
PHYSICAL REVIEW FLUIDS 8, 044304 (2023)

Statistics and dynamics of a liquid jet under fragmentation by a gas jet

Oliver Tolfts, Guillaume Deplus, and Nathanaël Machicoane *

Univ. Grenoble Alpes, CNRS, Grenoble INP, LEGI, 38000 Grenoble, France

(Received 22 October 2022; accepted 11 April 2023; published 21 April 2023)

The breakup of a liquid jet by a surrounding gas jet is studied in a coaxial configuration
using high-speed back-lit imaging. This work focuses on the time dynamics and the
statistics of the length of the liquid jet. The inlet velocities are varied for both fluids
to obtain a wide range of gas and liquid Reynolds numbers and equivalently a wide
range of gas-to-liquid dynamic pressure ratio M and Weber number. The variety of scales
exhibited throughout this range, exploring two breakup regimes, is covered by adapting
the spatial and temporal resolutions as well as the field of view of the imaging system.
An in-depth study of the distributions of the length of the liquid jet is presented, with
the associated scalings for the evolution of the first three statistical moments with the
relevant dimensionless parameters, fully describing the statistics through a unique function.
The first two moments of the distributions are shown to be power laws of M and their
ratio is observed to be constant. The temporal dynamics are studied using autocorrelation
functions of the length of the liquid jet. The correlation times are shown to be controlled
by the gas jet, with a secondary influence of the liquid Reynolds number through a change
of behavior that appears to be related to the onset of liquid turbulence. In addition, a
transition between two regimes highlighted by a change of shape of both the probability
density and autocorrelation functions of the liquid core length is introduced and its link
to the turbulence characteristics of the gas jet and the underlying breakup mechanisms is
discussed.
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I. INTRODUCTION

The fragmentation of a liquid jet by a surrounding gas jet stands as a useful setting to study
the fundamental mechanisms that take place in the transport, destabilization, and breakup of a
liquid phase by a turbulent gas phase. This situation is at the base of gas-assisted, also called
airblast, atomization, where atomization is defined as the breakup of a bulk of liquid into a cloud
of droplets (spray). Atomization finds numerous applications in industry, e.g., combustion and
manufacturing, but also in natural systems such as sea sprays [1–3]. In gas-assisted atomization,
the interaction of a liquid jet with a surrounding high-speed gas jet leads to the fragmentation of
the liquid phase into a spray through a cascade of destabilization and breakup mechanisms [4–9].
A Kelvin-Helmholtz instability was identified as being responsible for the initial disturbance of the
liquid-gas interface [4,5,8,10,11]. This creates a wave-shaped perturbation on the surface of the
liquid jet, which is then destabilized by the gas jet. The subsequent mechanism can be described by
taking an analogy to the breakup of a single drop with no initial velocity and suddenly accelerated by
a gas flow, as studied in Ref. [12] (alternatively readers can refer to the review of Theofanous [13]).
They report different drop breakup mechanisms and classify them according to the Weber number
We at the drop scale, which compares aerodynamic stresses to the drop surface tension force as
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We = ρgU 2d/σ , where ρg is the gas density, U the relative velocity between the drop and the
gas flow, d the drop diameter, and σ the surface tension coefficient. For low We values, they
observed that the drop is first flattened into a disklike shape, surrounded by a thick liquid rim.
As the disk is further stretched and inflated by the gas flow, it thins into a membrane that will
eventually break into small droplets, while the rim produces larger droplets. This breakup regime is
referred to as bag breakup or membrane breakup. For high values of the Weber number, the drop
initially flattens and the drop’s interface, roughly transverse to the gas flow, is strongly accelerated,
leading to a Rayleigh-Taylor instability. When the amplitude of this instability reaches the width
of the flattened drop, it breaks into droplets. This breakup regime is referred to as catastrophic
breakup. A similar classification of the qualitative visualization of the breakup of a liquid jet by
a surrounding gas jet has been done [14,15]. For low gas velocities, the wave-shaped perturbation
is inflated, creating a thin membrane that will eventually break into droplets [16]. For higher gas
velocities, the wave-shaped perturbation is stretched into a ligament that can detach from the liquid
bulk, or undergo Rayleigh-Taylor instability, leading to the formation of drops peeled off from the
liquid jet. Both of these underlying breakup mechanisms define breakup regimes, respectively called
membrane-breakup (alternatively bag-breakup) regime, and fiber-type atomization (alternatively
stripping regime) [15]. In addition to the small-scale breakup mechanisms, a large-scale motion of
the entire liquid jet can take a role in the cascade of breakup mechanisms. This large-scale instability
is referred to as flapping [7,17–19]. Each breakup mechanism participates in the fullness of the size
and spatiotemporal distributions of the resulting droplets that form the spray.

The fragmentation of a liquid jet by a surrounding gas jet is a turbulent two-phase flow involving
a wide range of temporal and spatial scales. The multiscale nature of spray formation prevents
using a single approach to study the underlying mechanisms of the fragmentation cascade. Such
complexity coupled with the broad scope of applications involving sprays led to the introduction of
many dimensionless controlling parameters and reported metrics. The liquid core length LB, defined
as the longitudinal extent of the portion of liquid that is connected to the nozzle, stands as one of the
first metrics that comes to mind and received attention early on in coaxial atomization [20]. Focusing
on the average liquid core length, the gas-to-liquid dynamic pressure ratio M was identified as the
driving parameter [17,21,22]. Using different fluids, geometries, and varying the velocity of the
fluids at the injection, Ref. [21] proposed a power-law decay with M. References [17,22] reported
a similar exponent along M, confirming the scaling and identifying that the prefactor of the power
law was influenced by the nozzle geometry. Modest interest has been given to the fluctuations of LB.
The ratio of the standard deviation to the average liquid core length was reported in Refs. [17,23].
Recent studies have looked deeper into the statistics by describing the probability density function of
LB [19,24], showing non-Gaussian behaviors. One could expect that the change in breakup regimes
described above has a signature on the behavior of LB. Nevertheless, to our best knowledge, no
quantitative indicator of the change of breakup regime has yet been found when studying the liquid
core length.

Considering temporal scales involved in spray formation processes, the flapping instability fre-
quency was shown to be mostly governed by the gas jet velocity [7]. In addition, the inner vorticity
layer of the annular gas jet was reported to directly influence the frequency of the Kelvin-Helmholtz
and Rayleigh-Taylor instabilities [4,5]. The timescale of the liquid core length was recently extracted
using autocorrelation functions [24,25]. Both studies conclude that the timescale diminishes with
M but only the gas velocity was varied (constant laminar liquid injection). Since the gas jet is at the
origin of the destabilization and breakup of the liquid jet, one can expect the timescales of the gas
flow to drive the timescales of LB. However, no study was pursued on the role of the liquid Reynolds
number and of the onset of liquid turbulence on the temporal dynamics of the liquid core length.

The present work aims at addressing the questions raised on the effect of breakup regime and
liquid turbulence on the behavior of the liquid core length, through the introduction of a framework
that adequately describes its statistics and temporal dynamics. Therefore, an experimental study is
conducted on a wide range of liquid and gas Reynolds numbers, encompassing two breakup regimes
and the transition from a laminar to a turbulent state of the liquid jet, resulting in over four orders of
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magnitude of variation of the gas-to-liquid dynamic pressure ratio M. While M appears to govern
the evolution of the mean liquid core length along variations of injection parameters, the qualitative
boundary between the membrane-breakup and fiber-type atomization regimes is almost vertical in
the {Rel ; Weg} parameter space [15]. Rel stands here for the Reynolds number of the liquid jet
(equivalently Reg can be used for the gas jet), and Weg is the Weber number comparing the gas
jet dynamic pressure to the surface tension force of the liquid jet. For a fixed couple of fluids, this
means that the transition occurs at a given gas velocity. By increasing the gas velocity at several
values of the liquid Reynolds number (liquid velocity), the explored parameter space crosses this
transition many times at various values of M, giving the possibility to uncouple Weg (change of
regimes) and M (scalings of LB). An alternate approach would be to vary the parameters of the
fluids (in particular the fluids densities and the surface tension coefficient) [21,26,27], which is
more challenging in the current setup. In the approach where only the liquid and gas velocities are
varied, the effects of the gas velocity are equivalently described by Weg and Reg. First, the previous
introduction of a functional description of the full statistics of LB [19] is validated in the extended
range of nondimensional parameters. This approach underlines a transition that is confirmed by the
temporal behavior and can be related to changes in breakup regime. In addition, the timescales of the
liquid core length are reported to scale linearly with the inverse of the gas mean exit velocity but also
show an increased prefactor when the injected liquid jet is turbulent. Throughout the paper, changes
in atomization regimes and the onset of liquid turbulence are highlighted with the use of color bars
and symbols (described accordingly in the captions of the figures), and the effect of both aspects
on the statistics and temporal dynamics of the liquid core length are discussed in Sec. V. Section II
first describes the experimental setup and the analyses. The statistics and temporal dynamics are
respectively presented in Secs. III and IV. The discussion (Sec. V) is then followed by a conclusion
(Sec. VI).

II. MATERIALS AND METHODS

A. Two-fluid coaxial atomizer

The experimental setup consists of a coaxial atomizer, shown in Fig. 1(a) (more details on the
open-source geometry is given in Ref. [28]). The liquid nozzle is 100 mm long, with an inner
diameter dl = 1.98 mm and an outer diameter Dl = 3.1 mm. This geometry ensures a Poiseuille
flow is fully established before the liquid exits the nozzle when operated in laminar conditions,
while a fully developed plug flow is expected in turbulent conditions. The liquid nozzle is placed at
the center of the gas nozzle. The outer wall of the liquid nozzle and the inner wall of the gas nozzle
form a cavity that channels the gas into an annular exit plane with an inner diameter Dl and an outer
diameter dg = 9.985 mm. Note that dl , Dl , and dg are measured with the same accuracy of 1 μm.
Both of these walls present a cubic-spline shape ensuring the gas flow is longitudinal when it exits
the nozzle. The working fluids are air and water at 25 ◦C.

The volumetric flow rates of the gas and the liquid, respectively, noted Qg and Ql , are monitored
by flowmeters. A pressurized tank is used to produce the liquid flow. The tank’s pressure is regulated
to limit the fluctuations in the flow rate. The uncertainty of the liquid flow rate is given by the
uncertainty of the associated flowmeter �Ql = 0.06 l/min. Compressed air is used for the gas flow,
with a pressure regulator set below the compressor’s low-pressure point to ensure a steady gas flow.
The uncertainty of the gas flow is dominated by the small variations caused by the feedback control
loop that fixes the gas flow rate. This uncertainty, much larger than the flowmeter uncertainty, is
calculated for each run and is typically of order �Qg = 2.5 l/min.

We define the gas and liquid mean velocities at the exit plane respectively as Ug = Qg

Ag
and

Ul = Ql

Al
, with Al = π

d2
l
4 the liquid section and Ag = π

4 (d2
g − D2

l ) the gas section. The liquid

Reynolds number Rel = Ul dl
νl

, where νl is the kinematic viscosity of water, is varied from 730
to 20 000, encompassing the transition from a laminar to a turbulent exiting liquid jet. The gas

044304-3

http://www.legi.grenoble-inp.fr/people/Nathanael.Machicoane/research_data.html


TOLFTS, DEPLUS, AND MACHICOANE

(a)

(b)

(c)

FIG. 1. (a) Schematic view of the atomizer, including a cross section of the exit plane showing the relevant
dimensions. (b) Example subsample time series of liquid core length LB. (c) Detection of the liquid core length
on an instantaneous image.

Reynolds number Reg = 2Qg√
πAgνg

, with νg the kinematic viscosity of air, ranges from 104 to 105.

The Weber number based on the gas velocity and on the liquid inner diameter Weg = ρgU 2
g dl

σ

ranges from 14 to 950. Note that with the ρg and σ being fixed, the gas Weber number and gas
Reynolds number can be used equivalently to describe changes in gas velocity. Alternatively, when

defined based on a slip velocity between each phase, the Weber number Wer = ρg(Ug−Ul )2dl

σ
range

becomes 11 � Wer � 940. An important dimensionless parameter for the liquid core length is the

gas-to-liquid dynamic pressure ratio (also called gas-to-liquid momentum ratio) M = ρgU 2
g

ρlU 2
l

, where

ρl is the density of the liquid phase. The dynamic pressure ratio varies by over four orders of
magnitude, from 0.02 to 230. The extrema of the investigated parameter space are summarized
in Table I. With these injection conditions, we observe two different breakup regimes referred to
as fiber-type regime, see Figs. 2(a) and Fig. 2(b), and membrane-breakup regime, see Fig. 2(c).
Note that conditions where both membrane formation and fiber-type atomization can occur will be
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TABLE I. Sample from the 93 investigated operating conditions, with their corresponding dimensionless

parameters. The maximum and minimum values of the gas-to-liquid dynamic pressure ratio M = ρgU 2
g

ρlU
2
l

, the

liquid Reynolds number Rel = Ul dl
νl

, and the gas Reynolds number Reg = 4Qg√
4πAgνg

are highlighted in bold. m =
ρlUl Al
ρgUgAg

represents the liquid mass loading and Weg = ρgU 2
g dl

σ
the Weber number based on the liquid diameter.

Ul (m/s) Ug (m/s) M Rel Reg m Weg

10 41.9 0.019 20 000 26 000 0.34 53
0.39 177 230 730 110 000 0.0031 950
0.39 113 94 730 71 000 0.0048 390
11 113 0.13 20 000 71 000 0.13 390
2.3 20.9 0.095 4300 13 000 0.15 14
1.6 177 13.3 3000 111 000 0.013 950

referred to as a transitional regime, since both breakup mechanisms coexist. The determination of
atomization regimes is discussed in Sec. V.

B. Data acquisition

We use back-lit imaging with a high-speed camera to measure the dynamics of the liquid jet
breakup. The imaging parameters are adapted to the temporal and spatial scales of the spray
formation mechanisms that vary on the considered parameter space. The frame rate used ranges from
12 000 to 35 000 Hz and the imaging window varies from 20 × 10 to 80 × 30 mm2. As the highest
frame rates require reducing the number of pixels used, maintaining the targeted physical size of the
imaging window is attained by lowering the magnification. The resulting spatial resolutions hence
vary from 15 to 80 μm/pixels. Each movie contains at least 104 frames, corresponding to 0.3–0.8 s
depending on the frame rate, ensuring each acquisition is longer than a hundred times the timescale
associated with the liquid jet length variations.

The image processing aims at measuring the liquid core length. Each frame goes through a
normalization process, which consists in substracting a reference background and then dividing
by the reference background. Figures 2(a), 2(b), and 2(c) show normalized snapshots for different
injection conditions. Movies of these three conditions are provided in the Supplemental Material
[29]. The images are then binarized using thresholding to detect the liquid core. More details on the
image processing can be found in Ref. [24]. The liquid core length LB is then measured on each
binarized image as the longitudinal extent of the detected object [see example in Fig. 1(c)].

C. Statistics and dynamics of the liquid core length

Probability density functions (PDF) are computed for each condition to describe the statistics
of the liquid core length. Figure 2(d) shows the PDF for three different operating conditions. The
shifts of the PDFs indicate that the average liquid core length 〈LB〉 decreases with M. This behavior
is described in the literature [17,21,22]. In addition, the distribution is wider for M = 0.4 (black
circles) than for M = 10.7 (red diamonds), indicating that the standard deviation seems to decrease
with M as well. We discuss the evolution of the standard deviation with M in the following section.
To further understand the liquid core length distributions we characterize the shape of the PDF.
Figure 3 shows one probability density function with the addition of Gaussian, skew-Gaussian, and
Gamma functions, whose parameters are directly obtained from the first three statistical moments
of the data (no fitting parameter). The skew-Gaussian representation [see Eq. (1)], with positive
skewness, captures best the distribution. This is consistent with previous results [19]. This function
as well as the scaling laws for the first three moments of the PDFs, namely the average 〈LB〉, standard
deviation LB,STD, and skewness βLB are discussed in Sec. III.
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(a) (b)

(d) (e)

(c)

FIG. 2. [(a)–(c)] Normalized images of the jet for three different operating conditions. (a) M = 10.7, Rel =
2200, and Reg = 71 000. (b) M = 0.7, Rel = 8500, and Reg = 71 000. (c) M = 0.4, Rel = 2300, and Reg =
14 000. Probability density functions (d) and autocorrelation functions (e) computed for the three injection
conditions illustrated in (a), (b), and (c).

The autocorrelation function RLB (τ ) = 〈LB(t )LB(t + τ )〉/〈L2
B〉, τ being the time lag, is computed

to study the temporal dynamics of the liquid core length. Figure 2(e) shows the autocorrelation
functions computed for three different injection conditions. Following Ref. [24], we measure a
correlation time τc for each condition by integrating the autocorrelation function from 0 to τint,
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FIG. 3. Probability density function of the liquid core length normalized by the inner liquid diameter
[same condition as Fig. 2(a)]. Gaussian, skew-Gaussian [see Eq. (1)], and Gamma functions are represented
respectively in blue dotted line, black dashed line, and red dash-dotted line (parameters directly obtained from
the first three statistical moments of the data).

τint being the time lag at which RLB crosses a threshold value of 0.25: τc = ∫ τint

0 RLB (τ )dτ , with
RLB (τint ) = 0.25. The values of τc measured for M = 10.7, 0.7, and 0.4 (red diamonds, blue
triangles, and black circles) are respectively 0.20, 0.46, and 1.2 ms. Despite a factor of 10 on
the values of M of the conditions represented by the red diamonds and of the blue triangles, the
autocorrelation functions and the associated measured correlation times are fairly close, compared
to the large differences observed for the conditions represented by the blue triangles and the black
circles, which have similar values of M. τc appears to have a nonmonotonous evolution with M.
The shape of the autocorrelation functions and the evolution of the associated correlation time are
discussed in Sec. IV.

III. STATISTICAL MOMENTS AND DISTRIBUTIONS

A. Average and standard deviation of the liquid core length

Figures 4(a) and 4(b) respectively show the average and the standard deviation of the liquid core
length normalized by the inner liquid diameter, 〈LB〉/dl and LB,STD/dl , both as a function of the gas-
to-liquid dynamic pressure ratio M. In both cases, the data collapse onto a master curve. We perform
power-law fits, represented by the red curve in each plot, and find them to be in good agreement with
the experimental data. The prefactor and exponent obtained when fitting the normalized average
liquid core length by a power law AMn are respectively Aavg = 12.8 ± 0.8 and navg = −0.34 ± 0.04.
This is consistent with previous results from the literature [21] showed that 〈LB〉 scales with M−0.3 on
a different range of liquid Reynolds number 45 < Rel < 300 and for a wide range of gas-to-liquid
dynamic pressure ratio 0.2 < M < 1000, obtained by changing the density of the liquid. They report
a prefactor ALeroux = 10. References [17,22] showed that 〈LB〉 also depends on the geometry of the
nozzle, explaining the difference in terms of prefactor. The exponents they report are also in good
agreement with the value found here.

The scaling of the standard deviation of the liquid core length with M was not reported before.
The prefactor and exponent obtained when performing a power-law fit on LB,STD/dl are respectively
ASTD = 2.14 ± 0.12 and nSTD = −0.30 ± 0.03. The scalings of the average and standard deviation
with M are almost identical, and only the prefactor of the power laws are different.
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(a) (b)

FIG. 4. Average (a) and standard deviation (b) of the liquid core length normalized by the inner liquid
diameter dl as a function of the gas-to-liquid dynamic pressure ratio M. Membrane-breakup, fiber-type breakup,
and transitional regimes are represented using circles, squares, and diamonds, respectively. Power-law fits AMn

are shown in solid red line with (a) Aavg = 12.8 ± 0.8 and navg = −0.34 ± 0.04; (b) ASTD = 2.14 ± 0.12 and
nSTD = −0.30 ± 0.03.

For both plots of Fig. 4, the membrane breakup and fiber-type atomization regimes are repre-
sented with circles and squares, respectively. In addition, diamonds are used for conditions where
both membrane formation and fiber-type atomization coexist. The determination of atomization
regimes is discussed in Sec. V. The liquid Reynolds number is also indicated with the color bar.
No influence of atomization regimes or of Rel is exhibited in the current dataset. The gas-to-liquid
dynamic pressure ratio M is enough to capture variations of the liquid Reynolds number with a
single power law for the average and standard deviation of the liquid core length LB. M hence
appears to be the sole parameter controlling the first two moments of LB.

B. Higher-order moments of the liquid core length

To further investigate the general shape of the probability density function of the liquid core
length we use the normalized and centered variable: L̃B = LB−〈LB〉

LB,STD
. Figure 5 displays the probability

density functions of L̃B for every experimental conditions, showing a remarkable collapse. The
black curve is a normalized and centered skew-Gaussian function, whose general expression is
given in Eq. (1). It is solely defined by α, ω, and ξ , the shape, scale, and location parameters,
respectively. In the case of Fig. 3, the three parameters are calculated using the first three moments
of the distribution of LB. However, the expression of the skew-Gaussian distribution is simplified in
the case of a centered and normalized distribution (Fig. 5) where μ = 0 and σ = 1: The shape, scale,
and location parameters depend only on one parameter, the skewness, directly measured from the
data. In the case of the black curve in Fig. 5, this parameter is taken as the average of the skewness
value of each condition,

f (x) = e− 1
2 ( x−ξ

ω )2

ω
√

2π

{
1 + erf

[
α(x − ξ )√

2ω

]}
, (1)

α =
{

2

π

[
1 +

(
4 − π

2β

)2/3
]

− 1

}−1/2

, (2)

ω = σ√
1 − 2δ2

π

, (3)

ξ = μ − ωδ

√
2

π
, (4)
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FIG. 5. Probability density functions of the centered and normalized liquid core length L̃B = LB−〈LB〉
LB,STD

for
every operating condition. The black curve corresponds to a skew-Gaussian function with zero average,
unit standard deviation, and whose skewness is computed by averaging the skewness obtained for every
experimental condition.

where erf is the error function, δ = α√
1+α2 , and μ, σ , and β are respectively the average, standard

deviation, and skewness.
The skew-Gaussian is in good agreement with the experimental data, confirming previous

observations done in a narrower range of operating conditions [19]. Despite an apparent collapse of
the curves around the average distribution (black line), close examination shows that the shape
of the probability density function appears to vary slightly with the gas Reynolds number, as
highlighted by the color bar. The latter emphasizes (in green) conditions for Reg > 33 000, which
appear to collapse onto a master curve, while conditions of lower gas Reynolds number values
behave differently. Note that in the current study, since changes in nondimensional groups only
occur through changes in mean exit velocities (Ul and Ug), this transition, occurring around Ug = 53
m/s, is reported above in terms of gas Reynolds number for simplicity (since Reg ∼ Ug) but it can
also be expressed with the gas Weber number with Weg = 75 and both threshold values will be
used hereafter. To further understand these differences in shape we show in Figs. 6(a) and 6(c)
the skewness of the liquid core length as a function of M and Reg. While high dynamic pressure
ratios seem to lead to a constant skewness, the behavior of βLB with M is not very clear, and
the color bar highlights that Reg seems to be a better indicator [green symbols in Fig. 6(a)]. The
trend of the skewness of the liquid core length along the gas Reynolds number [Fig. 6(c)] is much
clearer, as underlined by the box-and-whisker plot. The latter represents the averages and standard
deviations of βLB computed in six bins spaced along Reg. The skewness tends to be lower when
Reg < 33 000 and shows an increasing trend although the spread is important. Focusing on the
conditions with Reg > 33 000, we compute their average skewness, 〈βLB〉 = 0.46, and associated
standard deviation, βLB,STD = 0.07. The dashed line corresponds to 〈βLB〉 and the dashed-dotted
lines to 〈βLB〉 ± βLB,STD. Despite a moderate spread still present above the transition, most of the
data points are found to be less than a standard deviation (of the skewness) away from the average
skewness. This indicates that the skewness increases with Reg up to an asymptotic value at high
gas Reynolds number, with no further dependency on other dimensionless parameters. Since the
probability density functions collapse at high Reynolds numbers, higher-order statistical moments
are not investigated.
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(a) (b)

(c) (d)

FIG. 6. Skewness of the liquid core length as a function of the gas-to-liquid dynamic pressure ratio M
(a) and gas Reynolds number Reg (c). For conditions with Reg > 33 000, alternatively Weg = 75, we compute
the average skewness 〈βLB 〉 = 0.46 and the standard deviation of the skewness, βLB,STD = 0.07. The dashed
line corresponds to 〈βLB 〉 and the dashed-dotted line to 〈βLB 〉 ± βLB,STD. Ratio of the standard deviation to
the average value of the liquid core length ILB = LB,STD/〈LB〉 as a function of M (b) and Reg (d). We compute
the average and standard deviation of ILB , respectively 〈ILB 〉 = 18.1% and ILB,STD = 2.6%. The dashed line
corresponds to 〈ILB 〉 and the dashed-dotted line to 〈ILB 〉 ± ILB,STD. The x axes are divided into bins to compute
averages and standard deviations of βLB (c) and ILB (d) to form box-and-whisker plots. Membrane-breakup,
fiber-type breakup, and transitional regimes are represented using circles, squares, and diamonds, respectively.

We investigate the ratio of the first two statistical moments of the liquid core length to explore
a potential signature of the transition observed on the skewness for Reg > 33 000, alternatively
Weg > 75. Since both the standard deviation and the average of the liquid core length scale with
M−0.3, their ratio ILB = LB,STD

〈LB〉 is expected to be constant. Figure 6(b) shows ILB as a function of M. We
compute the average and standard deviation of ILB , respectively 〈ILB〉 = 18.1% and ILB,STD = 2.6%.
The ratio of the prefactors of the fits of 〈LB〉 and LB,STD, ASTD

Aavg
= 0.17, is in good agreement with

the value obtained for 〈ILB〉. The dashed line corresponds to 〈ILB〉 and the dashed-dotted line to
〈ILB〉 ± ILB,STD. More than 60% of the conditions are within one standard deviation away from
the average 〈ILB〉 and 96% the measurements are within two standard deviations of 〈ILB〉, indicating
that ILB is indeed independent of M. The color bar does not indicate any further influence of the
gas Reynolds number (alternatively gas Weber number) on ILB , which is confirmed by an alternate
representation along Reg in Fig. 6(d). In addition, circles, squares, and diamonds correspond to the
membrane-breakup, fiber-type, and transitional regimes, respectively. No effect of the atomization
regime or of the liquid Reynolds number is observed on ILB .
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(a) (b)

FIG. 7. Autocorrelation functions of LB as a function of the normalized time lag τ

τc
. (a) Linear ordinate.

(b) Logarithmic ordinate. The black curve corresponds to exp(− τ

1.33τc
).

IV. TIMESCALES OF THE LIQUID CORE LENGTH

Figures 7(a) and 7(b) show, in linear and semilogarithmic coordinates, the autocorrelation
functions obtained for each condition as a function of the normalized time lag τ/τc, τc being a
correlation time obtained by a partial integration of the autocorrelation function (see Sec. II C). The
color bar is the same as the one of Figs. 6(a) and 6(b) and highlights in red and green the conditions
with low and high gas velocities, respectively. The solid black curve of Fig. 7(b) corresponds to the
exponential function exp(− τ

1.33τc
) and captures the autocorrelation functions for conditions with low

gas velocities (Reg in the vicinity of 15 000, alternatively Weg ∼ 20). The coefficient 1.33 comes
from the computation of τc: The time defined by the integral of a decreasing exponential function up
to the crossing of 0.25 is equal to 1.33 times its exponential decay rate. Autocorrelation functions for
conditions at higher gas velocities are found to initially decrease faster than an exponential function,
and the initial decrease rate appears to be an increasing function of Reg in the intermediate range of
gas velocities (orange to yellow symbols). This is visible by the initial ordering of the curves (for
τ/τc < 1) where increases of Reg (red to orange to green) yield a given decorrelation over shorter
time periods. For Reg > 33 000, the rate seems to reach an asymptotic value and all functions (green
symbols) collapse onto a master curve. The change of shape of the autocorrelation functions of the
liquid core length also highlights the transition discussed in the previous section for the distributions
of LB (around a transition value of Reg = 33 000 or Weg = 75): Conditions at low gas velocity are
exponentially decreasing, and increases of Ug yield faster-decreasing functions, until reaching a
constant decay rate after the transition, when represented along the normalized time lag τ/τc.

To characterize the evolution of the correlation time τc, we introduce a large-scale timescale
of the gas jet Tg = dg

Ug
∝ Re−1

g . Figure 8(a) shows the correlation time normalized by the gas jet
timescale τc

Tg
as a function of the gas Reynolds number. We divide the range of gas Reynolds number

into seven bins and compute the average and standard deviation of τc
Tg

in each of these bins. The
red dots correspond to the average and the errorbars to twice the standard deviation. Despite some
spread, the average values do not appear to depend on the gas Reynolds number, when normalized
by Tg. This shows that the correlation time τc scales with Re−1

g , with a proportionality coefficient of
approximately 16.3 s.

Figure 8(b) shows the correlation time normalized by the timescale of the gas jet τc
Tg

as a function
of the liquid Reynolds number. We divide the range of Rel into seven bins and compute the average
and standard deviation of τc

Tg
in each of these bins. The black dots correspond to the average and

the error bars to twice the standard deviation. The normalized average values appear constant at
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(a) (b)

FIG. 8. Correlation time τc normalized by the timescale of the gas jet Tg as a function of (a) Reg and (b) Rel .
The x axes are divided into bins to compute averages and standard deviations of τc

Tg
to form box-and-whisker

plots.

lower liquid Reynolds number values and finds higher values in the range of high Rel (where a
growing or constant trend remains indefinite with the current range explored). We compute the
average and standard deviation for all conditions with Rel < 4000 and find τc

Tg
= 2.3 ± 0.7, while

Rel > 8000 yields τc
Tg

= 3.6 ± 0.9. The change between both behaviors being gradual along Rel and
moderate in amplitude, we cannot establish a clear threshold value of liquid Reynolds number for
this transition. The averaged trend highlighted by the black dashed line shows an increase starting
between Rel = 2000 and 4000 that may reach an asymptotic value for Rel � 10 000.

V. DISCUSSION

Figure 4 shows that the gas-to-liquid dynamic pressure ratio M is the sole parameter controlling
the first two moments of the probability density function of the liquid core length. The scaling laws
for the average 〈LB〉 and the standard deviation LB,STD of the liquid core length are power laws
of M with approximately the same exponents and hence present a constant ratio. Thus, if Gamma
functions were used to describe the probability density functions, the rate parameter defined as
b
 = 〈LB〉/LB,STD should be constant and the shape parameter defined as a
 = 〈LB〉2/LB,STD should
depend on M only. With this representation, one obtains the skewness directly as 2/

√
a
 , implying

a scaling with M0.19 over the entire range of explored parameters. The observed variations of the
skewness with Reg [Fig. 6(c)] therefore cannot be reconciled when using Gamma distributions
to provide a reduced description of the liquid core length distributions. Thus we conclude that
skew-Gaussian distributions provide the adequate framework to describe the liquid core length
statistics, confirming previous observations [19] and extending them to a much wider range of liquid
and gas Reynolds numbers (equivalently gas-to-liquid dynamic pressure ratio). This representation
effectively reduces the full statistics to three parameters: the average, the standard deviation, and the
skewness, which directly become only two parameters given that the ratio of the standard deviation
to the average liquid core length LB,STD/〈LB〉 is constant.

The first parameter describing the full statistics is the average liquid core length, which is solely
controlled by one dimensionless parameter: the gas-to-liquid dynamic pressure ratio M. The second
parameter corresponds to the skewness of the liquid core length, associated with the shape of the
distributions. While the PDFs of L̃B first appear to collapse onto a single curve, associated with a
constant skewness, closer inspections reveal a richer behavior (Fig. 5). Two regimes are underlined,
governed by the gas Reynolds number, with a transition in the vicinity of Reg = 33 000, alternatively
Weg = 75. For higher values of Reg, the skewness βLB appears constant with βLB = 0.46 ± 0.07, see
Fig. 6. Due to experimental constraints, fewer points were obtained for low gas Reynolds numbers
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and high liquid Reynolds numbers. While the imaging location can readily be chosen to be centered
around the average value of LB, high Rel and low Reg values would yield very low values of M and
hence a very large standard deviation. Capturing the full range of the liquid core length variations
would then require a very large field of view, which comes at a cost of spatial resolution and makes
the detection of the liquid core challenging. Note also that conditions at both low Rel and Reg are
outside of the studied breakup regimes. Despite the spread associated with the third-order statistical
moment, for Reg < 33 000, the skewness seems to increase with Reg toward an asymptotic value
reached at Reg = 33 000 and, alternatively, Weg = 75 [Fig. 6(c)]. For low values of Reg, small
values of βLB are systematically found, while close to the transition, values can be found anywhere
between 0 and approximately 0.5. On the contrary, for high gas Reynolds numbers, most of the value
of the skewness are found within one βLB,STD of the asymptotic value 〈βLB〉. This explains why when
displaying every distribution of the centered and normalized liquid core length L̃B (Fig. 5), a master
curve is highlighted only for high gas Reynolds (Weber) number values, while the PDF for lower
values are found anywhere between a unit normal distribution (βLB = 0) and the master curve. Note
that investigating this transition and the trend of βLB through the gas-to-liquid dynamic pressure
ratio M is not found appropriate [Fig. 6(a)] since it seems to solely depends of the gas velocity Ug,
i.e., independent of the liquid velocity Ul [Fig. 6(c)].

In opposition to the skewness, the autocorrelation functions of LB (Fig. 7) are very well converged
in the range of short time lags. The high-speed imaging measurements besides well resolve that
range so that even slight change of function shape can be interpreted. Both autocorrelation functions
and statistical distributions of LB show very similar behaviors in the evolution of their shape. Starting
from a decreasing exponential function at low gas Reynolds number [highlighted by the dashed
line representing exp(− τ

1.33τc
)], the decay rate increases slightly with Reg (i.e., autocorrelation

functions decreasing faster than an exponential) until reaching a master curve for conditions with
Reg > 33 000. We conclude that the reported transition separates two regimes: (i) for Reg < 33 000,
the liquid core length presents correlations and statistics with a lower decay rate and skewness than
at higher gas Reynolds number and (ii) for Reg > 33 000, the statistics of LB are described by a con-
stant skewness while presenting correlations that decrease faster than an exponential with a fixed de-
cay rate. With the constant ratio of the standard deviation to the average liquid core length, the statis-
tics of LB are described by a single parameter in the second regime and hence solely driven by M.

The transition between two regimes for the distributions and autocorrelation functions of LB

below and above the value of Reg = 33 000 (alternatively Weg = 75) is an unexpected finding,
especially considering the reported behaviors of 〈LB〉, LB,STD and τc, each showing a single scaling
with respect to a sole nondimensional parameter (respectively, M and Reg) over the whole range
of parameters explored. A possible origin for this transition could be a change of behavior of the
gas jet. Reference [30] showed that a turbulent round jet exhibits a mixing transition when the
gas Reynolds number is around Reg ≈ 104. Beyond this transition, the gas jet efficiently entrains
the surrounding fluid around it (ambient air in our case) and the jet’s turbulent properties become
drastically different. The instabilities of the liquid jet’s interface originate from interactions with the
turbulent gas jet surrounding it. For instance, Ref. [31] showed that increasing the gas turbulence
intensity leads to interfacial instabilities presenting higher frequencies, in a planar configuration. In
the same configuration, high-fidelity simulations also show a faster growth and destabilization of the
instabilities when the gas turbulence is increased [32]. These interactions are thus expected to differ
below and above the mixing transition of the gas jet, which in turn can be expected to play a role on
the liquid core length. The increased probability of having larger values of L̃B (with respect to the
average value and in proportion to the standard deviation) associated with larger skewness values,
and the faster decorrelation at short times could then be explained by the difference in properties of
the gas jet past its mixing transition. An in-depth characterization of the gas jet, like the work done
in Ref. [30], would be required to confirm the value of the mixing transition in our situation and its
link to the transition observed here at Reg = 33 000.

In an almost identical configuration, Ref. [33] reported a change of regime in the spatial gradient
of the interfacial perturbation velocity around Reg = 45 000, alternatively Weg = 190. This supports

044304-13



TOLFTS, DEPLUS, AND MACHICOANE

FIG. 9. Qualitative phase diagram of breakup regimes in the {Rel ; Weg} parameter space. Red circles,
black squares, and blue diamonds respectively correspond to membrane-breakup, fiber-type atomization, and
to conditions where both of these breakup mechanisms coexist. The dashed line shows Weg = 75 (equivalently
Reg = 33 000) and the green solid line corresponds to the transition reported in Ref. [15]. Note that the Weber
number is defined as Weg = ρgU 2

g dl/σ in this figure.

the idea that a transition in the properties of the gas flow, thus in the interface instabilities,
can participate to the change of regimes in the behavior of LB. Reference [33] suggested that
this transition is linked to a change in breakup regimes from membrane-breakup to fiber-type
atomization. We investigate this by looking at a qualitative phase diagram, obtained by visual
inspections of the breakup phenomena over the range of explored parameters. Figure 9 reports
in the {Rel ; Weg} parameter space membrane break-up, fiber-type atomization, and the transitional
regime where both processes coexist. In this representation, the reported transition at Reg = 33 000
corresponds to a vertical line at Weg = 75. Thanks to the many Reynolds numbers sampled, the
value of Reg = 33 000 is tightly surrounded by experimental conditions. It is in good agreement
with the change in atomization regimes found here, and with the transition boundary sketched in
Ref. [15]. It appears that the change of behaviors presented here for Weg = 75 occurs at the onset
of fiber-type atomization, but with coexistence to the membrane formation process, while the one
identified in Ref. [33] around Weg = 190 marks the disappearance of membranes and the transition
to fiber-type atomization only. Note that in both cases the boundary appears to be (almost) vertical
in this diagram in the {Rel ; Weg} parameter space. This means that the gas Weber number and
not the relative Weber number stands as the good indicator for these transitions, since they appear
to be almost independent of the liquid velocity Ul . Drawing the phase diagram in the {Rel ; Wer}
parameter space (∼{Ul ; | Ug − Ul |} parameter space) would only result in a less straightforward
view with oblique transitions. While a relative Weber number defined on the phase slip velocity
is commonplace in multiphase flow, it seems not to be suited here, as probably noted in Ref. [15]
since they use both Weg and Wer but draw the phase diagram in the {Rel ; Weg} parameter space.
The situation may be different and Wer may be more suited for the fragmentation of a liquid jet by
a gas when the velocities of both phases are closer together, as may be interpreted by the curving
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of the boundary sketched in Ref. [15], as it nears the Ug = Ul line. This is the case for instance in
the numerical investigations of Refs. [34,35], where Wer is used for the regime maps describing
the destabilization of a planar liquid sheet segment and a transient liquid jet within a low-speed
gas jet, respectively. In the case of a liquid jet surrounded by a high-speed gas jet, however, the
close inspection of the statistics and temporal dynamics of the liquid core length appears as a good
candidate to provide a quantitative framework to describe the transition from membrane-breakup to
fiber-type atomization.

One motivation of this study was to investigate the effect of the onset of turbulence in the
liquid jet on the destabilization process. Considering the statistics of LB we report no effect of the
liquid Reynolds number Rel beyond the influence of increased liquid velocity captured by M. The
correlation time, when normalized by Tg, is besides found constant for low values of Rel [Fig. 7(b)].
However, at larger liquid Reynolds numbers the correlation time presents higher values than at
low Rel values and the increase of τc/Tg seems to occur between Rel = 4000 and Rel = 8000.
The evolution of the normalized correlation time for high liquid Reynolds numbers is unclear and
requires more conditions, exploring higher values, to be fully characterized. The unavailability of
the range of high Rel and low Reg was described above. In addition, conditions with high Rel and
Reg values require shorter spatial and temporal resolutions that the ones available, and would result
in a very dense two-phase flow in the vicinity of the breakup, which can prevent proper identification
of the liquid-gas interface [24]. One might think that the change in scaling of the correlation time
above the transition is not due to the onset of liquid turbulence but simply to breakup occurring
further downstream in the gas jet, where Tg does not adequately represent a characteristic timescale
of the gas jet. For conditions above the transition, normalizing by a higher value of Tg (built from dg

and a value of velocity lower than Ug) for the correlation time would indeed bring the data points to
the lower values found for lower liquid Reynolds numbers. Nevertheless, we know from our study
of the statistics of LB that the region where the breakup occurs is only controlled by M and breakup
is found to occur only up to 5dg downstream of the exit plane in the explored parameter space
(even at very high Rel values). Note that this range of breakup locations is similarly explored by
conditions at lower Rel values when Reg is low [red points on Fig. 8(b)] which do not present higher
correlation times. The gas velocity magnitude in this region is expected to still be well represented
by Ug [10,36], confirming that Tg is an appropriate timescale.

We suspect that the change of behavior of the correlation time is related to the transition to a
turbulent state of the liquid jet. Confirming this, however, would require velocity measurements
within the liquid jet, which are challenging to implement in such setup. Lacking a clear quantitative
indicator of the transition to turbulence of the liquid jet, we turn to the qualitative visualization
of the liquid jet interface, as an indirect proxy to the measure of the agitation in the liquid jet.
Figure 10 shows the liquid jet exiting the nozzle with no added gas flow, at Rel = 2000 [Fig. 10(a)],
Rel = 4000 [Fig. 10(b)], and Rel = 8000 [Fig. 10(b)]. In the vicinity of the nozzle exit (i.e., at
longitudinal x far from the region where the break-up due to the Rayleigh-Plateau instability occurs)
the interface of the liquid jet remains undisturbed for Rel = 2000. We interpret this as a laminar
liquid jet exiting the nozzle. The gas-liquid interface becomes slightly disturbed when Rel = 4000,
with localized corrugations of approximately the same size. These disturbances are a signature
of a deviation from a fully laminar state of the liquid jet, translating for instance the presence of
turbulence spots. The situation is much different at Rel = 8000, as the jet is heavily disturbed by
corrugations of a broad range of scales, right from the nozzle exit, a clear signature of a turbulent
liquid jet. These visualizations strongly suggest that the departure from a laminar jet occurs for a
value of the liquid Reynolds number found between these two bounds 2000 < Rel < 4000, and
would be the cause of the change of behavior of the liquid core length timescale. In addition, when
an established turbulent state is reached so that disturbances of various sizes are observed over the
whole jet, i.e., in the vicinity of Rel = 8000, the increase of τc/Tg with Rel is seen to either saturate
or become less steep [Fig. 8(b)]. Nevertheless, the color bars of Fig. 4 and Figs. 6(c) and Figs. 6(d)
indicate in shades of blue the value of liquid Reynolds number and no trend is exhibited, confirming
this change of regime with Rel does not influence the moments of the probability density function.
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(a) (b) (c)

FIG. 10. Snapshot of the liquid jet exiting the nozzle in a still gas environment. (a) Rel = 2000, the
interface of the jet remains unperturbed in the vicinity of the nozzle and the liquid jet is laminar. (b) Rel = 4000,
the interface of the jet only suffers from large-scale disturbances, which suggests that the liquid jet exiting the
nozzle is laminar but presents some local flow perturbations. (b) Rel = 8000, the interface of the jet presents
small-scale corrugations, suggesting that the liquid jet exiting the nozzle is turbulent.

In the range currently explored, the effect of the onset of turbulence in the liquid jet seems to be
limited to a secondary effect on the value of the liquid core length correlation time.

VI. CONCLUSIONS

We performed high-speed back-lit imaging of the breakup of a liquid jet by a turbulent coaxial
gas jet, over a wide range of liquid and gas Reynolds numbers, encompassing laminar and turbulent
conditions of the liquid jet as well as two regimes of jet breakup. We focus on the liquid core
length (longitudinal extent of the liquid jet, noted LB) and study its statistics and temporal dynamics.
Using autocorrelation functions of the liquid core length, we showed that the correlation time τc

scales linearly with Re−1
g . In opposition, the statistics are observed to be governed by the gas-

to-liquid dynamic pressure ratio M. The average and standard deviation of the liquid core length
both follow a power law with M. In addition, we find the ratio of these two statistical moments
〈LB〉/LB,STD to be constant, effectively reducing the number of parameters needed to describe the
statistics of LB. The skewness on the other hand does not present a clear scaling with M but appears
to have a nonmonotonous evolution with the gas Reynolds number Reg. Nonetheless, thanks to a
representation of the distributions of LB with skew-Gaussian functions, we can fully describe its
statistics using only two parameters: the average and skewness of LB. The skewness is found to be
constant for high Reg, therefore further reducing the description to a single parameter in that case.

With the shape of the distributions of LB fully characterized, we were able to identify a transition
between two regimes. Conditions with Reg > 33 000 collapse on a mastercurve (Fig. 5), while
conditions with Reg < 33 000 present smaller skewness values, that, despite some spread, increase
with Reg toward the asymptotic value found for high gas velocity conditions. This change of regime
above and below the value of Reg = 33 000 (alternatively Weg = 75) is also evidenced with the
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autocorrelation functions: Conditions at Reg < 33 000 show exponentially decaying autocorrelation
functions, whereas for conditions with Reg > 33 000 the decay is faster than an exponential. These
unexpected changes of behavior of the temporal dynamics and the statistics of LB can be explained in
the light of the mixing transition of the turbulent gas jet, found to occur around Reg ≈ 104 for round
gas jets [30]. Asymptotic values of the skewness of the liquid core length as well as of the decay rate
of its autocorrelation functions were exhibited and found to be reached at high gas velocity (Reg >

33 000, alternatively Weg > 75), where no more dependence on operating parameter exists for these
metrics. The base state found at low gas velocity remains, however, to be studied, along with the on-
set of the regime where these metrics depend on operating parameters. The transition in the behavior
of the liquid core length seems also to be related to a change in breakup regime, from membrane-
breakup to fiber-type atomization, which is qualitatively shown in the phase diagram presented
in Fig. 9. The proposed framework, studying the distributions, autocorrelation functions, and their
transition, appears as a candidate for a quantitative tool to describe the transition in breakup regimes.

Investigating the role of the onset of turbulence in the liquid jet on the liquid core length, we find
no contribution on the statistics of LB. However, the correlation time is shown to be proportional to
a time based on the gas jet Tg = dg

Ug
, with a secondary weak dependence on the liquid Reynolds

number. The values of τc are found in the vicinity of 2.3Tg at low liquid Reynolds numbers,
while they neighbor 3.6Tg at high Rel values. The transition between the lower and upper range
of correlation time gradually happens in the range 4000 < Rel < 8000 through a monotonous
increase. Before the increasing range, the liquid jet is laminar and is only destabilized by the
Rayleigh-Plateau instability that develops further downstream (Rel � 2000). Visualizations in the
absence of a gas flow suggest that around Rel = 4000 the liquid jet is no longer laminar, as local
disturbances are observed, a potential signature of turbulent spots. For higher liquid Reynolds
number (Rel � 8000), the jet is heavily corrugated across a broad range of scales as it has now
reached a turbulent state. We believe that the deviations from a laminar liquid jet followed by
the establishment of a turbulent state are responsible for the increase in correlation time around
Rel ∼ 4000 and its potential saturation Rel ∼ 8000, respectively.

As stated, the multiscale nature of spray formation prevents using a single approach to study
every underlying mechanism of the fragmentation cascade. The liquid core length cannot be
sufficient to fully describe gas-assisted atomization, in particular at high Weber numbers. Future
work could hence encompass for instance the study of the signature of the change of atomization
regimes and the onset of liquid turbulence highlighted here on other mechanisms, e.g., flapping
instability, interfacial instabilities, break-up processes, and up to the droplet populations in the spray.
In addition, confirming the changes of behaviors, that were observed here by varying the velocities
of the fluids, but through modifications of the properties of the fluids as well would prove to be
interesting future work.
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