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Abstract
The Python package fluidfft provides a common Python API for performing Fast
Fourier Transforms (FFT) in sequential, in parallel and on GPU with different FFT
libraries (FFTW, P3DFFT, PFFT, cuFFT). fluidfft is a comprehensive FFT
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the associated tasks, such as as computing linear operators and energy spectra. We
describe the architecture of the package composed of C++ and Cython FFT classes,
Python “operator” classes and Pythran functions. The package supplies utilities to
easily test itself and benchmark the different FFT solutions for a particular case
and on a particular machine. We present a performance scaling analysis on three
different computing clusters and a microbenchmark showing that fluidfft is an
interesting solution to write efficient Python applications using FFT.
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Introduction
Fast Fourier Transform (FFT) is a class of algorithms used to calculate the dis-
crete Fourier transform, which traces back its origin to the groundbreaking work
by Cooley and Tukey (1965). Ever since then, FFT as a computational tool has
been applied in multiple facets of science and technology, including digital signal
processing, image compression, spectroscopy, numerical simulations and scientific
computing in general. There are many good libraries to perform FFT, in particular
the de-facto standard FFTW (Frigo and Johnson, 2005). A challenge is to efficiently
scale FFT on clusters with the memory distributed over a large number of cores
using Message Passing Interface (MPI). This is imperative to solve big problems
faster and when the arrays do not fit in the memory of single computational node.
A problem is that for one-dimensional FFT, all the data have to be located in the
memory of the process that perform the FFT, so a lot of communications between
processes are needed for 2D and 3D FFT.
To elaborate, there is only one way to apply domain decomposition for 2D FFT,
which is to split them into narrow strips across one dimension. However for 3D
FFT, there are two strategies to distribute an array in the memory, the 1D (or
slab) decomposition and the 2D (or pencil) decomposition. The 1D decomposition
is more efficient when only few processes are used but suffers from an important
limitation in terms of number of MPI processes that can be used. Utilizing 2D
decomposition overcomes this limitation.
Some of the well-known libraries are written in C, C++ and Fortran. The classical
FFTW library supports MPI using 1D decomposition and hybrid parallelism using
MPI and OpenMP. Other libraries, now implement the 2D decomposition for FFT
over 3D arrays: PFFT (Pippig, 2013), P3DFFT (Pekurovsky, 2012), 2decomp&FFT
and so on. These libraries rely on MPI for the communications between processes,
are optimized for supercomputers and scales well to hundreds of thousands of cores.
However, since there is no common API, it is not simple to write applications that
are able to use these libraries and to compare their performances. As a result,
developers are met with a hard decision, which is to choose a library before the
code is implemented.
Apart from CPU-based parallelism, General Purpose computing on Graphical Pro-
cessing Units (GPGPU) is also gaining traction in scientific computing. Scalable
libraries written for GPGPU such as OpenCL and CUDA have emerged, with their
own FFT implementations, namely clFFT and cuFFT respectively.
Python can easily link these libraries through compiled extensions. For a Python
developer, the following packages leverage this approach to perform FFT:

• sequential FFT, using:

– numpy.fft and scipy.fftpack which are essentially C and Fortran ex-
tensions for FFTPACK library.

– pyFFTW which wraps FFTW library and provides interfaces similar to the
numpy.fft and scipy.fftpack implementations.

– mkl fft, which wraps Intel’s MKL library and exposes python interfaces
to act as drop-in replacements for numpy.fft and scipy.fftpack.

http://fftw.org
http://fftw.org
https://www-user.tu-chemnitz.de/~potts/workgroup/pippig/software.php.en
http://p3dfft.net
http://www.2decomp.org
https://clmathlibraries.github.io/clFFT/
https://docs.nvidia.com/cuda/cufft/index.html
http://www.netlib.org/fftpack
http://fftw.org
https://software.intel.com/en-us/mkl
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• FFT with MPI, using:

– mpiFFT4py and mpi4py-fft built on top of pyFFTW and numpy.fft.

– pfft-python which provides extensions for PFFT library.

• FFT with GPGPU, using:

– Reikna, a pure python package which depends on PyCUDA and PyOpenCL

– pytorch-fft: provides C extensions for cuFFT, meant to work with
PyTorch, a tensor library similar to NumPy.

Although these Python packages are under active development, they suffer from
certain drawbacks:

• No effort so far to consolidate sequential, MPI and GPGPU based FFT li-
braries under a single package with similar syntax.

• Quite complicated even for the simplest use case scenarios. To understand how
to use them, a novice user has to, at least, read the FFTW documentation.

• No benchmarks between libraries and between the Python solutions and so-
lutions based only on a compiled language (as C, C++ or Fortran).

• Provides just the FFT and inverse FFT functions, no associated mathematical
operators.

The Python package fluidfft fills this gap by providing C++ classes and their
Python wrapper classes for performing simple and common tasks with different
FFT libraries. It has been written to make things easy while being as efficient as
possible. It provides:

• tests,

• documentation and tutorials,

• benchmarks,

• operators for simple tasks (for example, compute the energy or the gradient
of a field).

In the present article, we shall start by describing the implementation of fluidfft
including its design aspects and the code organization. Thereafter, we shall compare
the performance of different classes in fluidfft in three computing clusters, and
also describe, using microbenchmarks, how a Python function can be optimized
to be as fast as a Fortran implementation. Finally, we show how we test and
maintain the quality of the code base through continuous integration and mention
some possible applications of fluidfft.

http://fftw.org
http://fluidfft.readthedocs.io
http://fluidfft.readthedocs.io
http://fluidfft.readthedocs.io
http://fluidfft.readthedocs.io


UP JORS software Latex paper template version 0.1

Implementation and architecture
The two major design goals of fluidfft are:

• to support multiple FFT libraries under the same umbrella and expose the
interface for both C++ and Python code development.

• to keep the design of the interfaces as human-centric and easy to use as pos-
sible, without sacrificing performance.

Both C++ and Python APIs provided by fluidfft currently support linking with
FFTW (with and without MPI and OpenMP support enabled), MKL, PFFT,
P3DFFT, cuFFT libraries. The classes in fluidfft offers API for performing
double-precision2 computation with real-to-complex FFT, complex-to-real inverse
FFT, and additional helper functions.

C++ API

BaseFFT

BaseFFTMPIBaseFFT2D BaseFFT3D

BaseFFT2DMPI BaseFFT3DMPI

FFT3DWithCUFFTFFT3DWithFFTW3D

FFT2DMPIWithFFTWMPI2D FFT3DMPIWithPFFT

FFT2DWithCUFFTFFT2DWithFFTW2DFFT2DWithFFTW1D

FFT3DMPIWithFFTWMPI3DFFT2DMPIWithFFTW1D FFT3DMPIWithP3DFFTFFT3DMPIWithFFTW1D

Figure 1: Class hierarchy demonstrating object-oriented approach. The sequential
classes are shown in red, the CUDA-based classes in magenta and the MPI-based
classes in green. The arrows represent inheritance from parent to child class.

The C++ API is implemented as a hierarchy of classes as shown in Fig. 1. The
naming convention used for the classes (<Type of FFT>With<Name of Library>)
is a cue for how these are functioning internally. By utilizing inheritance, the classes
share the same function names and syntax defined in the base classes, shown in white
boxes in Fig. 1. Some examples of such functions are:

• alloc array X: Allocates array to store a physical array with real datatype
for the current process.

2Most C++ classes also support single-precision.

http://fluidfft.readthedocs.io
http://fluidfft.readthedocs.io
http://fftw.org
https://software.intel.com/en-us/mkl
https://www-user.tu-chemnitz.de/~potts/workgroup/pippig/software.php.en
http://p3dfft.net
https://docs.nvidia.com/cuda/cufft/index.html
http://fluidfft.readthedocs.io
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• alloc array K: Allocates array to store a spectral array with complex datatype
for the current process.

• init array X random: Allocates and initializes a physical array with random
values.

• test: Run tests for a class by comparing mean and mean energy values in an
array before and after a set of fft and ifft calls.

• bench: Benchmark the fft and ifft methods for certain number of iterations.

Remaining methods which are specific to a library are defined in the corresponding
child classes, depicted in coloured boxes in Fig. 1, for example:

• are parameters bad: Verifies whether the global array shape can be decom-
posed with the number of MPI processes available or not. If the parameters
are compatible, the method returns false. This method is called prior to
initializing the class.

• fft and ifft: Forward and inverse FFT methods.

Let us illustrate with a trivial example, wherein we initialize the FFT with a random
physical array, and perform a set of fft and ifft operations.

#include <iostream>

using namespace std;

#include <fft3dmpi_with_fftwmpi3d.h>

// #include <fft3dmpi_with_p3dfft.h>

int main(int argc, char **argv) {

int N0 = N1 = N2 = 32;

// MPI-related

int nb_procs = 4;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &(nb_procs));

myreal* array_X;

mycomplex* array_K;

FFT3DMPIWithFFTWMPI3D o(N0, N1, N2);

// FFT3DMPIWithP3DFFT o(N0, N1, N2);

o.init_array_X_random(array_X);

o.alloc_array_K(array_K);

o.fft(array_X, array_K);

o.ifft(array_K, array_X);

MPI_Finalize();

return 0;

}

As suggested through comments above, in order to switch the FFT library, the
user only needs to change the header file and the class name. An added advantage
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is that, the user does not need to bother about the domain decomposition while
declaring and allocating the arrays. A few more helper functions are available with
the FFT classes, such as functions to compute the mean value and energies in the
array. These are demonstrated with examples in the documentation.3 Detailed
information regarding the C++ classes and its member functions are also included
in the online documentation4.

Python API

Similar to other packages in the FluidDyn project, fluidfft also uses an object-
oriented approach, providing FFT classes. This is in contrast with the approach
adopted by numpy.fft and scipy.fftpack which provides functions instead, with
which the user has to figure out the procedure to design the input values and to use
the return values, from the documentation. In fluidfft, the Python API wraps
all the functionalities of its C++ counterpart and offers a richer experience through
an accompanying operator class.
As a short example, let us try to calculate the gradient of a plane sine-wave using
spectral methods, mathematically described as follows:

u(x, y) = sin(x+ y) ∀x, y ∈ [0, L]

û(kx, ky) =
1

L2

∫ L

0

∫ L

0

u(x, y) exp(ikxx+ ikyy)dxdy

∇u(x, y) =
∑
kx

∑
ky

ikû(kx, ky) exp(−ikxx− ikyy)

where kx, ky represent the wavenumber corresponding to x and y directions, and k
is the wavenumber vector.
The equivalent pseudo-spectral implementation in fluidfft is as follows:

from fluidfft.fft2d.operators import OperatorsPseudoSpectral2D, pi

from numpy import sin

nx = ny = 100

lx = ly = 2 * pi

oper = OperatorsPseudoSpectral2D(nx, ny, lx, ly, fft="fft2d.with_fftw2d")

u = sin(oper.XX + oper.YY)

u_fft = oper.fft(u)

px_u_fft, py_u_fft = oper.gradfft_from_fft(u_fft)

px_u = oper.ifft(px_u_fft)

py_u = oper.ifft(py_u_fft)

grad_u = (px_u, py_u)

A parallelized version of the code above will work out of the box, simply by replacing
the FFT class with an MPI-based FFT class, for instance fft2d.with fftwmpi2d.

3https://fluidfft.readthedocs.io/en/latest/examples/cpp.html.
4https://fluidfft.readthedocs.io/en/latest/doxygen/index.html.

http://fluidfft.readthedocs.io
http://fluidfft.readthedocs.io
http://fluidfft.readthedocs.io
https://fluidfft.readthedocs.io/en/latest/examples/cpp.html
https://fluidfft.readthedocs.io/en/latest/doxygen/index.html
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One can also let fluidfft automatically choose an appropriate FFT class by in-
stantiating the operator class with fft=None or fft="default". Even if one finds
the methods in the operator class to be lacking, one can inherit the class and eas-
ily create a new method, for instance using the wavenumber arrays, oper.KX and
oper.KY. Arguably, a similar implementation with other available packages would
require the know-how on how FFT arrays are allocated in the memory, normalized,
decomposed in parallel and so on. Moreover, the FFT and the operator classes con-
tain objects describing the shapes of the real and complex arrays and how the data
is shared between processes. A more detailed introduction on how to use fluidfft

and available functions can be found in the tutorials5.
Thus, we have demonstrated how, by using fluidfft, a developer can easily switch
between FFT libraries. Let us now turn our attention to how the code is organized.
We shall also describe how the source code is built, and linked with the supported
libraries.

Code organization

The internal architecture of fluidfft can be visualized as layers. Through Fig. 2,
we can see how these layers are linked together forming the API for C++ and
Python development. For simplicity, only one FFT class is depicted in the figure,
namely FFT2DMPIWithFFTWMPI2D, which wraps FFTW’s parallelized 2D FFT im-
plementation. The C++ API is accessed by importing the appropriate header file
and building the user code with a Makefile, an example of which is available in the
documentation.
The Python API is built automatically when fluidfft is installed6. It first gen-
erates the Cython source code as a pair of .pyx and .pxd files containing a class
wrapping its C++ counterpart7. The Cython files are produced from template files
(specialized for the 2D and 3D cases) using the template library mako. Thereafter,
Cython (Behnel et al., 2011) generates C++ code with necessary Python bindings,
which are then built in the form of extensions or dynamic libraries importable in
Python code. All the built extensions are then installed as a Python package named
fluidfft.
A helper function fluidfft.import fft class is provided with the package to
simply import the FFT class. However, it is more convenient and recommended to
use an operator class, as described in the example for Python API. Although the
operator classes can function as pure Python code, some of its critical methods can
be compiled, if Pythran (Guelton, 2018) is available during installation of fluidfft.
We will show towards the end of this section that by using Pythran, we reach the
performance of the equivalent Fortran code.
To summarize, fluidfft consists of the following layers:

• One C++ class per FFT library derived from a hierarchy of C++ classes as
shown in Fig. 1.

5https://fluidfft.readthedocs.io/en/latest/tutorials.html.
6Detailed steps for installation are provided in the documentation.
7Uses an approach similar to guidelines “Using C++ in Cython” in the Cython documentation.

http://fluidfft.readthedocs.io
http://fluidfft.readthedocs.io
http://fluidfft.readthedocs.io
http://fluidfft.readthedocs.io
http://fftw.org
https://fluidfft.readthedocs.io/en/latest/examples/cpp.html
https://fluidfft.readthedocs.io/en/latest/examples/cpp.html
http://fluidfft.readthedocs.io
http://www.makotemplates.org/
http://fluidfft.readthedocs.io
http://fluidfft.readthedocs.io
http://fluidfft.readthedocs.io
https://fluidfft.readthedocs.io/en/latest/tutorials.html
https://fluidfft.readthedocs.io/en/latest/install.html
https://cython.readthedocs.io/en/latest/src/userguide/wrapping_CPlusPlus.html
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base_fft.h 
BaseFFT

base_fft2d.h 
BaseFFT2D

base_fft2dmpi.h 
BaseFFT2DMPI

fft2dmpi_with_fftwmpi2d.h 
FFT2DMPIWithFFTWMPI2D

fft2dmpi_with_fftwmpi2d.cpp 
FFT2DMPIWithFFTWMPI2D

Write user C++ code

base_fftmpi.h 
BaseFFTMPI

fftw3-mpi.h

Execute

base.pyx

template2d_mako.pyx

mpi4py

numpy

cpu.pxdutil_pyfftw.pyx

template2d_mako.pxd

Generate Cython code 
setup.py (mako)

fft2dmpi_with_fftwmpi2d.pyx 
FFT2DMPIWithFFTWMPI2D

fft2dmpi_with_fftwmpi2d.pxd 
FFT2DMPIWithFFTWMPI2D

Generate C++ code 
setup.py (cython)

Compile objects, link libraries and build
python extensions 

setup.py (cython / mpicxx)

Install fluidfft as a Python package 
setup.py

Start

End

Compile objects, link libraries
and build executable (Makefile)

Write user Python code

ExecuteEnd

Start

FFTW

Legend
C / C++ code 
Python / Cython code 
Predefined process 
Operation 
Flow-line 
Import / Include / Link 

fluidfft

C++ API Python API

Figure 2: Flowchart illustrating how the C++ and Python API are built and used
for one particular class, viz. FFT2DMPIWithFFTWMPI2D. The dotted arrows in C++
part stand for include statements, demonstrating the class hierarchy and in the
Python part indicate how different codes are imported. On the bottom, a smaller
flowchart demonstrates how to use the API by writing user code.
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• Cython wrappers of the C++ classes with their unit test cases.

• Python operator classes (2D and 3D) to write code independently of the
library used for the computation of the FFT and with some mathematical
helper methods. These classes are accompanied by unit test cases.

• Pythran functions to speedup critical methods in the Python operator classes.

Command-line utilities (fluidfft-bench and fluidfft-bench-analysis) are also
provided with the fluidfft installation to run benchmarks and plot the results. In
the next subsection, we shall look at some results by making use of these utilities
on three computing clusters.

Performance

Scalability tests using fluidfft-bench

Scalability of fluidfft is measured in the form of strong scaling speedup, defined
in the present context as:

Sα(np) =
[Time elapsed for N iterations with np,min processes]fastest × np,min

[Time elapsed for N iterations with np processes]α

where np,min is the minimum number of processes employed for a specific array
size and hardware. The subscripts, α denotes the FFT class used and “fastest”
corresponds to the fastest result among various FFT classes.
To compute strong scaling the utility fluidfft-bench is launched as scheduled
jobs on HPC clusters, ensuring no interference from background processes. No
hyperthreading was used. We have used N = 20 iterations for each run, with
which we obtain sufficiently repeatable results. For a particular choice of array size,
every FFT class available are benchmarked for the two tasks, forward and inverse
FFT. Three different function variants are compared (see the legend in subsequent
figures):

• fft cpp, ifft cpp (continuous lines): benchmark of the C++ function from
the C++ code. An array is passed as an argument to store the result. No
memory allocation is performed inside these functions.

• fft as arg, ifft as arg (dashed lines): benchmark of a Python method
from Python. Similar to the C++ code, the second argument of this method
is an array to contain the result of the transform, so no memory allocation is
needed.

• fft return, ifft return (dotted lines): benchmark of a Python method
from Python. No array is provided to the function to contain the result, and
therefore a numpy array is created and then returned by the function.

On big HPC clusters, we have only focussed on 3D array transforms as benchmark
problems, since these are notoriously expensive to compute and require massive

http://fluidfft.readthedocs.io
http://fluidfft.readthedocs.io
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parallelization. The physical arrays used in all four 3D MPI based FFT classes are
identical in structure. However, there are subtle differences, in terms of how the
domain decomposition and the allocation of the transformed array in the memory
are handled8.
Hereafter, for the sake of brevity, the FFT classes will be named in terms of the
associated library (For example, the class FFT3DMPIWithFFTW1D is named fftw1d).
Let us go through the results9 plotted using fluidfft-bench-analysis.

Benchmarks on Occigen Occigen is a GENCI-CINES HPC cluster which uses
Intel Xeon CPU E5–2690 v3 (2.6 GHz) processors with 24 cores per node. The
installation was performed using Intel C++ 17.2 compiler, Python 3.6.5, and Open-
MPI 2.0.2.
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FFT, best for 24 procs: fftw1d, fft cpp (879 ms)
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fftwmpi3d, ifft return
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pfft, ifft cpp
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Figure 3: Speedup computed from the median of the elapsed times for 3D fft
(384×1152×1152, left: fft and right: ifft) on Occigen.

Fig. 3 demonstrates the strong scaling performance of a cuboid array sized 384 ×
1152×1152. This case is particularly interesting since for FFT classes implementing
1D domain decomposition (fftw1d and fftwmpi3d), the processes are spread on the
first index for the physical input array. This restriction is as a result of some FFTW
library internals and design choices adopted in fluidfft. This limits fftw1d (our
own MPI implementation using MPI types and 1D transforms from FFTW) to 192
cores and fftwmpi3d to 384 cores. The latter can utilize more cores since it is
capable of working with empty arrays, while sharing some of the computational
load. The fastest methods for relatively low and high number of processes are
fftw1d and p3dfft respectively for the present case.
The benchmark is not sufficiently accurate to measure the cost of calling the func-
tions from Python (difference between continuous and dashed lines, i.e. between

8Detailed discussion on “FFT 3D parallel (MPI): Domain decomposition” tutorial
9Saved at https://bitbucket.org/fluiddyn/fluidfft-bench-results

https://www.top500.org/system/178465
http://fftw.org
http://fluidfft.readthedocs.io
https://fluidfft.readthedocs.io/en/latest/ipynb/executed/tuto_fft3d_mpi_domain_decomp.html
https://bitbucket.org/fluiddyn/fluidfft-bench-results
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pure C++ and the as arg Python method) and even the creation of the numpy
array (difference between the dashed and the dotted line, i.e. between the as arg

and the return Python methods).
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Figure 4: Speedup computed from the median of the elapsed times for 3D fft
(1152×1152×1152, left: fft and right: ifft) on Occigen.

Fig. 4 demonstrates the strong scaling performance of a cubical array sized 1152×
1152 × 1152. For this resolution as well, fftw1d is the fastest method when using
only few cores and it can not be used for more that 192 cores. The faster library
when using more cores is also p3dfft. This also shows that fluidfft can effectively
scale for over 10,000 cores with a significant increase in speedup.

Benchmarks on Beskow Beskow is a Cray machine maintained by SNIC at
PDC, Stockholm. It runs on Intel(R) Xeon(R) CPU E5-2695 v4 (2.1 GHz) proces-
sors with 36 cores per node. The installation was done using Intel C++ 18 compiler,
Python 3.6.5 and CRAY-MPICH 7.0.4.
In Fig. 5, the strong scaling results of the cuboid array can be observed. In this
set of results we have also included intra-node scaling, wherein there is no latency
introduced due to typically slower node-to-node communication. The fastest library
for very low (below 16) and very high (above 384) number of processes in this
configuration is p3dfft. For moderately high number of processes (16 and above)
the fastest library is fftwmpi3d. Here too, we notice that fftw1d is limited to 192
cores and fftwmpi3d to 384 cores, for reasons mentioned earlier.
A striking difference when compared with Fig. 3 is that fftw1d is not the fastest of
the four classes in this machine. One can only speculate that this could be a con-
sequence of the differences in MPI library and hardware which has been employed.
This also emphasises the need to perform benchmarks when using an entirely new
configuration.

http://fluidfft.readthedocs.io
 https://www.pdc.kth.se/hpc-services/computing-systems
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Figure 5: Speedup computed from the median of the elapsed times for 3D fft
(384×1152×1152, left: fft and right: ifft) on Beskow.
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Figure 6: Speedup computed from the median of the elapsed times for 3D fft
(1152×1152×1152, left: fft and right: ifft) on Beskow.
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The strong scaling results of the cubical array on Beskow are displayed on Fig. 6,
wherein we restrict to inter-node computation. We observe that the fastest method
for low number of processes is again, fftwmpi3d. When high number of processes
(above 1000) are utilized, initially p3dfft is the faster methods as before, but with
3000 and above processes, pfft is comparable in speed and sometimes faster.

Benchmarks on a LEGI cluster Let us also analyse how fluidfft scales on
a computing cluster maintained at an institutional level, named Cluster8 at LEGI,
Grenoble. This cluster functions using Intel Xeon CPU E5-2650 v3 (2.3 GHz) with
20 cores per node and fluidfft was installed using a toolchain which comprises of
gcc 4.9.2, Python 3.6.4 and OpenMPI 1.6.5 as key software components.
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Figure 7: Speedup computed from the median of the elapsed times for 3D fft
(320×640×640) at LEGI on cluster8.

In Fig. 7 we observe that the strong scaling for an array shape of 320× 640× 640
is not far from the ideal linear trend. The fastest library is fftwmpi3d for this
case. As expected from FFT algorithms, there is a slight drop in speedup when the
array size is not exactly divisible by the number of processes, i.e. with 12 processes.
The speedup declines rapidly when more than one node is employed (above 20
processes). This effect can be attributed to the latency introduced by inter-node
communications, a hardware limitation of this cluster (10 Gb/s).
We have also analysed the performance of 2D MPI enabled FFT classes on the
same machine using an array shaped 2160 × 2160 in Fig. 8. The fastest library
is fftwmpi2d. Both fftw1d and fftwmpi2d libraries display near-linear scaling,
except when more than one node is used and the performance tapers off.
As a conclusive remark on scalability, a general rule of thumb should be to use 1D
domain decomposition when only very few processors are employed. For massive
parallelization, 2D decomposition is required to achieve good speedup without being
limited by the number of processors at disposal. We have thus shown that overall

http://fluidfft.readthedocs.io
http://www.legi.grenoble-inp.fr
http://fluidfft.readthedocs.io
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Figure 8: Speedup computed from the median of the elapsed times for 2D fft
(2160×2160) at LEGI on cluster8.

performance of the libraries interfaced by fluidfft are quite good, and there is
no noticeable drop in speedup when the Python API is used. This benchmark
analysis also shows that the fastest FFT implementation depends on the size of the
arrays and on the hardware. Therefore, an application build upon fluidfft can
be efficient for different sizes and machines.

Microbenchmark of critical “operator” functions

As already mentioned, we use Pythran (Guelton, 2018) to compile some critical
“operator” functions. In this subsection, we present a microbenchmark for one
simple task used in pseudo-spectral codes: projecting a velocity field on a non-
divergent velocity field. It is performed in spectral space, where it can simply be
written as

# pythran export proj_out_of_place(

# complex128[][][], complex128[][][], complex128[][][],

# float64[][][], float64[][][], float64[][][], float64[][][])

def proj_out_of_place(vx, vy, vz, kx, ky, kz, inv_k_square_nozero):

tmp = (kx * vx + ky * vy + kz * vz) * inv_k_square_nozero

return vx - kx * tmp, vy - ky * tmp, vz - kz * tmp

Note that, this implementation is “out-of-place”, meaning that the result is returned
by the function and that the input velocity field (vx, vy, vz) is unmodified. The
comment above the function definition is a Pythran annotation, which serves as a
type-hint for the variables used within the functions — all arguments being Numpy

arrays in this case. Pythran needs such annotation to be able to compile this
code into efficient machine instructions via a C++ code. Without Pythran the

http://fluidfft.readthedocs.io
http://fluidfft.readthedocs.io
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annotation has no effect, and of course, the function defaults to using Python with
Numpy to execute.
The array notation is well adapted and less verbose to express this simple vector
calculus. Since explicit loops with indexing is not required, the computation with
Python and Numpy is not extremely slow. Despite this being quite a favourable
case for Numpy, the computation with Numpy is not optimized because, internally,
it involves many loops (one per arithmetic operator) and creation of temporary
arrays.
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Figure 9: Elapsed time (smaller is better) for the projection function for different
implementations and tools. The shape of the arrays is (128, 128, 65). The dotted
lines indicate the times for Fortran for better comparison.

In the top axis of Fig. 9, we compare the elapsed times for different implementations
of this function. For this out-of-place version, we used three different codes:

1. a Fortran code (not shown10) written with three nested explicit loops (one per
dimension). Note that as in the Python version we also allocate the memory
where the result is stored.

2. the simplest Python version shown above.

3. a Python version with three nested explicit loops:

# pythran export proj_out_of_place_loop(

# complex128[][][], complex128[][][], complex128[][][],

# float64[][][], float64[][][], float64[][][], float64[][][])

def proj_out_of_place_loop(vx, vy, vz, kx, ky, kz, inv_k_square_nozero):

10The codes and a Makefile used for this benchmark study are available in the repository of the
article.

https://bitbucket.org/fluiddyn/fluiddyn_paper/src/default/fluidfft/microbench/
https://bitbucket.org/fluiddyn/fluiddyn_paper/src/default/fluidfft/microbench/
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rx = np.empty_like(vx)

ry = np.empty_like(vx)

rz = np.empty_like(vx)

n0, n1, n2 = kx.shape

for i0 in range(n0):

for i1 in range(n1):

for i2 in range(n2):

tmp = (kx[i0, i1, i2] * vx[i0, i1, i2]

+ ky[i0, i1, i2] * vy[i0, i1, i2]

+ kz[i0, i1, i2] * vz[i0, i1, i2]

) * inv_k_square_nozero[i0, i1, i2]

rx[i0, i1, i2] = vx[i0, i1, i2] - kx[i0, i1, i2] * tmp

ry[i0, i1, i2] = vz[i0, i1, i2] - kx[i0, i1, i2] * tmp

rz[i0, i1, i2] = vy[i0, i1, i2] - kx[i0, i1, i2] * tmp

return rx, ry, rz

For the version without explicit loops, we present the elapsed time for two cases: (i)
simply using Python (yellow bar) and (ii) using the Pythranized function (first cyan
bar). For the Python version with explicit loops, we only present the results for (i)
the Pythranized function (second cyan bar) and (ii) the result of Numba (blue bar).
We do not show the result for Numba for the code without explicit loops because it
is slower than Numpy. We have also omitted the result for Numpy for the code with
explicit loops because it is very inefficient. The timing is performed upon tuning
the computer using the package perf.
We see that Numpy is approximately three time slower than the Fortran implemen-
tation (which as already mentioned contains the memory allocation). Just using
Pythran without changing the code (first cyan bar), we save nearly 50% of the ex-
ecution time but we are still significantly slower than the Fortran implementation.
We reach the Fortran performance (even slightly faster) only by using Pythran

with the code with explicit loops. With this code, Numba is nearly as fast (but still
slower) without requiring any type annotation.
Note that the exact performance differences depend on the hardware, the soft-
ware versions11, the compilers and the compilation options. We use gfortran -O3

-march=native for Fortran and clang++ -O3 -march=native for Pythran12.
Since allocating memory is expensive and we do not need the non-projected velocity
field after the call of the function, an evident optimization is to put the output in
the input arrays. Such an “in-place” version can be written with Numpy as:

# pythran export proj_in_place(

# complex128[][][], complex128[][][], complex128[][][],

# float64[][][], float64[][][], float64[][][], float64[][][])

def proj_in_place(vx, vy, vz, kx, ky, kz, inv_k_square_nozero):

tmp = (kx * vx + ky * vy + kz * vz) * inv_k_square_nozero

11Here, we use Python 3.6.4 (packaged by conda-forge), Numpy 1.13.3, Pythran 0.8.5, Numba 0.38,
gfortran 6.3 and clang 6.0.

12The results with g++ -O3 -march=native are very similar but tend to be slightly slower.

https://pypi.org/project/perf/
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vx -= kx * tmp

vy -= ky * tmp

vz -= kz * tmp

As in the first version, we have included the Pythran annotation. We also consider
an “in-place” version with explicit loops:

# pythran export proj_in_place_loop(

# complex128[][][], complex128[][][], complex128[][][],

# float64[][][], float64[][][], float64[][][], float64[][][])

def proj_in_place_loop(vx, vy, vz, kx, ky, kz, inv_k_square_nozero):

n0, n1, n2 = kx.shape

for i0 in range(n0):

for i1 in range(n1):

for i2 in range(n2):

tmp = (kx[i0, i1, i2] * vx[i0, i1, i2]

+ ky[i0, i1, i2] * vy[i0, i1, i2]

+ kz[i0, i1, i2] * vz[i0, i1, i2]

) * inv_k_square_nozero[i0, i1, i2]

vx[i0, i1, i2] -= kx[i0, i1, i2] * tmp

vy[i0, i1, i2] -= ky[i0, i1, i2] * tmp

vz[i0, i1, i2] -= kz[i0, i1, i2] * tmp

Note that this code is much longer and clearly less readable than the version without
explicit loops. This is however the version which is used in fluidfft since it leads
to faster execution.
The elapsed time for these in-place versions and for an equivalent Fortran imple-
mentation are displayed in the bottom axis of Fig. 9. The ranking is the same as for
the out-of-place versions and Pythran is also the faster solution. However, Numpy is
even more slower (7.8 times slower than Pythran with the explicit loops) than for
the out-of-place versions.
From this short and simple microbenchmark, we can infer four main points:

• Memory allocation takes time! In Python, memory management is automatic
and we tend to forget it. An important rule to write efficient code is to reuse
the buffers already allocated as much as possible.

• Even for this very simple case quite favorable for Numpy (no indexing or slic-
ing), Numpy is three to eight time slower than the Fortran implementations.
As long as the execution time is small or that the function represents a small
part of the total execution time, this is not an issue. However, in other cases,
Python-Numpy users need to consider other solutions.

• Pythran is able to speedup the Numpy code without explicit loops and is as
fast as Fortran (even slightly faster in our case) for the codes with explicit
loops.

• Numba is unable to speedup the Numpy code. It gives very interesting perfor-
mance for the version with explicit loops without any type annotation but the
result is significantly slower than with Pythran and Fortran.
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For the aforementioned reasons, we have preferred Pythran to compile optimized
“operator” functions that complement the FFT classes. Although with this we
obtain remarkable performance, there is still room for some improvement, in terms
of logical implementation and allocation of arrays. For example, applications such
as CFD simulations often deals with non-linear terms which require dealiasing.
The FFT classes of fluidfft, currently allocates the same number of modes in
the spectral array so as to transform the physical array. Thereafter, we apply
dealiasing by setting zeros to wavenumbers which are larger than, say, two-thirds of
the maximum wavenumber. Instead, we could take into account dealiasing in the
FFT classes to save some memory and computation time13.

Quality control
The package fluidfft currently supplies unit tests covering 90% of its code. These
unit tests are run regularly through continuous integration on Travis CI with the
most recent releases of fluidfft’s dependencies and on Bitbucket Pipelines inside
a static Docker container. The tests are run using standard Python interpreter with
all supported versions.
For fluidfft, the code coverage results are displayed at Codecov. Using third-party
packages coverage and tox, it is straightforward to bootstrap the installation with
dependencies, test with multiple Python versions and combine the code coverage
report, ready for upload. It is also possible to run similar isolated tests using tox

or coverage analysis using coverage in a local machine. Up-to-date build status
and coverage status are displayed on the landing page of the Bitbucket repository.
Instructions on how to run unit tests, coverage and lint tests are included in the
documentation.
We also try to follow a consistent code style as recommended by PEP (Python
enhancement proposals) 8 and 257. This is also inspected using lint checkers such
as flake8 and pylint among the developers. The Python code is regularly cleaned
up using the code formatter black.

(2) Availability

Operating system
Windows and any POSIX based OS, such as GNU/Linux and macOS.

Programming language
Python 2.7, 3.5 or above. For the next versions, we will drop Python 2.7 support
and Python >= 3.6 will be required. Note that while Cython and Pythran both
use the C API of CPython, fluidfft has been successfully tested on PyPy 6.0.
A C++11 supporting compiler, while not mandatory for the C++ API or Cython
extensions of fluidfft, is recommended to be able to use Pythran extensions.

13See fluidfft issue 21.

http://fluidfft.readthedocs.io
http://fluidfft.readthedocs.io
http://fluidfft.readthedocs.io
https://hub.docker.com/u/fluiddyn
http://fluidfft.readthedocs.io
https://codecov.io/bb/fluiddyn/fluidfft
https://python3statement.org/
https://python3statement.org/
http://fluidfft.readthedocs.io
http://fluidfft.readthedocs.io
https://bitbucket.org/fluiddyn/fluidfft/issues/21/
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Dependencies
C++ API:

• Optional: OpenMPI or equivalent, FFTW, P3DFFT, PFFT and cuFFT li-
braries.

Python API:

• Minimum: fluiddyn, Numpy, Cython, and mako or Jinja2; FFTW library.

• Optional: mpi4py and Pythran; P3DFFT, PFFT and cuFFT libraries.

List of contributors
• Pierre Augier (LEGI): creator of the FluidDyn project (Augier et al., 2019)

and of fluidfft.

• Cyrille Bonamy (LEGI): C++ code and some methods in the operator classes.

• Ashwin Vishnu Mohanan (KTH): command lines utilities, benchmarks, unit
tests, continuous integration, and bug fixes.

Software location:
Name: PyPI
Persistent identifier: https://pypi.org/project/fluidfft
Licence: CeCILL, a free software license adapted to both international and
French legal matters, in the spirit of and retaining compatibility with the
GNU General Public License (GPL).
Publisher: Pierre Augier
Version published: 0.2.4
Date published: 02/07/2018

Code repository

Name: Bitbucket
Persistent identifier: https://bitbucket.org/fluiddyn/fluidfft
Licence: CeCILL
Date published: 2017

Emulation environment

Name: Docker
Persistent identifier: https://hub.docker.com/r/fluiddyn/python3-stable
Licence: CeCILL-B, a BSD compatible French licence.
Date published: 02/10/2017

Language
English

http://fftw.org
http://p3dfft.net
https://www-user.tu-chemnitz.de/~potts/workgroup/pippig/software.php.en
https://docs.nvidia.com/cuda/cufft/index.html
http://fluiddyn.readthedocs.io
http://fftw.org
http://p3dfft.net
https://www-user.tu-chemnitz.de/~potts/workgroup/pippig/software.php.en
https://docs.nvidia.com/cuda/cufft/index.html
http://fluidfft.readthedocs.io
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(3) Reuse potential
fluidfft is used by the Computational Fluid Mechanics framework fluidsim (Mo-
hanan et al., 2019). It could be used by any C++ or Python project where real-to-
complex 2D or 3D FFTs are performed.
There is no formal support mechanism. However, bug reports can be submitted at
the Issues page on Bitbucket. Discussions and questions can be aired on instant
messaging channels in Riot (or equivalent with Matrix protocol)14 or via IRC pro-
tocol on Freenode at #fluiddyn-users. Discussions can also be exchanged via the
official mailing list15.
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