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Lagrangian velocity and acceleration correlations of large
inertial particles in a closed turbulent flow
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46 Allée d’Italie, F-69007 Lyon, France

(Received 14 September 2015; accepted 5 March 2016; published online 28 March 2016)

We investigate the response of large inertial particle to turbulent fluctuations in
an inhomogeneous and anisotropic flow. We conduct a Lagrangian study using
particles both heavier and lighter than the surrounding fluid, and whose diameters
are comparable to the flow integral scale. Both velocity and acceleration correlation
functions are analyzed to compute the Lagrangian integral time and the acceleration
time scale of such particles. The knowledge of how size and density affect these
time scales is crucial in understanding particle dynamics and may permit stochastic
process modelization using two-time models (for instance, Sawford’s). As particles
are tracked over long times in the quasi-totality of a closed flow, the mean flow
influences their behaviour and also biases the velocity time statistics, in particular
the velocity correlation functions. By using a method that allows for the computation
of turbulent velocity trajectories, we can obtain unbiased Lagrangian integral time.
This is particularly useful in accessing the scale separation for such particles and
to comparing it to the case of fluid particles in a similar configuration. C 2016 AIP
Publishing LLC. [http://dx.doi.org/10.1063/1.4944523]

I. INTRODUCTION

The dynamics of particles freely suspended in a turbulent flow is a multi-scale problem with
a wide range of applications such as meteorology, oceanography, and engineering. Among these
domains, particle dispersion has been widely studied and still remains an open question concerning
large “material particles” (i.e., of diameter larger than a portion of flow scales), with a density that
can be different from that of the fluid. This stands naturally as a Lagrangian problem where (time)
correlation functions are an appropriate tool, being easily accessed and offering direct interpreta-
tion. When measuring velocity or acceleration correlation functions over particle trajectories, one
can estimate the particle characteristic times, which are typically used in stochastic modelization
to achieve prediction of particle dynamics. While only one characteristic time can be enough to
simulate the dynamics of an inertial point-like particle immersed in a known flow (in the framework
of Refs. 1 and 2), modeling material particles is often more demanding. A limiting cost can be
achieved in direct numerical simulation by use of a corrected Faxen model,3 but the fastest way lies
in stochastical two-time models in the spirit of Sawford’s.4 These models make it pertinent to study
both the velocity and acceleration time scales of such particles.

In homogeneous and isotropic turbulence, the velocity correlations of fluid particles were found
to be nearly exponential for time lags larger than the dissipative time of the turbulent flow.5–7

Some studies have also focused on Lagrangian velocity power spectra as such analysis may provide
insight into inertial particle response to velocity fluctuations.8,9 Since the pioneering works using
large weather balloons released in the atmosphere,10 or ocean floats,11 modern and controlled exper-
iments have confirmed the presence of an inertial regime in Lagrangian velocity spectra12 and found
flow anisotropy existing at the very smallest scales.13

These experiments and simulations consider tracer particles in unconfined and homogeneous
turbulence in the absence of any significant mean flow, thus ignoring the influence of the flow
topology on particle dynamics. On top of a possible impact of a mean flow on particle dynamics,
its presence biases Lagrangian correlation functions and disentangling the signature of turbulence
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from the mean flow statistics is an important problem in turbulence research, in the general context
of close flows.

The purpose of the present work is to address the dynamics of very large particles freely
advected in a confined turbulent flow presenting a large scale structure. These particles, known to
become less and less sensitive to the flow fluctuations as compared to the mean flow,14,15 preferen-
tially sample the low pressure regions of the flow when their diameter approaches the flow integral
scale.16 Complementing these previous works, we investigate Lagrangian velocity and acceleration
correlations while tracking the particles for times much larger than the large eddy turnover time of
the flow. Our motivation stems from the possibility that particle dynamics may be influenced by the
flow topology from the very lowest frequencies down to the frequency cutoff due to the particle size.
We investigate the effect of particle size and density on their dynamics, by extracting the particle
response times to turbulent fluctuations.

The experiment is performed in a counter-rotating von Kármán flow (briefly described in
Section II), where particles are tracked optically in the main part of the flow volume. We discuss in
Section III the possibility to (i) define a turbulent velocity correlation function by removing the mean
flow contribution and (ii) estimate a Lagrangian integral time. The very high frequency range of the
dynamics (i.e., acceleration) and its cutoff due to particle size is then investigated in Section IV.
Finally, the scale separation, which is given by the ratio of the velocity and acceleration time scales,
for such large particles is discussed in Section V, before a final summary in Section VI.

II. EXPERIMENTAL SETUP

We investigate the dynamics of large inertial particles in a water-filled von Kármán flow, using
the same setup as detailed in Refs. 16 and 17. We chose this system as it presents a well known
mean flow with a magnitude of the same order of the turbulent fluctuations. We also note that it
shares similarities with industrial mixers and that several previous Lagrangian studies of particles
dynamics have been conducted in the center of such vessel.12,18,19 The flow is produced by means
of two counter-rotating disks of radius R = 9.5 cm located at z = ±10 cm which generate an intense
turbulence in a cubic domain of length H = 20 cm ≃ 2R. As depicted in Figure 1(a), the resulting
flow has a mean spatial structure composed of a strong azimuthal motion near the disks plus a
meridian recirculation flow whose origin lies in the pumping motion imposed by the disks. This
setup produces non-homogeneous and non-isotropic turbulence,13,20 with flow fluctuations stronger
near the mid-plane (z = 0).

The particles are polyamide and polypropylene spheres with diameters D = [6, 10, 18, 24] mm
(accuracy 0.01 mm, Marteau & Lemarié, France) and densities ρPA = 1.14 g cm−3 and ρPP
= 0.9 g cm−3, respectively. All experiments are performed with pure water (kinematic viscosity
ν = 10−6 m2 s−1) maintained at constant temperature Θ = 20 ◦C. The particles are inertial and have
diameters of the order of the integral length scale L of the flow, much larger than the Kolmogorov
length scale (see Table I for the flow parameters obtained with tracer particles).

FIG. 1. (a) Flow vessel and camera arrangement for 3d particle tracking. Arrows indicate the mean flow geometry with
counter-rotation in the azimuthal direction and meridian recirculation. (b) Sample of 20 trajectories of 18 mm polyamide
particles obtained with a rotation frequency Ω= 4 Hz.
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TABLE I. Experimental parameters. Ω: rotation frequency of the counter-rotating disks. u′=

((u′x)2+ (u′y)2+ (u′z)2)/3:

fluctuating velocity averaged over components measured from tracer dynamics in a large volume around the geometrical
center. ε: energy dissipation estimated from the electrical power consumption of the motors (see Ref. 16 for more
details). τη ≡ (ν/ε)1/2: Kolmogorov time scale.η ≡ (ν3/ε)1/4: Kolmogorov length scale. Re≡ (2πR2Ω)/ν: Reynolds number
computed using the disk tip velocity. Rλ =


15u′4/εν: Reynolds number based on the Taylor microscale. L = u′3/ε: the

estimated integral length scale.

Ω (Hz) u′ (m s−1) εpower (W kg−1) η (µm) τη (ms) Re Rλ L (cm)
2 0.25 0.48 38 1.44 1.2 × 106 350 3.2
3 0.38 1.67 28 0.77 2.4 × 106 430 3.2
4 0.52 4.03 22 0.5 3.6 × 106 520 3.4

Particles are tracked in a very large volume 20 × 20 × 15 cm3 using 2 high-speed video cam-
eras (Phantom V.12, Vision Research, 1 Mp at 6 kHz) placed at 90◦ as shown in Figure 1(a).
Both cameras observe the measurement volume with a resolution 800 × 768 pixels, limiting the
maximum length of trajectories to 13 900 frames. We performed experiment with a moderate sampl-
ing frequency adjusted in the range fsampling ∈ [1600, 3000] Hz (depending on the disks velocity)
to obtain trajectories with mean duration ⟨∆t⟩ ≃ 0.5/Ω (Figure 1(b)). We can then obtain velocity
and acceleration trajectories by convolution of a filtering-differentiating Gaussian kernel (as was
done in Ref. 16) allowing for the computation of velocity/acceleration correlation functions over
meaningful times.

III. ESTIMATING TURBULENT VELOCITY CORRELATIONS

The aim of this section is to compute the characteristic time of particle velocity fluctuations.
The next session will consider the response time to high frequency fluctuation, linked to accelera-
tion. Studying how both times change with the particle characteristics yields then an understanding
of size and density effect on particle dynamics. In order to compute velocity correlations, one must
track particles for durations longer than the large eddy turnover time of the flow T = 1/Ω. Particles
will then explore a significant part of the flow during one track and may be lost for small durations
when hidden by other particles, cutting the tracks in an ensemble of smaller trajectories. Though
this is a severe limitation when computing Lagrangian spectra, this does not introduce any bias in
the estimation of the correlation functions, providing the particles can be identified before and after
being lost. We thus run the experiments with one particle per diameter in the flow volume so that
we reduce the number of experiments while being able to identify all particles. Figures 2(a) and 2(b)
display the resulting normalized auto-correlation functions, Rvi(τ) = ⟨vi(t)vi(t + τ)⟩/⟨v2

i ⟩ (i = x, z),
for the four sizes of polyamide particles at the largest Reynolds number considered.

FIG. 2. (a) Normalized auto-correlation functions of the transverse velocity vx, noted Rvx, for polyamide particles with
diameters D/L = 0.2 (solid line), D/L = 0.33 (dashed line), D/L = 0.6 (dashed-dotted line), D/L = 0.8 (dotted line), and
a rotation frequency Ω= 4 Hz. (b) Corresponding normalized auto-correlation functions of the axial velocity vz.
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These figures show that the particle size has a weak impact on velocity correlation functions
for all the velocity components. All curves have a very similar shape at short times, and it is very
difficult to differentiate them for particles larger than 10 mm (D/L = 0.33) as all auto-correlation
functions become negative when τΩ ∼ 0.4. After crossing zero, the functions then tend towards
zero on a longer time scale (with eventual oscillations), which is not shown here as the statistics
are less converged for large time lags τ. This zero-crossing behavior is not due to any finite volume
bias as discussed for Lagrangian measurements performed in the homogeneous central region of
von Kármán flows.12 It is due to the fact that particles are tracked in a very large portion of a
bounded flow. Indeed, in this case, the Lagrangian integral time, TL =

 ∞
0 Rv(τ)dτ, must be zero for

a bounded flow.21 This result means that one must disentangle the contributions of the mean flow
from the turbulent fluctuations in order to estimate turbulent velocity correlations and a Lagrangian
integral time.

To achieve this, we compute the stationary Eulerian flow for each particle type as the ensemble
average vE(x, y, z) = �

v x, v y, v z
�

and define the particle velocity components as the sum of the local
mean flow value at the particle location x(t) and the fluctuating velocity: vi(t) = v ′i(t) + v i(x(t)).
More details about this Eulerian Lagrangian conditioning can be found in Ref. 16. The auto-
correlation function of vi is then the sum of four terms,

⟨vi(t)vi(t + τ)⟩ = ⟨v ′i(t)v ′i(t + τ)⟩ + ⟨v i(x(t))v i(x(t + τ))⟩
+⟨v i(x(t))v ′i(t + τ)⟩ + ⟨v ′i(t)v i(x(t + τ))⟩, (1)

which can be rewritten as

Cvivi = Cv′
i
v′
i
+ Cvivi + Cviv

′
i
+ Cv′

i
vi, (2)

where Cuivi stands for the covariance of ui and vi (i.e., non-normalized correlation function). We
compute the five covariances for all particle types and display the results for the transverse and
axial velocity components of a polyamide particle with size D/L = 0.6 in Figures 3(a) and 3(b),
respectively. Whatever the component, we observe that the cross correlations Cvv′ and Cv′ v are much
smaller than Cvv and Cv′v′. This property, valid whatever the particle size and density ratio, implies
that fluctuations experienced by particles can be considered to be uncorrelated with their dynamics
due to the mean flow even if particles do not sample the flow homogeneously. For the transverse
component, we also find that Cv′v′ and Cvv are of the same order of magnitude. The particles dy-
namics is reflecting a key property of the counter-rotating von Kármán flow by which mean velocity
and transverse fluctuations are of the same order of magnitude. The result concerning the axial
component is more surprising because we observe that the total velocity correlation is dominated by
the turbulent contribution Cv′zv

′
z
. This result also holds for other particle sizes although less apparent

for smaller particles which are not trapped in regions of small mean axial velocity (i.e., toroidal
regions close to the disks).

As the proposed decomposition is valid whatever the particle size, we display in Figure 3(c)
the resulting auto-correlation functions of the turbulent transverse velocity, Rv′x, for all particle
diameters. As opposed to the total velocity, the curves have similar shapes but a clear ordering
appears for different particle diameters. The functions time scales indeed increase with particle size,
but they no longer cross zero (up to statistical convergence) as if the dynamics were unbounded.
The result is different for the axial component where we find that the shape of Rv′z strongly evolves
with the particle size as demonstrated in Figure 3(d). The functions become more and more curved
as the particle size increases and it becomes evident that no rescaling can put these functions on
a single master curve. Indeed, while the functions are quite ordered at small times, the changes of
shape lead to a point where all functions cross each other (around τΩ = 0.25), resulting in a reversal
of the order. The functions shape for larger particles yields a zero crossing and eventual oscillations,
as was observed before for the total velocity (Figure 2). Though the method seems to work well for
the smallest particle considered, it appears not to be sufficient for larger particles for which another
bias is present. This component is indeed more sensitive to preferential sampling, which explains
that Rv′z oscillates when particles are large enough to experience coming and going motions between
trapping regions of small axial mean flow with high gradient in fluctuating velocity.
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FIG. 3. (a) Correlation functions of the transverse velocity (see Equation (2)) for polyamide particles with D/L = 0.6 and a
rotation frequency Ω= 4 Hz. Cvxvx (thick solid line), Cv′xv

′
x

(dashed line), Cvxvx (dashed-dotted line), Cvxv
′
x

(dotted line),
Cv′xvx (thin solid line). (b) Corresponding correlation functions for the axial velocity. (c) Normalized auto-correlation func-
tions of the fluctuating velocity v′x, noted Rv′x, for polyamide particles with diameters D/L = 0.2 (solid line), D/L = 0.33
(dashed line), D/L = 0.6 (dashed-dotted line), D/L = 0.8 (dotted line), and a rotation frequencyΩ= 4 Hz. (d) Corresponding
normalized auto-correlation functions of the axial fluctuating velocity v′z.

As it is difficult to achieve statistical convergence of velocity correlations for large time lags,
we define a Lagrangian integral time, Tv =

 τ95
0 Rv′(τ)dτ, where τ95 is the time needed for Rv′(τ) to

decrease by 95%. This ensures that one can measure the integral time for all velocity components
without accounting for the negative part of Rv′(τ). Figure 4 shows the transverse velocity time scale
increases by 30% when increasing the particle size from D/L = 0.2 to 0.8, which is consistent with
other results obtained using a corrected Faxen model to simulate the dynamics of isodense particles
with sizes larger than the Kolmogorov scale.3 As a result of the velocity correlation’s anisotropy,
we find that Tv is strongly anisotropic, being smaller for the axial component as compared to the

FIG. 4. (a) Evolution of the velocity integral time as a function of particle size for polyamide particles (filled symbols)
with relative density 1.14 and polypropylene particles (open symbols) with relative density 0.9. ◦ and solid line: transverse
component x. � and dashed line: axial component z. (b) Evolution of the velocity integral time as a function of the rotation
frequency for polyamide particles along the transverse component x (continuous line, filled symbols) and axial component
(dotted line, empty symbols) for different diameters (colours and symbols).
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transverse one. Furthermore, no substantial variation of Tv with D is detected for the axial velocity
because the shape of Rv′z strongly changes at increasing particle size (which biases the measure
of Tv). Up to now, only results at the highest Reynolds number have been presented. Indeed, the
turbulence is fully developed, meaning that the Re dependence of time scales is fully captured
by the rotation frequency Ω. This is easily checked when looking at the evolution of TvΩ with
Ω (Figure 4(b)). We indeed observe no significant variations whatever the component or particle
diameter considered.

Concerning the influence of relative density, we find that light particles present a similar
behavior to one of the heavy particles but with an integral time 10% smaller, irrespective of the
velocity component. In the spirit of Tchen-Hinze theory,22 this may be understood as an effect of the
added mass force. Indeed, it is in agreement with previous measurements of acceleration magnitude
which show the rms value of acceleration to be proportional to β = 3ρ f /(2ρp + ρ f ), where ρp

is the particle density.16 In this framework, high frequency fluctuations appear to be amplified or
attenuated depending on the value of β (βPP = 1.07, while βPA = 0.91) such that light particles
always have smaller correlation times (as will be shown in Section IV).

IV. HIGH FREQUENCY CUTOFF

In order to estimate the “dissipative time” of particle dynamics, we now focus on small time
scales and investigate acceleration correlation functions. Acceleration is a short correlated quantity
as compared to velocity and is only weakly affected by the mean flow; hence, only results for
the total particle acceleration are presented. Figure 5(a) presents the acceleration autocorrelation
functions of polyamide particles for the four diameters investigated. One can clearly observe that
particle acceleration decorrelates in a similar manner albeit at larger and larger time scales as the
particle size increases. Indeed, normalizing the time lag axis τ by the acceleration correlation time

FIG. 5. (a) Axial acceleration auto-correlation functions of polyamide particles, Raz for polyamide particles with diameters
D/L = 0.2 (solid line), D/L = 0.33 (dashed line), D/L = 0.6 (dashed-dotted line), D/L = 0.8 (dotted line), and a rotation
frequency Ω= 4 Hz. (b) Same figure as (a) but with the time lag τ normalized by the acceleration correlation time
Ta =

 τ0
0 Ra(τ)dτ, where Ra(τ0)= 0. (c) Evolution of the acceleration correlation time, Ta, as a function of particle size

for polyamide particles with relative density 1.14 (• ax, ■ az) and polypropylene particles (◦ ax, � az) with relative density
0.9. (d) TaΩ as a function of Ω for polyamide particles for the transverse component x (continuous line, filled symbols) and
axial component (dotted line, empty symbols) for different diameters (colours and symbols).
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FIG. 6. (a) Transverse raw acceleration power spectra for polyamide particles with diameters D/L = 0.2 (solid line),
D/L = 0.6 (dashed line) and polypropylene particles (diamonds) with diameters D/L = 0.2 (solid line), D/L = 0.6 (dashed
line), with a rotation frequency Ω= 4 Hz. (b) Evolution of the ratio of the velocity and acceleration correlation time, Tv/Ta,
as a function of particle size for polyamide particles with relative density 1.14 (• ax, ■ az) and polypropylene particles (◦
ax, � az) with relative density 0.9.

Ta (defined as the integral of the positive part of Ra as introduced for small particles18,19), we find
that all functions almost collapse on a master curve (Figure 5(b)), even when looking at the axial
component.

Figure 5(c) shows Ta increases at increasing particle size in a more pronounced fashion than
Tv (Ta is approximately multiplied by 2.5 when D increases fourfold). This increase of acceleration
correlation time is not incompatible with the one found for much smaller material particles19 (where
Ta/τη increases by 2.8 when D/η increases from 10 to 40). Contrary to observations made for
the velocity, transverse accelerations have time scales barely larger than axial ones due to the fact
that acceleration is more isotropic, as was observed for fluid particles.23 This quasi-isotropy stands
whatever the particle size or density is, and, as it is the case for previous results, the Reynolds
number dependence is fully captured by normalizing quantities with the rotation frequency Ω (as
seen in Figure 5(d)).

Varying the density in the range ρp/ρ f ∈ [0.9, 1.14], one finds that light particles have a
time scale approximately 10% shorter than heavier particles as was observed for the velocity
(Figure 5(c)). A closer analysis of the density ratio effect on particle dynamics can be made by use
of the raw acceleration power spectra. Even if they are directly linked to correlation functions (by a
Fourier transform), we find them more appropriate to compare light particles dynamics to one of the
heavier particles through all time scales. Figure 6(a) shows indeed that whatever the particle size,
acceleration power spectra are more energetic for a given light particle than for its heavy counter-
part. Of course this yields higher/lower rms acceleration values for light/heavy particles (by a factor
β = 3ρ f /(ρ f + 2ρp) as shown in Ref. 16), which correspond to the integral of the power spectra.

Whatever the density, spectra exhibit a sharp cutoff in the range 2 ≤ f /Ω ≤ 20 with a cutoff
frequency, fc, which decreases at increasing particle size (linked to the increase of Ta with D).
When a power law is tested, one finds φa( f ) ∝ f −α with an exponent α ≃ 3. The present decrease
is faster than that observed for ocean floaters,11 or as predicted by Sawford’s two-times model for
which acceleration spectra decrease as f −2 beyond the cutoff frequency.4 Accordingly, spectra do
not exhibit any plateau compatible with a Kolmogorov scaling as observed for small particles, likely
due to a lack of scale separation between the velocity integral time Tv and the acceleration time scale
Ta. Note that the increase in the raw acceleration power spectra for high frequencies corresponds to
noise coming from position measurement.

V. DISCUSSION

Finding acceleration less sensitive to trapping effects or to the mean flow geometry can be
expected as it is a small-scale quantity. However, with the small scale separation Tv/Ta found for
these large particles, it is surprising that these results still stand (which is confirmed by the fact
that no decomposition is indeed needed to study particle acceleration). Few Lagrangian studies have
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measured both the velocity and acceleration time scales of fluid particles in turbulent flows and we
will focus our comparison with the work of Ref. 12 which took place in a similar setup. Note that
the particles considered in Ref. 12 are slightly larger than the Kolmogorov length scale. The veloc-
ity autocorrelation functions of such tracers have an exponential shape, with the Lagrangian time TL

as characteristic time scale, yielding T tracer
v ≃ TL. The authors indicated that the acceleration corre-

lation functions cross zero at a value approximately 4 times larger than the value 2.2τη commonly
reported7,19,23 (an effect of the particles’ finite size). Using a better estimate of the zero crossing
time as 2τη, and assuming the positive part of the acceleration function is triangular, we then have
T tracer
a ≃ τη. In the range of Taylor microscale Reynolds number 500 < Rλ < 1000 explored, we

can then estimate from their data 70 < T tracer
v /T tracer

a < 130, increasing linearly with Rλ,24 which
is consistent with the fact that the inertial range (hence the scale separation) grows at increasing
Reynolds number. In the case of the large particles considered in the present study, we find ratios
between 1.5 and 4 depending on the particle size and acceleration component (Figure 6(b)). This is
indeed a much smaller scale separation for such particles, which is enlightening for modeling their
dynamics, using, for instance, a two-time model (Ref. 4, for instance). We note that, as both Tv and
Ta scale with Ω in the same way, there is no Reynolds number dependence of the scale separation
for large particles, in opposition to the case of fluid particles. This is in agreement with the fact
that the acceleration magnitude of large particles does not follow the classical arms ∼ ε3/4ν−1/4 (see,
for instance, Ref. 15) but was found to scale with the forcing time scale arms ∼ RΩ2.16 D/L stands
then as the good parameter, as the integral length scale is approximately constant with the Reynolds
number, while the Kolmogorov length scale decreases with Re. Indeed, plotting TaΩ (or just Ta) as
function of D/η would yield different sets of curves, while one master curve emerges when plotted
against D/L.

The particle density ratio, found to increase both velocity and acceleration time scales by
approximately the same factor, plays indeed no role on the Tv/Ta ratio (Figure 6(b)). The observed
decrease of this ratio confirms that velocity time scales increase slower than that of acceleration,
which is highlighted by the axial component where velocity time scales tend towards a constant
value. The anisotropy of the scale separation is therefore attributed to velocity anisotropy, which is
inherent to von Kármán flows. We believe that, as the impact of the mean flow is totally removed for
the transverse components, its evolution is more representative. It would be interesting to compare
this decrease of the scale separation to particles of size in or below the inertial range. To our knowl-
edge, previous studies of smaller material particles (typically in the range 1 < D/η < 5018,19) only
report measurements of acceleration time scales, as the velocity time scale demands much longer
trajectories.

VI. SUMMARY

Using 3d particle tracking, we have studied the characteristic time scales of very large inertial
particles in a non-homogeneous fully turbulent flow. Lagrangian tools have shown the strong influ-
ence of particle size on their dynamics. Indeed, for these large objects, we found both acceleration
and velocity time scales to be strongly increasing with the particle size. This is the signature of
a modification of the particle dynamics over the whole range of frequencies, as shown by the
Lagrangian power spectra of the particle acceleration. Frequencies higher than the injection fre-
quency displayed strong cutoffs in acceleration spectra due to particle size, corresponding to the
observed increase of acceleration time scales Ta with the particle size. Although this is in agreement
with previous measurements of finite size particle acceleration,18,19 acceleration spectra were found
to decrease much faster than f −2 as reported for ocean floats with much smaller D/η ratios.11

In order to separate the effects of size and density, we varied the particle relative density and
compared systematically the results obtained for particles 10% lighter than the fluid to one of the
particles 14% heavier. For all quantities, the role of density was found much less influential than
particle size. This is a specificity of particles much larger than the Kolmogorov length scale, for
which density appears only to finely tune the dynamics, whose main features (trapping and response
to turbulent fluctuations) are imposed by the particle size. As a result, the observed variation in the
statistics can be qualitatively explained through the action of the added mass force.
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Our study has investigated the dynamics of particles over the whole volume of a confined flow
and tracked them for durations larger than the large eddy turnover time. As a consequence, velocity
correlations were biased by contributions from the mean flow so that the Lagrangian integral time
was zero. By removing the local value of the mean flow along each trajectory to estimate fluctuating
velocity correlations, we were able to quantify the effects of size and density on the Lagrangian inte-
gral time. As particles above a certain size develop coming and going motions in the axial direction
in such flows,16 the autocorrelation functions of the axial velocity are more heavily biased. Indeed,
the shape of the autocorrelation function of the fluctuating velocity remained strongly influenced by
the particle size such that the Lagrangian integral time remained the same up to measurement errors
(in the axial direction only). This shows how difficult it is to disentangle the influence of the mean
flow and turbulent fluctuations in a non-homogeneous turbulent flow.
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