtained by Chashechkin & Makarov (1984) in a particular case.

So far, two hypotheses have been used. The first of them, N(t − τ) À 1, appears now

as the ‘far-field’ condition

N

cg
RÀ 1, (3.22a)

or, by (3.17), omitting the angular factor Rh/R, as

RÀ λ, (3.22b)

which states that waves are observed at many wavelengths from the source path. The

second hypothesis, which also follows from N(t−τ)À 1, is simply the large-time condition

NtÀ 1, (3.23)

which states that waves are observed many periods after the motion has begun. Since the

stationary phase description of a wave field is generally valid even for moderate values of

the assumed large parameter, we can expect (3.22) to hold whenever NR/cg & 1. It is

difficult to find out a priori (i.e. without studying a particular motion) where this is the

case, since the variations of R and cg are not independent, and since these quantities are

precisely determined by the method of which they are supposed to assess the validity. We

may, however, consider two regions where (3.22) surely breaks down, namely R → 0 and

cg →∞, and examine how they are approached as the observer leaves the far field; during

this transition it is legitimate to set t− τs fixed and non-zero. In both cases, assumptions

more basic than (3.22) turn out to be violated; since R → 0, which corresponds to the

vicinity of the source path, implies λ → 0 and invalidates the point source model, while

cg →∞ implies λ→∞ and invalidates the Boussinesq approximation.

12



            

3.2. Oscillating source

When the source simultaneously moves (v0 6= 0) and oscillates (ω0 6= 0), the factor eiω0τ

arising in the source strength modifies the definition of the phases of gravity waves and

buoyancy oscillations. Integral (3.8) becomes

ψ(r, t) ∼ − 1

2
5
2π

3
2N

∑

±

∫ t

0

dτ
m0(τ)

Rh(τ)

×





exp

{
i

[
ω0τ ±N(t− τ)

|Z(τ)|
R(τ)

∓ π

4

]}

[
N(t− τ)

|Z(τ)|
R(τ)

]1
2

∓ i
exp
{
i
[
ω0τ ±N(t− τ)∓ π

4

]}

[N(t− τ)]
1
2




, (3.24)

where
∑
±

denotes summation over the signs + and −. Gravity waves are split in two

systems of waves, with phases

Φ±(τ ; r, t) = ω0τ ±N(t− τ)
|Z(τ)|
R(τ)

, (3.25)

so that permanent waves are also split in two systems of waves, each of which with its own

retarded time τ± satisfying

t− τ± =

[
1∓ ω0

N

R(τ±)

|Z(τ±)|

]
R(τ±)

v0(τ±) ·
[
R(τ±)

R(τ±)
− R(τ±)

Z(τ±)
ez

] , (3.26)

its own group velocity

c± =

v0(τ±) ·
[
R(τ±)

R(τ±)
− R(τ±)

Z(τ±)
ez

]

1∓ ω0

N

R(τ±)

|Z(τ±)|

R(τ±)

R(τ±)
, (3.27)

and its own internal potential

ψ±(r, t) ∼ −m0(τ±)

4πN2

R(τ±)

Rh(τ±)|Z(τ±)|

exp

{
i

[
ω0τ± ±

N

c±
|Z(τ±)| ∓ π

2
H(−A±)

]}

|A±|12
, (3.28)

where

A± = R
γ0

c2±
·
(
R

R
− R

Z
ez

)
−
(
v0

c±
× R
R

)2

+ 2
R

Z

(
1∓ ω0

N

R

|Z|

)(
v0

c±
· ez ∓

ω0

N
sgnZ

)∣∣∣∣
τ=τ±

. (3.29)
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We interpret this as a beating between the waves generated by the motion of the source

alone and those generated by the oscillations of the source alone. Sum and difference waves

are created, with sum and difference frequencies

ω± = ±N |Z±|
R±

, (3.30)

respectively positive and negative, sum and difference wavenumber vectors

k± = ±N
c±

R±
R±
×
(
R±
R±
× ez

)
sgnZ± =

ω±
c±

(
R±
R±
− R±
Z±
ez

)
, (3.31)

and sum and difference wavelengths

λ± = 2π
c±
N

R±
Rh±

, (3.32)

where the subscript ± implies evaluation of the concerned quantity at time τ±. Both wave

systems satisfy the Doppler relation

ω± = ω0 + v0± · k±, (3.33)

and their phases ω0τ±±N |Z±|/c± coincide as well with those ω0τ±+ω±(t− τ±) obtained

by Stevenson (1973) and, for constant source velocity v0, with those ω0t − k± · (r − v0t)

obtained by Lighthill (1967, 1978, §4.12).

The pressure and velocity are

P±(r, t) ∼ ρ0Nm0

2π

Rh±

R2
±

exp

{
i

[
ω0τ± ±

N

c±
|Z(τ±)| ± π

2
H(A±)

]}

|A±|12
, (3.34)

v±(r, t) ∼ Nm0

2πc±

Rh±

R2
±

R±
R±

exp

{
i

[
ω0τ± ±

N

c±
|Z(τ±)| ± π

2
H(A±)

]}

|A±|12
. (3.35)

For each wave system, they oscillate in phase and verify

v± ∼
P±
ρ0c±

R±
R±

. (3.36)

For a non-oscillating source (ω0 = 0) both sum and difference waves are present, with

identical retarded times τ±, opposite frequencies ω± and wavenumber vectors k±, and
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complex conjugate contributions ψ±, P± and v± to the wave field. Accordingly the two

wave systems combine into one, of whose phase the sign is arbitrary, as reflected by the

cosines replacing in (3.12) and (3.19)–(3.20) the complex exponentials of (3.28) and (3.34)–

(3.35). In §3.1 the determination (3.10) of Φ has been chosen to yield a positive ω, and

thus a description of internal waves in terms only of sum waves has been adopted (see

Lighthill 1978, p. 353). For a non-moving source (v0 = 0) difference waves are absent, as a

consequence of the representation eiω0τ of the oscillations, and the retarded time equation

(3.26) reduces to the equation ω0 = N |z|/r defining the characteristic cone.

4. Internal waves generated by a uniformly moving source

When the source is purely oscillatory (m0 = const) and moves uniformly (v0 = const),

a major simplification arises: the permanent wave field is stationary, in that it moves and

oscillates with the source. This follows from introducing the position r1 = r− v0t relative

to the source at t, and writing R(τ) = r1 + v0(t− τ). Then, by (3.26), t− τ± and R(τ±)

depend only on r1, so that the internal potential (3.28), pressure (3.34) and velocity (3.35)

depend only on r1 and, through the factor eiω0t, on t.

Most studies of moving sources of internal waves consider uniform motion, and use the

stationarity of the permanent wave field to attack its calculation on a steady-state basis.

This amounts to applying the limit t→∞ with r1 fixed to (3.6), which becomes

ψ(r, t) = m0 eiω0t

∫
e−iω0τG(r1 + v0τ, τ) dτ. (4.1)

In the present section, following Gorodtsov & Teodorovich (1980), we briefly investigate

the consequences of (4.1). Our starting point is the set of formulae given in I for the spatial

and temporal Fourier transforms of the Green’s function, defined by

G(r, t) =
1

(2π)4

∫
^dω

∫
d3k G(k, ω) ei(ωt−k·r), (4.2)

where the sign ^ indicates indentation of the integration path below the real singularities

of the integrand, in compliance with causality which requires that G(r, ω) be analytic in

the lower half of the complex ω-plane (see I, §3.2, and Crighton & Oswell 1991).
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From the substitution of (4.2) in (4.1), and use of I (5.6)–(5.7), we have

ψ(r, t) =
m0

(2π)3
eiω0t lim

ε→0+

∫
G(k, ω0 + v0 · k − iε) e−ik·r1 d3k, (4.3a)

=
m0

(2π)3
eiω0t lim

ε→0+

∫
e−ik·r1

(ω0 + v0 · k − iε)2k2 −N2k2
h

d3k. (4.3b)

This is just, applied to internal waves, the basic formula of Lighthill’s (1967, 1978, §4.12)

theory, and the addition of the infinitesimal negative imaginary part −ε to the frequency

is just Lighthill’s expression of the radiation condition.

We introduce now a system of coordinates (x‖, y⊥, z⊥), with the x‖-axis parallel to the

path of the source and the (y⊥, z⊥)-plane perpendicular to it, and write r⊥ = [0, y⊥, z⊥].

Then, integration of (4.3a) in the transverse wavenumber plane yields

ψ(r, t) =
m0

2π
eiω0t

∫
_̂G(k‖, y⊥, z⊥, ω0 + v̄0k‖) e−ik‖x‖ dk‖ (v̄0 ≶ 0), (4.4)

where v̄0 is the algebraic value of the source velocity projected onto the x‖-axis, and the sign

^ (_) indicates deformation of the integration path below (above) the real singularities

of the integrand for positive (negative) v̄0, respectively. For a steady source (ω0 = 0), the

symmetry properties of the Green’s function G(k, ω) = G(−k, ω) = G?(k,−ω), where ?

denotes a complex conjugate, imply that, moreover,

ψ(r, t) =
m0

π
Re

∫ ∞

0

_̂ G(k‖, y⊥, z⊥, v̄0k‖) e−ik‖x‖ dk‖ (v̄0 ≶ 0), (4.5)

restricting the wavenumber range of (4.4) to Re k‖ > 0. When some particular motion is

considered and the explicit form of G(k‖, y⊥, z⊥, ω) is used, equations (4.4) and (4.5) reduce

to just the basic formulae of the integral method, and the deformation of the integration

path expresses just the radiation condition.

This deformation, in fact, concerns only the singularities associated with the indirect

dependence of the integrand of (4.4) on k‖, through the Doppler relation ω = ω0 + v̄0k‖. If

those were its only singularities throughout the complex k‖-plane, closure of the integration

contour in the half-plane Im (v̄0k‖) < 0 would imply that ψ(r, t) = 0 for v̄0x‖ > 0, in other

terms that no waves would be present upstream of the source. However, in the integrand
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of (4.4) there is also a second, direct, dependence on k‖; namely, as revealed by I (5.8)

and I (5.10), G(k‖, y⊥, z⊥, ω) is a function of the complex variable k‖ singular at the origin

k‖ = 0. This gives rise to upstream waves.

5. Uniform horizontal motion of a steady source

The next three sections apply both the unsteady theory of §3 and the steady theory of

§4 to three problems of increasing analytical complexity. All calculations are presented in

summarised form; further detail may be found in Voisin (1991a).

First we consider the uniform horizontal motion of a steady source, with applications

as well to the generation of lee waves and to the wave resistance of ships (Miles 1969c).

By steady source we mean a source of constant strength (m0 = const and ω0 = 0), and by

uniform horizontal motion we mean motion at the velocity v0 = −Uex, with U constant

and positive. A moving system of coordinates (x1, y, z) is used, with the x1-axis horizontal

and opposite to the motion, and the z-axis directed vertically upwards; ex is a unit vector

along the x1-axis. We also introduce spherical coordinates (r1, θ1, ϕ1) defined by

x1 = x+ Ut = r1 cos θ1, y = r1 sin θ1 cosϕ1, z = r1 sin θ1 sinϕ1, (5.1a)

r⊥ = (y2 + z2)
1
2 = r1 sin θ1, (5.1b)

and represented in figure 2.

5.1. Unsteady approach

The way that the wave field is built up follows from the expression of the retarded time,

namely

t− τs =
r2
1

Ux1
=

r1

U cos θ1
, (5.2)

and from the causality condition 0 < τs < t. First, the distance travelled by permanent

waves between their emission at τs and their reception at t is, in Cartesian components,

R(τs) = r1 tan θ1 [− sin θ1, cos θ1 cosϕ1, cos θ1 sinϕ1], (5.3)
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and is transverse, so that the current position O1 of the source, its position S at emission

and the position M of reception form a triangle right-angled at M (figure 3), and all the

waves emitted at point S are situated at time t on the sphere of diameter O1S. Secondly,

the waves generated since the beginning of the motion at point O are found downstream,

inside the sphere of diameter O1O. Out of the sphere, transient waves generated by the

impulsive start are observed; on the sphere the two systems of waves merge (figure 4),

consistently with the experiments of Stevenson & Thomas (1969), Stevenson (1973) and

Peat & Stevenson (1975), and the calculations of Chashechkin & Makarov (1984).

OnceR(τs) is known, the determination of the waves is straightforward but is essentially

a rederivation of existing results. We just mention here, accordingly, the most significant

of them. These include the frequency and wavelength

ω = N cos θ1| sinϕ1|, λ = 2π
U

N

sin θ1

(sin2θ1 + cos2θ1 cos2ϕ1)
1
2

, (5.4)

bounded and smaller than N and 2πU/N , respectively, the group velocities in the fixed

and moving reference frames

cg = U sin θ1 [− sin θ1, cos θ1 cosϕ1, cos θ1 sinϕ1], (5.5)

cg1 = cg + Uex = U cos θ1 [cos θ1, sin θ1 cosϕ1, sin θ1 sinϕ1], (5.6)

respectively transverse and radial and both smaller than U , and the far-field velocity, for

Nr1/U À 1,

v(r, t) ∼ H(x1)
Nm0

2πUr1

(sin2θ1 + cos2θ1 cos2ϕ1)
1
2

sin θ1

R

R
cos

(
N

U
r1| sinϕ1|

)
, (5.7)

where the steady-state limit t→∞ has been introduced, so that the sphere r1 = Ut cos θ1

within which permanent waves are confined expands to the plane x1 = 0 and is accounted

for by the Heaviside function H(x1). As x1 → 0 transient waves and permanent waves co-

alesce, expansion (5.7) being then non-uniform; for x1 = 0 a factor 1
2 must be incorporated

in its right-hand side.

Equivalent forms of the waves have been obtained by Miles (1971), Dokuchaev & Dolina

(1977), Sturova (1978), Makarov & Chashechkin (1981), Janowitz (1984) and Umeki &
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Kambe (1989). They differ slightly from the results of Wurtele (1957) and Wu (1965),

whereas the only detailed study of the asymptotic wave field is precisely attributable to

Wurtele. It is, thus, of interest here to repeat this study. Since the velocity vector, parallel

to R(τs), is transverse, we focus our attention on the vertical displacement ζ, related to

the vertical velocity by vz = ∂ζ/∂t. Moreover, we momentarily replace our convenient but

unrealistic model of a moving source of waves as the monopole m(r, t) = m0 δ(x1) δ(y) δ(z)

by the classical model of a moving rigid body as the dipole

m(r, t) = md
∂

∂x
δ(x1) δ(y) δ(z), (5.8)

of moment md = U(V + V?) with V the volume of the body and ρ0V? its added mass

(Miles 1971; Lighthill 1978, §1.7, 1986, §8.3). In the steady state, ∂/∂t = U∂/∂x and the

dipolar vertical displacement reduces to md/(Um0) times the monopolar vertical velocity.

Then, from (5.7), in Cartesian coordinates,

ζ(r, t) ∼ H(x1)
Nmd

2πU2

x1z

r3
⊥

(x2
1y

2 + r4
⊥)

1
2

x2
1 + r2

⊥
cos

[
N

U

|z|
r⊥

(x2
1 + r2

⊥)
1
2

]
. (5.9)

The phase of the waves, namely

Φ =
N

U
r1| sinϕ1| =

N

U
|z|
(
x2

1 + y2 + z2

y2 + z2

)1
2

, (5.10)

is most easily visualised in planes of constant x1, y or z. In terms of the reduced coordinates

r? = (Nr1)/(UΦ), surfaces of constant phase intersect horizontal planes z? = const along

the semi-hyperbolae

x2
?

1− z2
?

− y2
?

z2
?

= 1, x? > 0, (5.11)

and intersect the vertical plane y? = 0 along the semi-circle

x2
? + z2

? = 1, 0 < x? < 1, (5.12a)

and the semi-line z? = 0, x? > 1. (5.12b)

These intersections, represented in figure 5 and supplemented in figure 6 by a perspective

view, are identical to those found theoretically by Wurtele (1957), Redekopp (1975), Rehm
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& Radt (1975), Peat & Stevenson (1975) and Thorpe (1975), and confirmed experimentally

by Peat & Stevenson (1975), Makarov & Chashechkin (1981, 1982), Chashechkin (1989),

Hopfinger et al. (1991) and Bonneton et al. (1993).

The structure of the displacement field combines these variations of the phase with the

variations of the amplitude. In the plane y = 0, it was represented by Wurtele (1957) as a

set of isopycnals whose upstream tilt with |z| reflects the circular wavecrests, in agreement

with the visualisations of Castro et al. (1983), Castro (1987) and Hopfinger et al. (1991).

In each plane z = const, the amplitude is an extremum (Nmd)/(4πU2z) at (x1 = |z|,

y = 0), and at large distances downstream (x1 À r⊥) it becomes independent of x1 and

is a local extremum (Nmd)/(3π
√

3U2z) for |y| = |z|/√2 (Janowitz 1984). The resulting

‘crescent’-shaped displacement field, reminiscent of the hyperbolic wavecrests, is shown in

figure 7 for Nz/U = 1
2 , 1, and coincides with laboratory (Hopfinger et al. 1991; Bonneton

et al. 1993) as well as field (Wurtele 1957; Umeki & Kambe 1989) observations.

Comparison with the numerical calculations of Sturova (1974) and Umeki & Kambe

(1989) reveals the domain of validity of those asymptotic results, say, (x? > 2, y? > 0.5),

similar criteria x? > 2 and x? > 4π having been proposed by Wurtele (1957) and Sturova

(1978), respectively. This confirms the discussion of §3.1, according to which the theory is

valid sufficiently far from the source path. On this path, as pointed out by Miles (1971),

expansions (5.7) and (5.9) diverge, as a consequence of the failure of both the asymptotic

procedure (since R → 0) and the point source model (since λ → 0). In the intermediate

zone Nx1/U À Nr⊥/U À 1 or Nr1/U À 1/θ1 À 1, that is near the source path but still

in the far field, expansion (5.7) becomes

v(r, t) ∼ H(x1)
Nm0

2πU

|y|
r2
⊥

r⊥
r⊥

cos

[
N

U
|z|
(
x1

r⊥
+

r⊥
2x1

)]
. (5.13)

To leading order, curves of constant phase simplify to semi-hyperbolae x2
? − (y?/z?)

2 = 1

in planes of constant z?, to a vertical line x? = 1 in the plane y? = 0, and to inclined lines

of angle arccos (1/x?) to the vertical in planes of constant x?. This is just the structure

described by Crapper (1959), Miles (1971) and Sturova (1974, 1980).
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5.2. Steady approach

Two features of the wave field are missed by the preceding analysis: the presence of a static

disturbance centred on the source, extending both ahead of and behind it, and which in the

literature has been given such various names as ‘non-wave term’ (Crapper 1959), ‘near field’

(Miles 1971), ‘upstream effect’ (Sturova 1974), ‘upstream propagating waves’ (Redekopp

1975), ‘potential flow’ (Gilreath & Brandt 1985), ‘cyclonic disturbance’ (Cheng et al. 1984;

Hefazi & Cheng 1988); for an extended source, the spanwise confinement of the waves to a

strip of the source width, and whose existence, revealed by theory (Crapper 1959, 1962),

has been confirmed by both experiments (Castro 1987) and simulations (Hanazaki 1988;

Suzuki & Kuwahara 1992). Here the steady analysis of §4 is seen to provide explanations

for these phenomena.

Our starting point is, from the substitution of I (5.10) in (4.5),

∂ψ

∂t
(r, t) =

m0

2π2U
Im

∫ ∞

0

_ K0

[(
k2
xr

2
⊥ −

N2

U2
z2

)1
2
]

e−ikxx1

(k2
x −N2/U2)

1
2

dkx, (5.14)

which is equivalent to formulae (62) of Crapper (1959), (6.23) of Miles (1971) and (3.15) of

Umeki & Kambe (1989), and in the planes y = 0 and z = 0 is reduced through straightfor-

ward changes of variables to formulae (10)–(11) of Gorodtsov & Teodorovich (1980). On

the coordinates axes this is readily evaluated, using Gradshteyn & Ryzhik (1980), as

∂ψ

∂t

∣∣∣∣
y=z=0

= − m0

4πU
S0,0

(
N

U
|x1|
)

(x1 < 0), (5.15a)

=∞ (x1 > 0), (5.15b)

∂ψ

∂t

∣∣∣∣
x1=z=0

= − m0

4πU
I0

(
N

2U
|y|
)
K0

(
N

2U
|y|
)
, (5.16)

∂ψ

∂t

∣∣∣∣
x1=y=0

=
m0

8U
J0

(
N

2U
|z|
)
Y0

(
N

2U
|z|
)
, (5.17)

and becomes asymptotically

∂ψ

∂t

∣∣∣∣
y=z=0

∼ − m0

4πN |x1|

(
x1 < 0 and

N

U
|x1| À 1

)
, (5.18)

∂ψ

∂t

∣∣∣∣
x1=z=0

∼ − m0

4πN |y|

(
N

U
|y| À 1

)
, (5.19)
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∂ψ

∂t

∣∣∣∣
x1=y=0

∼ − m0

4πN |z| cos

(
N

U
|z|
) (

N

U
|z| À 1

)
, (5.20)

where J0 and Y0 are Bessel functions of the first and second kind, respectively, I0 and

K0 are modified Bessel functions of the first and second kind, respectively, H0 is a Struve

function and S0,0 = π
2 (H0−Y0) is a Lommel function. This not only indicates coherence

with expansion (5.7) in the plane x1 = 0, the necessary factor 1
2 being taken into account,

but, more importantly, confirms both the divergence of the internal potential on the source

path (r⊥ = 0, x1 > 0) and the presence of a non-wave disturbance upstream of it.

The exact form of this disturbance is obtained, as did Crapper (1959) for internal waves

and Miles (1969c) for inertial waves, by deforming the integration path of (5.14) as shown

in figure 8. The upstream disturbance is identified as the integral along the imaginary

axis, namely

∂ψu

∂t
(r, t) =

m0

4πU
sgnx1

∫ ∞

0

J0

[(
χ2r2
⊥ +

N2

U2
z2

)1
2
]

e−χ|x1|

(χ2 +N2/U2)
1
2

dχ, (5.21)

and in a homogeneous fluid is associated with a velocity potential ∂2ψu/∂t
2 identical to

that −m0/(4πr1) for irrotational flow. Thus, consistently with Gilreath & Brandt (1985),

the upstream disturbance represents the ‘potential flow’, modified by the stratification,

around the source of the waves.

Its asymptotic form follows from the application of Watson’s lemma to (5.21), but for a

complete picture of the wave field it is more adequate to write (5.14) as the inverse Fourier

transform, of argument x1,

∂ψ

∂t
(r, t) = −m0

πU
Im FT−1

{
H(kx)

(k2
x −N2/U2)

1
2

K0

[(
k2
xr

2
⊥ −

N2

U2
z2

)1
2
]}
, (5.22)

and to evaluate this transform for |x1| → ∞ and fixed r⊥, that is in the vicinity of the x1-

axis, by Lighthill’s rule (1958, §4.3). For convenience the same definition has momentarily

been adopted for transforms with respect to x1 as for transforms with respect to t. Then,

adding up the contributions of the singularities 0, (N |z|)/(Ur⊥) and N/U of the original

function and using (A 1)–(A 3) in Appendix A, we find, for N |x1|/U À 1 and fixed Nr⊥/U ,
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∂ψ

∂t
(r, t) ∼ m0

4πU

U

Nx1
J0

(
N

U
|z|
)

−H(x1)
m0

2πU

U

Nx1

r⊥
|y| cos

[
N

U
|z|
(
x1

r⊥
+

r⊥
2x1

)]

−H(x1)
m0

πU

(
U

2πNx1

)1
2

K0

(
N

U
|y|
)

cos

(
N

U
x1 −

π

4

)
, (5.23)

namely a decomposition of internal waves into the upstream disturbance, the permanent

gravity waves, of frequency N |z|/r⊥, given by (5.13), and permanent buoyancy oscillations

of frequency N , respectively. This is just one of the results of Crapper (1959).

Consistency with §5.1 requires its generalisation in the whole of the far field r1 → ∞

with θ1 and ϕ1 fixed. Following a procedure applied by Miles (1969a) to inertial waves,

we replace for |x1| → ∞ and fixed r⊥/|x1| the modified Bessel function K0 in (5.14) by its

asymptotic expansion, so that

∂ψ

∂t
(r, t) ∼ m0

(2π)
3
2U(r1 sin θ1)

1
2

Im

∫ ∞

0

_
er1φ(kx)

(
k2
x −

N2

U2

)1
2
(
k2
x −

N2

U2
sin2ϕ1

)1
4

dkx, (5.24)

with φ(kx) = −ikx cos θ1 −
(
k2
x −

N2

U2
sin2ϕ1

)1
2

sin θ1, (5.25)

and we evaluate this integral asymptotically by a combination of the methods of stationary

phase and of steepest descents (Bleistein 1984, §§2.7 and 7.2–8.1). The corresponding

deformation of contour is shown in figure 9. For x1 > 0 the integrand has a saddle point

ks = (N/U) cos θ1| sinϕ1|, and the deformed integration path follows the real axis from

the endpoint 0 to ks, then continues along the path of steepest descent emanating from ks,

and then, if cos θ1 > | sinϕ1|, crosses the cut emanating from the branch point N/U . In

that case three contributions arise, associated to the three critical points 0, ks and N/U of

the integrand; a preliminary deformation of the cut is required, to transform it locally into

a path of steepest descent making the angle θs = − arctan (cot θ1| cosϕ1|) with the real

axis. For x1 = 0 the endpoint and the saddle point merge, and define a path of steepest

descent parallel to the real axis at infinity. For x1 < 0 there is no saddle point, and the

only contribution to (5.24) comes from the endpoint.
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Straightforward but lengthy calculations yield, then, for Nr1/U À 1 and fixed θ1, ϕ1,

∂ψ

∂t
(r, t) ∼ m0

2πNx1

(
U

2πN |z|

)1
2

cos

(
N

U
|z| − π

4

)

−H(x1)
m0

2πNr1

1

(sin2θ1 + cos2θ1 cos2ϕ1)
1
2

cos

(
N

U
r1| sinϕ1|

)

−H(x1)
m0

2πN(x1r⊥)
1
2

exp

(
−N
U
|y|
)

H(cos θ1 − | sinϕ1|)
(sin2θ1 + cos2θ1 cos2ϕ1)

1
4

× cos

(
N

U
x1 −

π

4
− 3

2
arctan

tan θ1

| cosϕ1|

)
, (5.26)

where for x1 = 0 the third term is absent and the first two terms combine into one half of

the second term. In this way the presence of the three components exhibited by (5.23) is

confirmed, and in their common area of validity N |x1|/U À Nr⊥/U À 1 both expansions

coincide with each other.

For point sources, when physically meaningful quantities such as the vertical displace-

ment ζ are considered, gravity waves are dominant. However, as the finite cross-section of

any real source is taken into account, interference between the short waves originating at

the various points of this source are especially important near its path, and blur gravity

waves (Miles 1971; Janowitz 1984). This gives rise to the upstream disturbance and to

buoyancy oscillations.

The upstream disturbance exhibits oscillations along the vertical, attributed by spectral

analysis (i.e. Fourier transformation of the Bessel function J0(N |z|/U)) or study of the

wavenumber surface (Redekopp 1975) to waves of zero frequency and vertical wavenumbers

kz ranging from 0 to N/U and concentrated near N/U . Lighthill (1978, §4.12) explained

how such waves can be found upstream: since their horizontal wavenumber kh is 0, their

group velocity along the x1-axis is ±N/|kz| and can be directed upstream and exceed

the velocity U of the source. The upstream disturbance is, thus, of the same kind as

the columnar disturbances known to arise in two-dimensional flow of unbounded fluids

(Baines 1987) and three-dimensional flow of fluids of finite depth (Castro & Snyder 1988;

Hanazaki 1989), and to be associated with the blocking of the flow by the stratification,

but never before registered in three-dimensional flow of unbounded fluids; even if, unlike

24



        

these disturbances, the upstream disturbance decreases with |x1| and is then centred on

x1 = 0. For an extended source it should appear as a maximum centred on point O1

and superimposed on the wavecrests associated with gravity waves. The calculations of

Smith (1980), confirmed by both simulations (Smolarkiewicz & Rotunno 1989; Rotunno

& Smolarkiewicz 1991) and observations (Umeki & Kambe 1989), exhibit how, as the

streamwise dimension of the source increases from 0 to O(U/N), successive wavecrests

vanish and give way to that maximum.

Buoyancy oscillations originate from the second term of integral (3.8), eliminated in

(3.12) by the application of the method of stationary phase (see Appendix B). They de-

crease exponentially with the scaled spanwise distance N |y|/U , and thus are confined to a

strip approximately one wavelength wide. For an extended source the scaling distance is

modified, but the decrease remains essentially exponential and spanwise. Then, for certain

source shapes, buoyancy oscillations can dominate gravity waves and be confined to a strip

of approximately the source width, consistently with Crapper (1959, 1962), Castro (1987),

Hanazaki (1988) and Suzuki & Kuwahara (1992).

6. Uniform vertical motion of a steady source

We consider now the uniform vertical motion of a steady source, a problem which again

has meteorological applications—connected to the rise of thermals (Warren 1960). In the

moving system of coordinates (x, y, z1), with the z1-axis directed vertically upwards, we

use both cylindrical coordinates (rh, z1) and spherical coordinates (r1, θ1), defined by

rh = (x2 + y2)
1
2 = r1 sin θ1, z1 = z − Ut = −r1 cos θ1, (6.1)

and represented in figure 10. The velocity of the source is v0 = Uez, with ez a unit vector

along the z1-axis, and points either upwards (U > 0) or downwards (U < 0).

The description of the waves requires the introduction of an additional variable, which

we choose as the angle η of the direction of propagation with the horizontal. The distance

between emission and reception is, in cylindrical components,

R(τs) =
rh

cos η
[cos η,− sin η], (6.2)
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so that the retarded time equation becomes a cubic equation for tan η, namely

tan3η + 2 tan η − cot θ1 = 0, (6.3)

whose real solution is

tan η =

[(
cot2θ1

4
+

8

27

)1
2

+
cot θ1

2

]1
3

−
[(

cot2θ1

4
+

8

27

)1
2

− cot θ1

2

]1
3

, (6.4)

in terms of which τs is given by

t− τs =
rh

U

sin η

cos3η
, (6.5)

and the causality condition τs < t imposes, for U > 0, that 0 < θ1 <
π
2 and 0 < η < π

2 ,

and, for U < 0, that π
2 < θ1 < π and −π2 < η < 0. This means that all the waves

generated since the beginning of the motion are found downstream (i.e. that Uz1 < 0),

and that those generated at any particular time are situated behind the position S of the

source at that time (cf. figure 10). A plot of η versus θ1 is given in figure 11.

In terms of η we obtain, then, the frequency and wavelength

ω = N | sin η|, λ = 2π
U

N
cot η, (6.6)

the group velocities in the fixed and moving reference frames

cg = U
cos2η

sin η
[cos η,− sin η], (6.7)

cg1 = cg − Uez = U
(1 + cos2η sin2η)

1
2

sin η
[sin θ1,− cos θ1], (6.8)

and the far-field velocity, for Nr1/|U | À 1,

v(r, t) ∼ H(−Uz1)
Nm0

2πUrh

sin η cos η

(2 + sin2η)
1
2

R

R
cos

(
N

|U |rh
sin2η

cos3η

)
, (6.9)

consistently with Warren (1960) and, up to misprints, with Makarov & Chashechkin (1982).

Only the frequency is bounded, and none of the group velocities is transverse.

The two forms of the phase, deduced from each other by (6.3),

Φ =
N

|U |rh
sin2η

cos3η
= − N

|U |z1
sin η

1 + cos2η
, (6.10)
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imply that surfaces of constant phase have, in terms of r? = (Nr1)/(|U |Φ), the parametric

equation

rh? =
cos3η

sin2η
, z? = −1 + cos2η

sin η
, (6.11)

and thus have the ‘flared skirt’ or ‘herring bone’ shape shown in figure 12, with cusps on

the source path at z? = − sgnU and parabolic branches z2
? ∼ 4rh? far from it. This agrees

with Lighthill (1967, 1978, §4.12) and Mowbray & Rarity (1967), and is reflected in the

structure of the velocity field, studied by Warren (1960) and visualised by Stevenson et al.

(1983), Gärtner (1983a, b) and Gärtner et al. (1986).

In two regions this analysis breaks down: close to the source path, where shorter waves

are found and the point source model is invalidated, with, for N |z1|/|U | À Nrh/|U | À 1,

η ∼
[
π

2
−
(
rh

|z1|

)1
3

− 1

3

rh

|z1|

]
sgnU, (6.12)

so that v(r, t) ∼ −H(−Uz1)
Nm0

2π
√

3U

ez

r
2
3

h|z1|13
cos

[
N

|U |

(
|z1| −

3

2
r

2
3

h|z1|
1
3

)]
; (6.13)

close to the source level, where longer waves are found and the Boussinesq approximation

is invalidated, with, for Nrh/|U | À N |z1|/|U | À 1,

η ∼ −1

2

z1

rh
, (6.14)

so that v(r, t) ∼ −H(−Uz1)
Nm0

4π
√

2U

z1

r2
h

rh

rh
cos

(
N

|U |
z2

1

4rh

)
. (6.15)

Both limiting forms are shown in figures 11 and 12. They describe the cusps and parabolic

branches of the wavecrests, respectively, and coincide, up to misprints, with the results of

Grigor’ev & Dokuchaev (1970).

As before, we can think of the analysis of §4 as a source of complementary insight into

the waves. The substitution of I (5.8) in (4.5) yields, consistently with formulae (18) of

Warren (1960) and (34) of Grigor’ev & Dokuchaev (1970),

ψ(r, t) =
m0

2π2U2
Re

∫ ∞

0

^ K0

[
k2
zrh

(k2
z −N2/U2)

1
2

]
e−ikzz1 sgnU

k2
z −N2/U2

dkz. (6.16)
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By the same procedure as in §5.2, this proves the asymptotic wave field to combine the

preceding gravity waves with a second wave term and an upstream disturbance. However,

this second term is not a buoyancy oscillation but an evanescent gravity wave decreasing

exponentially with the assumed large parameter, while the upstream disturbance reduces to

exactly the same flow as in a homogeneous fluid, since no physical mechanism is susceptible

of blocking a vertical stratified flow. Hence, no significant feature of the waves is missed

by the analysis of §3.

7. Uniform horizontal motion of an oscillating source

We consider next the uniform horizontal motion of a source of purely oscillatory strength

(ω0 6= 0 and m0 = const), examples being bodies which both translate and heave (Rehm

& Radt 1975), and turbulent wakes (Gilreath & Brandt 1985). Studies of this problem

(Stevenson & Thomas 1969; Redekopp 1975; Rehm & Radt 1975; Peat & Stevenson 1975)

have focused on the shape of surfaces of constant phase, and on the existence of several

wave systems, most of which confined within caustics. Here for the first time an analytical

approach of these points is proposed, including the justification of an approximate result

cited, but not proved, by Gilreath & Brandt (1985).

In the system of coordinates of §5, we introduce the reduced Doppler frequency

ξ± =
ω±
N

=
ω0 − Ukx±

N
= ± |z|

(X2
± + r2

⊥)
1
2

, (7.1)

positive for sum waves, negative for difference waves, and for both of them satisfying

|ξ±| < | sinϕ1|. Denoting as Υ = ω0/N the ratio of the frequency of the source to the

frequency of the fluid, and deducing the sign of X± from the causality condition τ± < t,

we express the distance travelled by the waves between emission and reception as

R± =
r⊥
ξ±

[(sin2ϕ1 − ξ2
±)

1
2 sgn(Υ − ξ±), ξ± cosϕ1, ξ± sinϕ1], (7.2)

and transform the retarded time equation into an equation for ξ±, namely

tan θ1 =
ξ2
±(sin2ϕ1 − ξ2

±)
1
2

Υ sin2ϕ1 − ξ3
±

sgn(Υ − ξ±), (7.3)
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which, squared, yields the sixth-order necessary condition

ξ6
± − ξ4

± cos2θ1 sin2ϕ1 − 2Υξ3
± sin2θ1 sin2ϕ1 + Υ 2 sin2θ1 sin4ϕ1 = 0, (7.4)

in agreement with Rehm & Radt (1975), while τ± itself is given in terms of ξ± by

t− τ± =
r⊥
U

|Υ − ξ±| sin2ϕ1

ξ2
±(sin2ϕ1 − ξ2

±)
1
2

. (7.5)

For fixed θ1, the number and nature of the solutions of (7.3) follow from the behaviour

of its right-hand side as a function of the variable ξ? = ξ±/| sinϕ1|, with parameter Υ? =

Υ/| sinϕ1|, in the range |ξ?| < 1 of admissible ξ?. This behaviour, illustrated in figure 13,

is determined by the position of ξ± with respect to Υ and to the real roots, if any, of the

third-order polynomial ξ3
± − 3Υξ2

± + 2Υ sin2ϕ1.

Difference waves are found downstream of the source, within the caustic

θ1 = Θ− ≡ arctan

[
Ξ2
−

3Υ (sin2ϕ1 − Ξ2
−)

1
2

]
, (7.6)

which corresponds to a maximum of the right-hand side of (7.3) at

ξ− = Ξ− ≡ Υ
{

1− 2 cos

[
1

3
arccos

(
1− sin2ϕ1

Υ 2

)
− π

3

]}
(| sinϕ1| <

√
2Υ ), (7.7a)

≡ Υ
{

1−
[

sin2ϕ1

Υ 2
− 1 +

(
sin2ϕ1

Υ 2
− 2

)1
2 sinϕ1

Υ

]1
3

−
[

sin2ϕ1

Υ 2
− 1−

(
sin2ϕ1

Υ 2
− 2

)1
2 sinϕ1

Υ

]1
3
}

(| sinϕ1| >
√

2Υ ). (7.7b)

As Kelvin ship waves (Lighthill 1978, §3.10; Sharman & Wurtele 1983), difference waves

result from the superposition of a transverse wave system (Ξ− < ξ− < 0) and a divergent

wave system (−| sinϕ1| < ξ− < Ξ−), named after the shape of their horizontal curves of

constant phase (see figures 19 and 20 below), and which merge on the caustic.

The structure of sum waves is fairly different. Frequencies 0 < ξ+ < min(Υ, | sinϕ1|) are

associated to ‘downstream waves’, which extend only behind the source and are confined

within a wavefront defined for | sinϕ1| < Υ by the caustic

θ1 = Θ
(d)
+ ≡ arctan

[
Ξ2

+

3Υ (sin2ϕ1 − Ξ2
+)

1
2

]
(| sinϕ1| < Υ ), (7.8)
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corresponding to a maximum of the right-hand side of (7.3) at

ξ+ = Ξ+ ≡ Υ
{

1− 2 cos

[
1

3
arccos

(
1− sin2ϕ1

Υ 2

)
+
π

3

]}
(| sinϕ1| < Υ ), (7.9)

and for | sinϕ1| > Υ by the characteristic cone Υ = |z1|/r1 = sin θ1| sinϕ1| or

θ1 = Θ
(d)
+ ≡ arcsin

(
Υ

| sinϕ1|

)
(| sinϕ1| > Υ ), (7.10)

corresponding to a change of the sign of the right-hand side of (7.3) at

ξ+ = Ξ+ ≡ Υ (| sinϕ1| > Υ ). (7.11)

By contrast, frequencies min(Υ, | sinϕ1|) < ξ+ < | sinϕ1| are associated to ‘upstream

waves’, which extend on both sides of the source and are observed in the zone | sinϕ1| > Υ ,

above or below a wavefront defined upstream by the characteristic cone

θ1 = Θ
(u)
+ ≡ π − arcsin

(
Υ

| sinϕ1|

)
(| sinϕ1| > Υ ), (7.12)

and downstream by the ‘characteristic dihedron’ Υ = |z1|/r⊥ = | sinϕ1|; on the plane

x1 = 0,

ξ+
∣∣
x1=0

= (Υ sin2ϕ1)
1
3 . (7.13)

In both cases the transverse character of the waves for 0 < ξ+ < Ξ+, and their divergent

character for Ξ+ < ξ+ < | sinϕ1|, are preserved.

Thus, for Υ < 1, difference waves, downstream sum waves and upstream sum waves are

all present, while for Υ > 1 only the first two are observed. Whatever Υ , they are confined

within fronts, represented in figures 14 and 15, parts of which are caustics composed of

pairs of cones symmetric with respect to the plane z = 0, and of apex O1 and axes in the

plane y = 0. As Υ increases the cones become progressively circular, until eventually, for

Υ À 1,

Ξ± ∼ ±
(

2

3

)1
2

| sinϕ1|, Θ± ∼
2

3
3
2

| sinϕ1|
Υ

, (7.14)

as shown in figure 16; this agrees with the result, cited by Gilreath & Brandt (1985), that

for Υ À 1, in the plane y = 0, the waves are situated inside a wedge of apex O1, axis O1x1

and semi-angle arctan(0.4/Υ ).
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It is, then, straightforward to derive the frequency and wavelength

ω± = Nξ±, λ± = 2π
U

N

∣∣∣∣
ξ±

(Υ − ξ±) sinϕ1

∣∣∣∣
(

sin2ϕ1 − ξ2
±

1− ξ2
±

)1
2

, (7.15)

and the far-field velocity, for Nr1/U À 1,

v±(r, t) ∼ H(Θ± − θ1)
Nm0

4πUr⊥
|ξ±|

∣∣∣∣
(1− ξ2

±)(Υ − ξ±)

ξ3
± − 3Υξ2

± + 2Υ sin2ϕ1

∣∣∣∣
1
2 R±
R±

× exp
{
i
[
Φ± ±

π

2
H(|Ξ±| − |ξ±|)

]}
, (7.16)

whose phase is written by (7.3) in either of the two forms

Φ± = ω0t−
N

U
x1

(Υ − ξ±)2 sin2ϕ1

Υ sin2ϕ1 − ξ3
±

= ω0t−
N

U
r⊥

(Υ − ξ±)2 sin2ϕ1

ξ2
±(sin2ϕ1 − ξ2

±)
1
2

sgn(Υ − ξ±). (7.17)

Surfaces of constant phase, defined as surfaces of constant Φ? = |ω0t− Φ±|, have in terms

of r? = (Nr1)/(UΦ?) the parametric equation

x? =
Υ sin2ϕ1 − ξ3

±
(Υ − ξ±)2 sin2ϕ1

sgn(Υ − ξ±), r⊥? =
ξ2
±(sin2ϕ1 − ξ2

±)
1
2

(Υ − ξ±)2 sin2ϕ1

. (7.18)

They are shown in figures 17 and 18. In figures 19 and 20, obtained by Lighthill’s method,

they are intersected by horizontal and vertical planes, and reduce to the curves drawn by

Stevenson & Thomas (1969), Redekopp (1975), Rehm & Radt (1975) and Peat & Stevenson

(1975).

In three cases this analysis breaks down. First, on caustics, expansion (7.16) predicts a

divergence of the amplitude and a phase shift of π2 between divergent waves and transverse

waves, as a consequence of the vanishment of the second derivative A±ω±c±/R± of the

phase (3.25). Lighthill (1978, §4.11) explained how the method of stationary phase can be

amended to overcome such local difficulties. This was not attempted.

The other two cases are, as in §§5 and 6 above, places where λ± → 0 and λ± → ∞.

Shorter waves are found near the source path, where ξ± = 0 for transverse waves and

ξ± = ±| sinϕ1| for divergent waves. For Nx1/U À Nr⊥/U À 1, transverse waves satisfy

ξ± ∼ ±
(
Υ
|z|
x1

)1
2

, (7.19)
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so that

v±(r, t) ∼ iH(x1)
Nm0

4π
√

2U

(
Υ

x1|z|

)1
2

ex exp

{
i

[
ω0t−

N

U
Υx1 ± 2

N

U
(Υx1|z|)

1
2

]}
, (7.20)

which describes the contact at x? = 1/Υ of difference waves and downstream sum waves,

along hyperbolic wavecrests. Similarly, for divergent waves, provided | sinϕ1| 6= Υ ,

ξ± ∼ ±
|z|
r⊥
∓ 1

2

(
1∓ Υ r⊥|z|

)2
r⊥|z|
x2

1

, (7.21)

so that

v±(r, t) ∼ H(x1)
Nm0

4πU

|y|
r2
⊥

r⊥
r⊥

exp

{
i

[
ω0t−

N

U
x1

(
Υ∓ |z|

r⊥

)
±N
U

r3
⊥

2x1|z|

(
Υ∓ |z|

r⊥

)2]}
. (7.22)

This describes for y? = 0 the intersections at x? = 1/|Υ ∓ 1| of difference waves and of

sum waves with the source path, along elliptic or hyperbolic wavecrests, for z? → 0 the

contact at x? = 1/Υ of difference waves and downstream sum waves, and for | sinϕ1| → Υ

the contact as x? →∞ of upstream sum waves and downstream sum waves. Note also the

relationship between (5.13) and (7.22).

Longer waves are associated with sum waves and are found near the characteristic cone,

where ξ+ = Υ . This defines a conical shell Nr1/U À 1/(Θ+−θ1)À 1, which intersects the

characteristic dihedron in the plane θ1 = π
2 . Out of the intersection, i.e. for | sinϕ1| 6= Υ ,

ξ+ ∼ Υ −
1

2
Υ (Θ+ − θ1) cotΘ+, (7.23)

so that

v+(r, t) ∼ iH(Θ+ − θ1)
(N2 − ω2

0)
1
2m0

8πUr1

(
Θ+ − θ1

sinΘ+ cosΘ+

)1
2 r1

r1

× exp

{
i

[
ω0t−

ω0

U

r1

4

cosΘ+

sin2Θ+

(Θ+ − θ1)2

]}
, (7.24)

and the wavecrests are tangent to the characteristic cone as r? →∞. In the intersection,

for Nr1/U À 1/(π2 − θ1)À 1 or Nr⊥/U À Nx1/U À 1, with | sinϕ1| = Υ ,

ξ+ ∼ Υ −
2

9
Υ
(π

2
− θ1

)2
∼ Υ − 2

9
Υ

(
x1

r⊥

)2
, (7.25)

and v+(r, t) ∼ iH(x1)
(N2 − ω2

0)
1
2m0

4π
√

3Ur⊥

r⊥
r⊥

exp

[
i

(
ω0t−

2
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ω0

U

x3
1

r2
⊥

)]
. (7.26)

All four limiting forms are shown in figures 13, 19 and 20.

32



     

8. Conclusions and discussion

This paper has applied the Green’s function formalism to the problem of internal wave

generation by a moving point source. Joint use of the asymptotic form of the impulsive

Green’s function and of the principle of stationary phase has led to analyse the wave field

as a collection of impulses radiated by the source all along its path. At each point and time

one impulse is received, which was emitted at the retarded time τs and has since propagated

with the group velocity. An implicit equation defines τs, in terms of which all character-

istics of the waves are determined as characteristics of the associated impulse; differences,

attributable to the motion of the source, being the Doppler relation between wavenumbers

and frequency, and the modified amplitude. For sources of oscillating strength, moreover,

two systems of waves are observed.

For uniform motion an alternative point of view is to consider steady-state waves at the

outset. In this way, basic formulae of Lighthill’s method and of the ‘integral’ method men-

tioned in §2.1 are recovered as integrals involving Fourier transforms of the monochromatic

Green’s function.

Both approaches have been applied to uniform horizontal or vertical motion of a steady

source, and to uniform horizontal motion of an oscillatory source. In all three cases explicit

expressions of the waves have been found, complementing existing results when there are

some. For horizontal motion of a steady source, moreover, two features have been noted,

which at first sight can appear as insufficiencies of the analysis but which upon careful

examination do not compromise its validity. These are as follows.

1. The permanent wave field comprises not only the gravity waves predicted in §3, but

also buoyancy oscillations and a columnar disturbance. In fact, although the approach of §3

takes all components of the wave field into account, the way that it has been implemented

does not; namely, §3 was aimed at calculating the dominant gravity waves for any motion of

a source of any time dependence, not at dealing with contributions insignificant for a point

source and of which no general expression can be found. The origin of these contributions

is, however, clear, as are the lines along which the analysis could be amended: buoyancy
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oscillations correspond to the second terms of the integrals (3.8) and (3.24) obtained before

the method of stationary phase was applied, while the columnar disturbance is continuously

built up by the successive arrivals of waves of vanishing frequency (Bretherton 1967, p. 558),

invalidating the use of expansion (3.7) of the Green’s function in (3.6).

2. The wave amplitude diverges on the source path, implying infinite wave drag (Gorodt-

sov & Teodorovich 1980), and decreases as the source velocity increases, while experiments

exhibit some maximum (Makarov & Chashechkin 1981; Castro et al. 1983). The reason

for this lies in the way that real moving bodies have been modelled. As discussed in §2.2,

the same criterion a ¿ U/N , with a the body scale height and U/N the stratification

scale height, justifies classically the use of (i) the same model as in homogeneous flow and

(ii) the point source model. For internal waves, however, the adequate scale height is the

wavelength λ, and the correct justification of the point source model is the compactness

condition a ¿ λ, which whatever U/Na cannot be satisfied near the source path where

λ → 0. On these grounds, for U/Na À 1, removing approximation (ii) but maintaining

approximation (i), Gorodtsov & Teodorovich (1982) have proposed to use the distribution

of sources and sinks exactly equivalently to the body in homogeneous flow. Extension of

the analysis to such cases is considered in Voisin (1991a).
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Appendix A. Some inverse Fourier transforms

The following transforms F (ω) and original functions f(t) have been used:

F (ω) f(t)

ω−
1
2 i

H(t)

(πt)
1
2

(A 1)

K0(αω
1
2 )

H(t)

2t
exp

(
i
α2

4t

)
(A 2)

H(ω)
δ(t)

2
+

i

2πt
. (A 3)

They were calculated as in I. Consistently with (4.2), Fourier transformation with respect

to time was defined by

F (ω) =

∫
f(t) e−iωt dt ≡ FT[f(t)], (A 4a)

f(t) =
1

2π

∫
^F (ω) eiωt dω ≡ FT−1[F (ω)], (A 4b)

where the sign ^ indicates indentation of the integration path below the real singularities

of the integrand.

Appendix B. Unsteady evaluation of buoyancy oscillations

For a steady source in uniform horizontal motion, in the limit t→∞ with r1 fixed, the

buoyancy oscillations appearing in (3.8) become

ψb(r, t) ∼ − m0

(2U)
1
2 (πN)

3
2

∫ ∞

0

sin

(
N

U
α2 − π

4

)

[(α2 − x1)2 + y2]
1
2

dα, (B 1)

with α = [U(t− τ)]
1
2 . Upstream of the source, the inverse square root in the integrand of

(B 1) is for |x1| À |y| equivalent to (α2 + |x1|)−1, so that

ψb(r, t) ∼ − m0

(2U)
1
2 (πN)

3
2

∫ ∞

0

sin

(
N

U
α2 − π

4

)

α2 + |x1|
dα (x1 < 0). (B 2)
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This can be calculated exactly in terms of Fresnel integrals and trigonometric functions,

and for N |x1|/U À 1 is asymptotic to

ψb(r, t) ∼ m0

2
5
2πNU

(
U

N |x1|

)2
(x1 < 0). (B 3)

Downstream of the source, the inverse square root in the integrand of (B 1) is a maximum

|y|−1 at α = x
1
2
1 , and this maximum is all the more peaked as x1 is larger than |y|; hence,

for Nx1/U À 1, the dominant contribution to (B 1) arises for x1 À |y| from the vicinity

of x
1
2
1 . Writing α = x

1
2
1 + β/(2x

1
2
1), with β ¿ x1, we obtain

ψb(r, t) ∼ − m0

2πNU

(
U

2πNx1

)1
2
∫ ∞

−∞

sin

(
N

U
β +

N

U
x1 −

π

4

)

(β2 + y2)
1
2

dβ (x1 > 0), (B 4)

which is readily evaluated as the product of a modified Bessel function and a trigonometric

function, namely

ψb(r, t) ∼ − m0

πNU

(
U

2πNx1

)1
2

K0

(
N

U
|y|
)

sin

(
N

U
x1 −

π

4

)
(x1 > 0). (B 5)

Thus, to leading order, for NtÀ 1, N |x1|/U À 1 and |x1| À |y|, the buoyancy oscillations

derived in (3.8) by an unsteady analysis reduce to precisely those derived in (5.23) by a

steady analysis.

References

Aksenov, A. V., Mozhaev, V. V., Skorovarov, V. E. & Sheronov, A. A. 1989
Stratified flow over a cylinder at low values of the internal Froude number. Fluid Dyn.
24, 639–642.

Baines, P. G. 1987 Upstream blocking and airflow over mountains. Ann. Rev. Fluid
Mech. 19, 75–97.

Baines, P. G. & Grimshaw, R. H. J. 1979 Stratified flow over finite obstacles with
weak stratification. Geophys. Astrophys. Fluid Dyn. 13, 317–334.

Baines, P. G. & Hoinka, K. P. 1985 Stratified flow over two-dimensional topography
in fluid of infinite depth: a laboratory simulation. J. Atmos. Sci. 42, 1614–1630.

Belotserkovskii, O. M., Belotserkovskii, S. O., Gushchin, V. A., Morozov,
E. N., Onufriev, A. T. & Ul’yanov, S. A. 1984 Numerical and experimental

36



    

modeling of internal gravity waves during the motion of a body in a stratified liquid.
Sov. Phys. Dokl. 29, 884–886.

Bleistein, N. 1966 Uniform asymptotic expansions of integrals with stationary point
near algebraic singularity. Comm. Pure Appl. Maths 19, 353–370.

Bleistein, N. 1984 Mathematical Methods for Wave Phenomena. Academic.

Blumen, W. & McGregor, C. D. 1976 Wave drag by three-dimensional mountain
lee-waves in nonplanar shear flow. Tellus 28, 287–298.

Bonneton, P., Chomaz, J.-M. & Hopfinger, E. J. 1993 Internal waves produced by
the turbulent wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech.
(in press).

Boyer, D. L., Davies, P. A., Fernando, H. J. S. & Zhang, X. 1989 Linearly
stratified flow past a horizontal circular cylinder. Phil. Trans. R. Soc. Lond. A 328,
501–528.

Bretherton, F. P. 1967 The time-dependent motion due to a cylinder moving in an
unbounded rotating or stratified fluid. J. Fluid Mech. 28, 545–570.

Brighton, P. W. M. 1978 Strongly stratified flow past three-dimensional obstacles. Q.
J. R. Met. Soc. 104, 289–307.

Castro, I. P. 1987 A note on lee wave structures in stratified flow over three-dimensional
obstacles. Tellus A 39, 72–81.

Castro, I. P. & Snyder, W. H. 1988 Upstream motions in stratified flow. J. Fluid
Mech. 187, 487–506.

Castro, I. P., Snyder, W. H. & Marsh, G. L. 1983 Stratified flow over three-
dimensional ridges. J. Fluid Mech. 135, 261–282.

Chashechkin, Yu. D. 1989 Hydrodynamics of a sphere in a stratified fluid. Fluid Dyn.
24, 1–7.

Chashechkin, Yu. D. & Makarov, S. A. 1984 Time-varying internal waves. Dokl.
Earth Sci. Sect. 276, 210–213.

Cheng, H. K., Hefazi, H. & Brown, S. N. 1984 Topographically generated cyclonic
disturbance and lee waves in a stratified rotating fluid. J. Fluid Mech. 141, 431–453.

Chomaz, J.-M., Bonneton, P. & Hopfinger, E. J. 1993 The structure of the near
wake of a sphere moving horizontally in a stratified fluid. J. Fluid Mech. (in press).

Clark, T. L. & Peltier, W. R. 1977 On the evolution and stability of finite-amplitude
mountain waves. J. Atmos. Sci. 34, 1715–1730.

Crapper, G. D. 1959 A three-dimensional solution for waves in the lee of mountains.
J. Fluid Mech. 6, 51–76.

37



    

Crapper, G. D. 1962 Waves in the lee of a mountain with elliptical contours. Phil.
Trans. R. Soc. Lond. A 254, 601–623.

Crighton, D. G. & Oswell, J. E. 1991 Fluid loading with mean flow. I. Response of
an elastic plate to localized excitation. Phil. Trans. R. Soc. Lond. A 335, 557–592.

Dokuchaev, V. P. & Dolina, I. S. 1977 Radiation of internal waves by sources in an
exponentially stratified fluid. Izv. Atmos. Ocean. Phys. 13, 444–449.

Drazin, P. G. 1961 On the steady flow of a fluid of variable density past an obstacle.
Tellus 13, 239–251.

Ekman, V. W. 1904 On dead water. In Norwegian North Polar Expedition, 1893–1896,
Scientific Results (ed. by F. Nansen), Longmans (1906), 5(15).

Foldvik, A. & Wurtele, M. G. 1967 The computation of the transient gravity wave.
Geophys. J. R. Astron. Soc. 13, 167–185.
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Captions

Figure 1. Geometry for internal wave radiation by an arbitrarily moving source [adapted

from Stevenson 1973].

Figure 2. Coordinate system for uniform horizontal motion.

Figure 3. Geometry for internal wave radiation by a steady source in uniform horizontal

motion, in a plane ϕ1 = const.

Figure 4. Wave systems generated by a steady source in uniform horizontal motion, in the

plane y = 0. Inside the sphere of diameter OO1 joining the initial and present positions

of the source, permanent waves are dominant and curves of constant phase are semi-

circles Φ = Nr1/U . Outside the sphere transient waves are observed, with radial curves of

constant phase Φ = Nt|z|/r. On the sphere the two wave systems, shown for Nt/2π = 5

and Φ = 2nπ, merge.

Figure 5. Curves of constant phase for uniform horizontal motion of a steady source. The

curves, symmetric about the x?-axis, are drawn above and below it in planes y? = const

and z? = const, respectively.

Figure 6. Surfaces of constant phase for uniform horizontal motion of a steady source.

Only the lower half of these surfaces, symmetric about the plane z? = 0, is shown.

Figure 7. Normalised vertical displacement (2πU3/N2md)ζ in the planes (a) Nz/U = 1
2 ,

(b) Nz/U = 1. Only the part y > 0 of the displacement field, symmetric about the x1-axis,

is shown; black lines are nodal lines, white lines are crests and throughs.

Figure 8. Separation of the upstream disturbance. ( ) original integration path;

( ) deformed integration path.

Figure 9. Deformation of contour for the far-field evaluation of the waves, for x1 > 0 and

cos θ1 > | sinϕ1|.
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Figure 10. Geometry for internal wave radiation by a steady source in uniform vertical

motion.

Figure 11. Solution of equation (6.3) for the angular variable η. ( ) exact result (6.4);

( ) asymptotic results, deduced from (6.12) and (6.14), η ∼ π
2 − θ

1
3
1 − 1

3θ1 for θ1 → 0,

η ∼ 1
2 (π2 − θ1) for θ1 → π

2 and η ∼ −π2 + (π − θ1)
1
3 + 1

3 (π − θ1) for θ1 → π.

Figure 12. Surfaces of constant phase for uniform vertical motion of a steady source.

( ) exact surfaces (6.11); ( ) asymptotic surfaces z2
? ∼ 4rh? and |z?| ∼ 1 + 3

2r
2
3

h?
,

deduced from (6.13) and (6.15).

Figure 13. Solution of equation (7.3) for the frequency variable ξ?, for (a) Υ? = 0.5,

(b) Υ? = 1, (c) Υ? = 1.2. ( ) exact result; ( ) asymptotic results, deduced from

(7.19), (7.21), (7.23) and (7.25), θ1 ∼ ξ2
?/Υ? for ξ? → 0, θ1 ∼ [2(1 ∓ ξ?)]

1
2 /|1 ∓ Υ?| for

ξ? → ±1 6= Υ?, θ1 ∼ Θ+−2|Υ?−ξ?|/(1−Υ 2
? )

1
2 for ξ? → Υ? 6= 1 and θ1 ∼ π

2 −3[(1−ξ?)/2]
1
2

for ξ? → 1 = Υ?.

Figure 14. Wavefronts for an oscillating source in uniform horizontal motion, for Υ = 0.5;

(a) difference waves, (b) downstream sum waves, (c) upstream sum waves. Only the lower

half of the fronts, symmetric about the plane z = 0, is shown.

Figure 15. Wavefronts for an oscillating source in uniform horizontal motion, for Υ = 1.2;

(a) difference waves, (b) downstream sum waves.

Figure 16. Equation of the wavefronts for an oscillating source in uniform horizontal

motion. ( ) exact forms (7.6), (7.8), (7.10) and (7.12); ( ) asymptotic form (7.14).

Figure 17. Surfaces of constant phase for uniform horizontal motion of an oscillating

source, for Υ = 0.5; (a) difference waves, (b) downstream sum waves, (c) upstream sum

waves. Only the lower half of those surfaces, symmetric about the plane z? = 0, is shown;

this highlights divergent waves and hides transverse waves.
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Figure 18. Surfaces of constant phase for uniform horizontal motion of an oscillating

source, for Υ = 1.2; (a) difference waves, (b) downstream sum waves.

Figure 19. Curves of constant phase for uniform horizontal motion of an oscillating source,

for Υ = 0.5. The curves, symmetric about the x?-axis, are drawn above and below it in

planes y? = 0 and z? = const, respectively. (a) moderate r?, ( ) exact curves and

( ) asymptotic curves 4Υx?(|z?|+ 1
2 )− Υ 2x2

? ∼ 1 and (2|Υ ∓ 1|x? − 1)2 ∓ 2(Υ ∓ 1)3z2
?

∼ 1, deduced from (7.20) and (7.22) for y? = 0; (b) large r?, ( ) exact curves and

( ) asymptotic curves r?(Θ+ − θ1)2 ∼ 4Υ/(1− Υ 2)
1
2 , deduced from (7.24) for y? = 0.

Figure 20. Curves of constant phase for uniform horizontal motion of an oscillating source,

for Υ = 1.2.
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Figure 1. Geometry for internal wave radiation by an arbitrarily moving source
[adapted from Stevenson 1973].



    

Figure 2. Coordinate system for uniform horizontal motion.

Figure 3. Geometry for internal wave radiation by a steady source in uniform horizontal motion,
in a plane ϕ1 = const.



     

Figure 4. Wave systems generated by a steady source in uniform horizontal motion, in the plane y = 0.
Inside the sphere of diameter OO1 joining the initial and present positions of the source, permanent waves
are dominant and curves of constant phase are semi-circles Φ = Nr1/U . Outside the sphere transient waves
are observed, with radial curves of constant phase Φ = Nt|z|/r. On the sphere the two wave systems, shown
for Nt/2π = 5 and Φ = 2nπ, merge.
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Figure 5. Curves of constant phase for uniform horizontal motion of a steady source. The curves, symmetric
about the x?-axis, are drawn above and below it in planes y? = const and z? = const, respectively.
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Figure 7. Normalised vertical displacement (2πU3/N2md)ζ in the planes (a) Nz/U = 1
2 , (b) Nz/U = 1. Only the part y > 0 of the displacement field,

symmetric about the x1-axis, is shown; black lines are nodal lines, white lines are crests and throughs.



  

Figure 8. Separation of the upstream disturbance. ( ) original integration path;
( ) deformed integration path.



     

Figure 9. Deformation of contour for the far-field evaluation of the waves, for x1 > 0 and cos θ1 > | sinϕ1|.



         

Figure 10. Geometry for internal wave radiation by a steady source in uniform vertical motion.
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Figure 11. Solution of equation (6.3) for the angular variable η. ( ) exact result (6.4); ( ) asymptotic

results, deduced from (6.12) and (6.14), η ∼ π
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, deduced from (6.13) and (6.15).
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Figure 13. Solution of equation (7.3) for the frequency variable ξ?, for (a) Υ? = 0.5, (b) Υ? = 1, (c) Υ? = 1.2.
( ) exact result; ( ) asymptotic results, deduced from (7.19), (7.21), (7.23) and (7.25), θ1 ∼ ξ2

?/Υ? for

ξ? → 0, θ1 ∼ [2(1∓ ξ?)]
1
2 /|1∓ Υ?| for ξ? → ±1 6= Υ?, θ1 ∼ Θ+ − 2|Υ? − ξ?|/(1− Υ 2

? )
1
2 for ξ? → Υ? 6= 1 and

θ1 ∼ π
2 − 3[(1− ξ?)/2]

1
2 for ξ? → 1 = Υ?.



    

0

1

2

3

4

-0.5

0.5

-1

0

0

1

2

3

4

-0.5

0.5

-1

0

z

y
x1

(a)

0

2

4

-3

-1

1

3

-2

0

0

2

4

-3

-1

1

3

-2

0

y
z

x1

(b)



      

-2

0

2

4

-3

-1

1

3

-2

0

-2

0

2

4

-3

-1

1

3

-2

0

x1

y

z

(c)

Figure 14. Wavefronts for an oscillating source in uniform horizontal motion, for Υ = 0.5; (a) difference
waves, (b) downstream sum waves, (c) upstream sum waves. Only the lower half of the fronts, symmetric
about the plane z = 0, is shown.
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Figure 15. Wavefronts for an oscillating source in uniform horizontal motion, for Υ = 1.2;
(a) difference waves, (b) downstream sum waves.
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Figure 16. Equation of the wavefronts for an oscillating source in uniform horizontal motion.
( ) exact forms (7.6), (7.8), (7.10) and (7.12); ( ) asymptotic form (7.14).
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Figure 17. Surfaces of constant phase for uniform horizontal motion of an oscillating source, for Υ = 0.5;
(a) difference waves, (b) downstream sum waves, (c) upstream sum waves. Only the lower half of those
surfaces, symmetric about the plane z? = 0, is shown; this highlights divergent waves and hides transverse
waves.
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Figure 18. Surfaces of constant phase for uniform horizontal motion of an oscillating source,
for Υ = 1.2; (a) difference waves, (b) downstream sum waves.
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Figure 19. Curves of constant phase for uniform horizontal motion of an oscillating source, for Υ = 0.5.
The curves, symmetric about the x?-axis, are drawn above and below it in planes y? = 0 and z? = const,
respectively. (a) moderate r?, ( ) exact curves and ( ) asymptotic curves 4Υx?(|z?| + 1

2 ) − Υ 2x2
? ∼ 1

and (2|Υ ∓ 1|x?− 1)2∓ 2(Υ ∓ 1)3z2
? ∼ 1, deduced from (7.20) and (7.22) for y? = 0; (b) large r?, ( ) exact

curves and ( ) asymptotic curves r?(Θ+ − θ1)2 ∼ 4Υ/(1− Υ 2)
1
2 , deduced from (7.24) for y? = 0.
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Figure 20. Curves of constant phase for uniform horizontal motion of an oscillating source, for Υ = 1.2.


