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At high Froude and Reynolds numbers, lee waves generated by a body moving horizontally in a stratified fluid give
way to ‘random’ internal waves generated by the turbulent wake. This paper considers the second type of waves,
whose presence is attributed to the collapse of vortex loops or turbulent bursts, associated with the coherent vortex
structures of the wake. A simple analytical model of the collapse is given, leading to two distinct analyses of the
waves. At moderate cross-stream distances the individual effect of each loop or burst is observed; waves have
the same structure as for an isolated impulsive point source. At large cross-stream distances the collective effect
of the loops or bursts is observed; waves reduce to those generated by a source of mass moving with the body,
and emitting fluid at the frequency of vortex shedding and at some of its harmonics. Here, only the fundamental
frequency is taken into account, in which case the waves decompose into several systems and are confined within
conical caustics. All of this agrees with available experimental results. More attention is finally paid to the shape
of surfaces of constant phase.

1. Introduction

Stratified flows of geophysical interest are often characterised by complicated combination of,
and strong interaction between, turbulence and internal gravity waves. They are governed by
two dimensionless parameters, the Reynolds number Re representing the ratio of inertial forces
to viscous forces, and the internal Froude number Fr representing the ratio of inertial forces to
buoyancy forces. For instance, for sufficiently low Fr , homogeneous stratified turbulence decreases
more rapidly than its unstratified counterpart, as a result of both the buoyant collapse of the
large-scale eddies and the subsequent radiation of internal waves (see, e.g., [1]). Similarly, for
sufficiently high Re, lee waves, i.e., internal waves generated by horizontal stratified flow past a
fixed obstacle or by horizontal motion of a body in a stratified fluid at rest, are superseded by
‘random’ waves generated by the turbulent wake of this obstacle or body. This paper considers
the second aspect, namely internal wave radiation by a three-dimensional turbulent wake.

The first mention of this phenomenon dates back to Lin & Pao [2], who noticed that “[when]
turbulence has decayed appreciably, random internal waves appeared near the wake boundary”.
The existence of these waves was then confirmed, and its origin clarified, by experiments carried
out by Gilreath & Brandt [3] for a self-propelled slender spheroid and by Hopfinger et al. [4] and
Bonneton et al. [5] for a towed sphere. In fact, the internal wave field accompanying a horizontally
moving body comprises several distinct components: deterministic lee waves generated by the
body itself; deterministic waves observed only in the self-propelled case, and generated by the
collapse of the wake due to initial mixing and by the propeller swirl; random internal waves
generated by the turbulent wake, at Reynolds numbers Re = 2aU/ν such that this wake is
turbulent. Here ν is the kinematic viscosity, N the buoyancy frequency, a the transverse radius
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of the body and U its velocity. Of all those components only the latter is stationary relative to
the fluid, the others being stationary relative to the body. At small Froude numbers Fr = U/Na,
deterministic waves are dominant and the wavelength is roughly equal to 2πU/N ; as Fr increases
they are progressively blurred by the smaller random waves, until eventually, for Fr ∼> 4.5, these
waves become dominant.

Our aim here is not to discuss experimental results any further, neither to present theories for
the calculation of the deterministic waves. For such theories the reader is referred to the author’s
Ph.D. thesis [6] and to, among others, the papers by Miles [7], Makarov & Chashechkin [8],
Janowitz [9] and Umeki & Kambe [10] for lee waves, and by Hartman & Lewis [11], Meng &
Rottman [12] and Gorodtsov [13, 14] for deterministic wake-generated waves. In the following we
shall, rather, present preliminary theoretical investigations of random waves, by discussing in §2
the modelling of the turbulent wake as a source of internal waves, and by analysing in §§3 and 4
the waves generated by two simplified versions of the model.

2. Wake model

There is increasing evidence (Bonneton & Chomaz [15]; Chomaz et al. [16]) that the formation
of homogeneous turbulent wakes results from the combination of two modes of instability of the
recirculation zone immediately behind moving bodies: Kelvin-Helmholtz instability of the shear
layer at the boundary of this zone, and spiral instability associated with the rotation of the
separation point. For a sphere the two modes are locked and of identical Strouhal numbers for
Re ∼< 800, while for Re ∼> 800 they are unlocked; then the Kelvin-Helmholtz mode is of smaller

wavelength (larger shedding frequency f) and Strouhal number St = 2af/U varying as Re1/2,
while the spiral mode is of larger wavelength (smaller shedding frequency f) and Strouhal number
St ≈ 0.2 roughly independent of Re.

When stratification comes into play a wide variety of flow configurations is encountered. For
Fr ∼> 4.5, however, and Re such that the flow is fully turbulent, stratification becomes so weak
that the near wake of a sphere develops initially as in unstratified fluid, before being affected by
gravity at the dimensionless time Ntc ≈ 3; then the connected vortex loops forming the spiral
instability collapse [16]. From the observation that ‘random’ internal waves are noticeable only
in precisely that Reynolds and Froude numbers range, Hopfinger et al. [4] and Bonneton et al. [5]
have identified the origin of the random waves as the collapse of each vortex loop. The same
phenomenon has been reported by Sysoeva & Chashechkin [17, 18] at lower Reynolds numbers
when each vortex loop is well separated from the others, and is probably responsible for the
random-like wake-generated internal waves visualised by Boyer et al. [19] behind a cylinder and
by Lin et al. [20] behind a sphere.

This, to be true, applies only to towed bodies. For self-propelled bodies the wake is momen-
tumless, and may be viewed as the combination of a pure wake (with momentum defect) and
a pure jet (with momentum excess). The two vortex structures associated with these configu-
rations interact, as a result of which intermittent ‘bursts’ of turbulence are observed instead a
large-scale well-organised vortical structure, with mean burst spacing roughly equal to the trans-
verse diameter of the body, in other terms with effective Strouhal number St ≈ 1 (see, in two
dimensions, Cimbala & Park [21] and in three dimensions Higuchi & Kubota [22]). When the
fluid is stratified, the bursts collapse following their violent rise in the near wake and, as in the
towed case, generate ‘random’ internal waves (Gilreath & Brandt [3]).

Now, the pioneering experiments of Wu [23] have shown that the buoyant collapse of any
density or velocity perturbation of a stratified fluid acts as an impulsive source of internal waves.
Thus, as regards these waves, a turbulent wake is amenable to a discrete distribution of impulsive
sources and sinks, periodically spaced in both space and time, and each of which represents the
collapse of a vortex loop or turbulent burst. Neglecting entrainment velocity, we can write the
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temporal period of this distribution as 1/f = 2π/ω0 and its spatial period as U/f = 2a/St =
2πU/ω0, where ω0 = 2πf is the angular frequency of vortex shedding or burst release. Neglecting,
moreover, the quadrupolar nature of each collapsing event (Miles [7]), we replace it by a monopole,
and choose the sign of this monopole to be alternately positive and negative from one event to
the next, to take phenomenologically into account the symmetry of the wake. In this way the
turbulent wake reduces to the mass source

m(r, t) = m0

+∞∑

n=−∞
(−1)n δ

(
x+ n

πU

ω0

)
δ(y) δ(z) δ

(
t− n π

ω0

)
, (2.1)

alternately releasing and absorbing a volume m0 of fluid (figure 1), and related to the fluid
velocity v(r, t) by ∇·v = m. Here a fixed system of coordinates (x, y, z) is used, with the x-axis
horizontal and directed opposite to the motion of the body, the z-axis directed vertically upwards,
and the y-axis horizontal and transverse. The choice of the time and space origins is arbitrary,
and depends on the time of start of vortex shedding or burst release.

The source (2.1) is of course only a very crude approximation to the real process of emission
of the waves; it will, nevertheless, be shown to provide useful quantitative information on them.
One point, however, is worth being discussed into greater detail before proceeding any further: the
randomness of the waves. First, turbulence-generated internal waves are, at any particular place,
random from one realisation to another of exactly the same experiment [3]; this is attributable
in (2.1) to the random character of the time of start of vortex shedding or burst release. Second,
those waves are, for any particular experimental realisation, random from one place to another
[4], [5] (i.e., they have poor spatial coherence); this is attributable to the fact that the collapsing
spiral structure modelled by (2.1) is immersed in turbulence, which induces a random modulation
of the duration π/ω0 and distance πU/ω0 between successive impulses.

In spite of all those approximations, the assembly (2.1) of time- and space-lagged impulsive
point sources is still too complicated to be treated in this form. Instead, we rewrite it as

m(r, t) = m0 δ(x+ Ut) δ(y) δ(z)
+∞∑

n=−∞
(−1)n δ

(
t− n π

ω0

)
, (2.2)

namely as a point source moving horizontally and uniformly at velocity U while emitting impulses
at time intervals π/ω0. Applying then Poisson sum formula [24, pp. 466–467], we deduce

m(r, t) =
ω0m0

π
δ(x+ Ut) δ(y) δ(z)

+∞∑

n=−∞
exp[i(2n+ 1)ω0t], (2.3)

namely a third representation of the turbulent wake as a point source moving horizontally and
uniformly at velocity U while oscillating at the frequency ω0 and at all its odd harmonics.

Two simplified models arise then naturally, whose relevance depends on the distance to the
wake. The first model is valid at small distances, where impulsive waves associated with each
collapsing loop or burst have not yet had time to interfere. Then it is legitimate to consider the
individual effect of each of these sources separately, and accordingly to retain only one term in
the sum (2.1). On the other hand, at large distances the interference pattern is well-developed,
so that only the collective effect of all the sources is observed, in the form of the generation of
the frequency ω0 and of its harmonics. In practice, as a consequence of the collapsing events
being neither perfectly localised in time nor in space, the fundamental frequency is dominant. It
is then legitimate to retain only this frequency in (2.3), which reduces but to the model proposed
by Gilreath & Brandt [3], shown dashed in figure 1.

In what follows we shall examine individually and collectively generated waves successively,
and in particular compare their characteristics with the few experimental results available.
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3. Individual wave generation

According to (2.1), each collapse acts as the impulsive point mass source

m(r, t) = m0 δ(r) δ(t). (3.1)

This is just the source associated with the Green’s function G(r, t) of internal waves, about which
a synthesis has recently been proposed by Voisin [25]. In particular, the wavy nature of G(r, t)
becomes explicit in the large-time limit NtÀ 1, in which case

G(r, t) ∼ − m0

(2π)
3
2Nr sin θ

[
cos(Nt| cos θ| − π/4)

(Nt| cos θ|)1
2

+
sin(Nt− π/4)

(Nt)
1
2

]
, (3.2)

as first obtained by Dickinson [26], rederived later by Sekerzh-Zen’kovich [27] and investigated
into greater detail by Zavol’skii & Zaitsev [28]; a spherical system of coordinates (r, θ, ϕ) has
been introduced, with θ the angle to the z-axis (figure 2).

Thus, internal waves comprise two terms. The first of them, called gravity waves , is made
of propagating waves of frequency ω = N | cos θ| conformable to the group velocity theory, phase
Φ = Nt| cos θ| constant on cones of vertical axis (figure 3), and wavelength

λ =
2πr

Nt sin θ
(3.3)

decreasing linearly with time. The second term, called buoyancy oscillations , corresponds to non-
propagating oscillations at the resonance frequency N of the medium. The relative importance
of these terms is set up by their amplitudes, whose study requires the replacement of the Green’s
function G (a generalised velocity potential) by a physically more meaningful quantity, such as
the vertical displacement ζ = ∂2G/∂z∂t. In the large-time limit Nt À 1, this displacement
reduces to

ζ(r, t) ∼ m0

(2π)
3
2 r2

sgn z

[
sin θ (Nt| cos θ|)1

2 cos
(
Nt| cos θ| − π

4

)
− cos θ

| sin θ|3
sin(Nt− π/4)

(Nt)
3
2

]
, (3.4)

indicating that the amplitude of gravity waves is maximum in the direction

θm = arctan
√

2 ≈ 55◦ (3.5)

where sin θ | cos θ|1/2 is maximum, and that these waves, which increase with time as t1/2, are
dominant compared with the decreasing (as t−3/2) buoyancy oscillations, at least before the
wavelength has become so small that gravity waves are blurred by destructive interference owing
to the finite extent of any real source. All of those characteristics are confirmed by the experiments
of Stevenson [29] and McLaren et al. [30] for the impulsive motion of cylinders and spheres.

Similar experiments were carried out by Bonneton et al. [5] for internal waves generated
by the turbulent wake of a sphere, at moderate distances from this wake. Various visualisation
methods have shown that surfaces of constant phase are concentric circles in any horizontal plane
and fan-like lines in the vertical plane containing the path of the sphere; this is consistent with
a three-dimensional conical shape. Combination of probe measurements and flow visualisations
has, moreover, confirmed the decrease of the wavelength as t−1 and the existence of a direction of
maximum wave amplitude. Note, however, that the exact value of the angle θm of this direction
to the vertical depends on the form of the amplitude, which in turn depends on the quantity
investigated (i.e., on the visualisation method used) and on the exact multipolar nature of the
source (assumed here to be a monopole).
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4. Collective wave generation

We turn now to the analysis of collective wave generation, which, according to (2.3), we ascribe
to the uniformly moving source of oscillatory strength

m(r, t) =
ω0m0

π
eiω0t δ(x1) δ(y) δ(z). (4.1)

Hereafter moving systems of cartesian coordinates (x1 = x + Ut, y, z) and spherical coordinates
(r1, θ1, ϕ1) will be used, with θ1 the angle to the x1-axis and ϕ1 the angle to the plane z = 0
(figure 4). This problem has been studied in two dimensions by Stevenson & Thomas [31], and
in three dimensions by Redekopp [32], Rehm & Radt [33] and Peat & Stevenson [34], emphasis
being placed on the shape of surfaces of constant phase. We, rather, adopt the approach exposed
in Voisin [35], in which the amplitude and the phase of the waves are obtained jointly.

The clue here is the introduction of the reduced Doppler frequency

ξ =
ω

N
, (4.2)

such that |ξ| < | sinϕ1|, and of the reduced source frequency

Υ =
ω0

N
= πFrSt , (4.3)

which, in the Froude and Strouhal numbers range where random internal waves are observed, is
always larger than 1. Waves are stationary relative to the source. They are expressed in terms
of r1, θ1, ϕ1 and of the additional variable ξ which, for given θ1 and ϕ1, satisfies the equation

tan θ1 =
ξ2(sin2ϕ1 − ξ2)

1
2

Υ sin2ϕ1 − ξ3
, (4.4)

solved graphically in figure 5. Two systems of waves are present, called sum waves (−| sinϕ1| <
ξ < 0) and difference waves (0 < ξ < | sinϕ1|), each of which is itself separated into transverse
waves and divergent waves (this applies only to the case Υ > 1).

All waves are found downstream of the source and are confined within caustics, which cor-
respond to the maxima of the curve in figure 5 and are given by the equation, represented in
figure 6,

θ1 = Θ± = arctan

[
Ξ2
±

3Υ (sin2ϕ1 − Ξ2
±)

1
2

]
, (4.5a)

ξ = Ξ± = Υ

{
1− 2 cos

[
1

3
arccos

(
1− sin2ϕ1

Υ 2

)
± π

3

]}
, (4.5b)

where the subscript + (−) stands for sum (difference) waves, respectively. Those caustics are
represented in figure 7 for Υ = 1.2, and are pairs of cones symmetric with respect to the plane
z = 0. As Υ increases they differ less and less (by a slight stretching along the vertical for sum
waves and by a slight shrinking for difference waves) from pairs of circular cones of apex at the
source and axis in the plane y = 0. For Υ À 1 they tend asymptotically to these cones, according
to

Ξ± ∼ ±
(

2

3

)1
2

| sinϕ1|, Θ± ∼
2

3
3
2

| sinϕ1|
Υ

, (4.6)

as shown in figure 6. Transverse waves and divergent waves merge on the caustics, and correspond
to 0 < |ξ±| < |Ξ±| and |Ξ±| < |ξ±| < | sinϕ1|, respectively.
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Internal waves can, as before, be expressed in terms of a generalised velocity potential ψ(r, t),
to which the vertical displacement is related by ζ = ∂2ψ/∂z∂t. In the far field Nr1/U À 1, sum
waves and divergence waves become, respectively,

ψ±(r, t) ∼ −H(Θ± − θ1)
ω0m0

4π2N2x1
exp
{
i
[
Φ± ∓

π

2
H(|ξ±| − |Ξ±|)

]}

× Υ sin2ϕ1 − ξ3
±

|ξ± sinϕ1| |(1− ξ2
±)(Υ − ξ±)(ξ3

± − 3Υξ2
± + 2Υ sin2ϕ1)|12

, (4.7)

where H denotes the Heaviside step function and the phase Φ± has the two equivalent forms

Φ± = ω0t−
N

U
x1

(Υ − ξ±)2 sin2ϕ1

Υ sin2ϕ1 − ξ3
±

= ω0t−
N

U
r⊥

(Υ − ξ±)2 sin2ϕ1

ξ2
±(sin2ϕ1 − ξ2

±)
1
2

, (4.8)

where r⊥ = (y2 + z2)1/2 represents transverse distances. As usual, this leading-order expansion
breaks down in the vicinity of caustics.

We shall limit our investigations here to the shape of the surfaces of constant phase, defined
as surfaces of constant Φ? = ω0t−Φ±. From (4.8) we deduce the parametric equation, expressed
in terms of the reduced coordinates r? = (Nr1)/(UΦ?),

x? =
Υ sin2ϕ1 − ξ3

(Υ − ξ)2 sin2ϕ1

, r⊥? =
ξ2(sin2ϕ1 − ξ2)

1
2

(Υ − ξ)2 sin2ϕ1

. (4.9)

A perspective view of those surfaces for Υ = 1.2 is given in figure 8, and is accompanied in figure 9
by a more quantitative representation in terms of intersections by vertical or horizontal planes.
Applying the same method to cases for which Υ < 1 would produce exactly the vertical sections
visualised by Stevenson & Thomas [31] and Peat & Stevenson [34] for the uniform horizontal
motion of oscillating cylinders and spheres.

Experiments of a different kind were achieved by Gilreath & Brandt [3] for internal waves
generated by the turbulent wake of a slender spheroid, at large distances from the wake and
under conditions for which Υ = 50. From measurements of the displacement field on a vertical
array of probes, and extraction of the random component by ensemble averaging over a large
number of realisations of the same experiment, Gilreath & Brandt have shown that, in the plane
y = 0, random internal waves are confined within a wedge of apex at the source and axis the
x1-axis. Equation (4.6) gives for this wedge the semi-angle

θc =
2

3
3
2Υ
≈ 0.385

Υ
, (4.10)

which is precisely the theoretical law mentioned without proof and successfully compared with
experiment by Gilreath & Brandt, and is also akin to the law obtained by Bonneton et al. [5]
through a totally different reasoning.

Most of the ideas exposed in this paper arose from discussions with Drs Jean-Marc Chomaz,
Philippe Bonneton, and Professor Emil J. Hopfinger. This work was supported by the Direction
de la Recherche et des Etudes Techniques under Contract n◦90/233.
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Figure 1. Turbulent wake model; ( ) impulsive model (2.1), ( ) oscillating model (4.1).

Figure 2. System of coordinates for wave generation by the isolated collapse (3.1) (from [25]).
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Figure 3. Surfaces of constant phase Φ = π/4 + nπ for a point impulsive source, for Nt = 10π (from [25]).

Figure 4. System of coordinates for wave generation by the collection of collapses (4.1) (from [35]).
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Figure 5. Graphical solution of equation (4.4) for the reduced frequency ξ, for Υ/| sinϕ1| = 1.2 (from [35]).
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Figure 6. Equation of the caustics for an oscillating source in uniform horizontal motion;
( ) exact equation (4.5), ( ) asymptotic equation (4.6) (from [35]).
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Figure 7. Caustics for an oscillating source in uniform horizontal motion, for Υ = 1.2; (a) difference waves, (b) sum
waves. Only the lower half of the caustics, symmetric with respect to the plane z = 0, is shown (from [35]).
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Figure 8. Perspective view of surfaces of constant phase for an oscillating source in uniform horizontal motion, for
Υ = 1.2; (a) difference waves, (b) sum waves. Only the lower half of those surfaces, symmetric with respect to the
plane z = 0, is shown (from [35]).
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Figure 9. Two-dimensional view of surfaces of constant phase for an oscillating source
in uniform horizontal motion, for Υ = 1.2 (from [35]).
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