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Preface

This book contains papers presented at the Euromech-ERCOFTAC Colloquium
“Turbulent Cascades II,” held on December 5–7, 2017, at LMFA laboratory in the
Ecole Centrale, Lyon, France.

In 1941 in the framework of –5/3 power law, Kolmogorov and Obukhov (KO-41)
formulated the Richardson idea of the energy cascade along with fragmentation of
turbulent eddies. Considering the turbulence at very high Reynolds number, the
main assumption in KO-41 is that statistical characteristics of turbulence on small
scales are unaffected by the structure of large-scale turbulence; i.e., adopting the
large time-varying energy flux, handed down from large scales, the high-frequency
fluctuations on small scales attain quickly a universal statistically homogeneous
state, referred to as equilibrium state. Thereby, the mean flux of transferred energy
becomes in KO-41 the only dimensional parameter, supposed to be homogeneous,
and in the condition of equilibrium, it is equal to the local mean viscous dissipation
rate. The KO-41 cascade model has yielded different approaches to the closure
problem of averaged Navier–Stokes equations, and consequently, the efficient
solutions were found in many practical applications (the drag reduction for cars,
trains, planes, ships, etc., is an example). However, there are some difficulties in
interpretation of turbulence in terms of KO-41. On the one hand, even from formal
consideration of purely kinematic coupling constraints it turns out that small- and
large-scale motions, i.e., local and non-local interactions, are statistically interde-
pendent. The evidence of non-local interactions in the high Reynolds number tur-
bulence is provided by direct numerical simulations and experiments. On smallest
turbulent scales, these studies revealed the highly energetic, stable vortical filaments
which may persist on large times and may interact directly with other structures. The
intersection of such filaments may lead to the violent gradients of velocity giving rise
to long-range correlations. In this situation, the assumption that mean viscous dis-
sipation is the only one controlling parameter of turbulent characteristics appears to
be questionable. On the other hand, the –5/3 law of KO-41 is always confirmed, and
it is confirmed by most studies not only in a wide range of hydrodynamic flows, but
also in astrophysics and biological systems. This raises the following question: Do
we have another mechanism of the kinetic energy transfer between different length

vii
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scales which works differently from the KO-41 cascade picture and which
nonetheless provides the celebrated –5/3 law? This question was addressed already
in the first edition of the “Turbulent Cascades” colloquium, held in Lille in
December 2015. Two years later in Lyon, we decided to continue our discussions.
A part of this discussion can be found in this book. At the same time, the scope of our
colloquium in Lyon was enlarged beyond the turbulent cascade in simplest flows;
many discussions concerned the physics of turbulence in complex conditions. In this
book, one can find papers on the turbulence modulation through the finite size of
dispersed inertial particles or bubbles, as well as through wavy structures of the
gas/liquid interface and its surface tension. Some papers are devoted to effects of
compressibility, of shear, of body forces (Coriolis and Lorentz forces, buoyancy
effects). After our colloquium in Lyon, the number of open questions about turbu-
lence in complex conditions was not decreased but increased. So much the better.
This motivates for the future work and for future meetings. Look below at the
photograph of Basilica of Notre-Dame de Fourviere in Lyon. An absolutely stunning
picture! Look at the stable boundary between horizontal streaks and large structures,
and look at the vertical persisting small-scale structures. How is working such a
whole machine of turbulence in the complex conditions?

There are people to whom the theme of turbulent cascade appears as a “literary
genre” and who are rather skeptical to bring together scientists for the umpteenth
time for discussions on turbulence and frames of KO-41. We believe that a majority
of people think otherwise.

Écully, France Mikhael Gorokhovski
Fabien S. Godeferd

Picture courtesy of Philippe Bleicher
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Infrared Dynamics and Decay of Helicity
in Homogeneous Isotropic Turbulence

Antoine Briard and Thomas Gomez

Abstract The decay of helicity and its impact on kinetic energy is analyzed at
very large Reynolds numbers in homogeneous isotropic turbulence lacking mirror
symmetry, using the Eddy-Damped Quasi-Normal Markovian closure. A theoretical
time decay exponent for helicity is derived and assessed numerically. In addition to
the initial well-known slowing down of non-linear transfers, it is further shown that
helicity slightly accelerates the decay of kinetic energy in Batchelor turbulence,
because it decreases the k4 back transfers, which is proved analytically using non-
local expansions. Finally, unlike the kinetic energy spectrum in Batchelor turbulence,
the permanence of large eddies is verified for the helical spectrum.

A. Briard (B)
Sorbonne Universités, UPMC Univ Paris 06, CNRS, UMR 7190, d’Alembert,
75005 Paris, France
e-mail: antoine.briard92@gmail.com

T. Gomez
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© Springer Nature Switzerland AG 2019
M. Gorokhovski and F. S. Godeferd (eds.), Turbulent Cascades II,
ERCOFTAC Series 26, https://doi.org/10.1007/978-3-030-12547-9_1

3

nmachico@uw.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12547-9_1&domain=pdf
mailto:antoine.briard92@gmail.com
https://doi.org/10.1007/978-3-030-12547-9_1


4 A. Briard and T. Gomez

1 Introduction

In three-dimensional homogeneous isotropic turbulence, the scalar product of the
velocity and vorticity fields 〈u.ω〉, called kinetic helicity, is an inviscid invariant of the
Navier-Stokes equations [1]. As a consequence, numerous theoretical and numerical
studies were dedicated to helicity [2–7]. Indeed, helicity is not sign-definite unlike
kinetic energy, which makes notably the prediction of its cascade direction rather
complex.

The presence of kinetic helicity can also be viewed as the simplest anisotropy in a
homogeneous turbulent flow since it breaks only the invariance by mirror symmetry
of the statistics. Therefore, it is of fundamental interest to predict the dynamics of
〈u.ω〉. For this purpose, we consider freely decaying turbulence in which helicity is
initially injected at large scales, and focus on the prediction of the asymptotic decay
of helicity at large Reynolds numbers. This task is made possible by investigating
precisely the large scales properties of a turbulent flowwith non-zero helicity: indeed,
by analogy, it is known that in the fully isotropic case large scales drive the decay of
kinetic energy.

Note that helicity can be created in real (inhomogeneous) atmospheric turbulent
flows because of solid boundary conditions for example, and could be responsible for
the persistence of tornadoes [8]. In the simplified framework of homogeneous turbu-
lence however, helicity cannot be created if zero initially. This is why for simplicity
we choose to inject at t = 0 helicity at large scales along with kinetic energy accord-
ing to H(k, t = 0) = kE(k, t = 0), where H and E are respectively the kinetic
helicity and energy spectra, which is the limit case of the realizability condition of
Kraichnan [9]. This further allows us to perform analytical calculations in the infrared
range of the kinetic spectra. Nonetheless, remark that this simplified configuration
of homogeneous turbulence remains relevant: indeed, one could imagine that once
created, positive and negatives helical modes are distributed so that H(k, t = 0) �= 0
but

∫ ∞
0 H(k)dk = 0, so that there is creation of mean helicity during the decay. In

simulations not presented here, we have observed that a particular initial helical spec-
trum like this, or simply H(k, t = 0) = kE(k, t = 0), yields the same asymptotic
results at large Reynolds numbers.

In what follows, after briefly recalling the numerical method and the equations,
spectral scalings are briefly addressed. Then, the decay of helicity is investigated,
with the emphasis put on both the infrared dynamics of the spectra and the prediction
of the kinetic energy and helicity decay laws at large Reynolds numbers.

2 Equations in Spectral Space and Modelling

The dynamics of helicity is investigated at large Reynolds numbers using an
adapted Eddy-Damped Quasi-Normal Markovian (EDQNM) approximation, orig-
inally developed in [3]. In this framework, the evolution equations of the kinetic
energy spectrum E(k, t) and helical spectrum H(k, t) read

nmachico@uw.edu
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(
∂

∂t
+ 2νk2

)

E(k, t) = SE (k, t),

(
∂

∂t
+ 2νk2

)

H(k, t) = SH (k, t), (1)

where SE and SH are the total spherically-averaged non-linear transfer terms for
kinetic energy and helicity, whose explicit expressions within the EDQNM frame-
work can be found in [10]. SE can be decomposed into the classical isotropic con-
tribution S(iso) plus the term reflecting the retro-action of helicity S(hel). The time
evolution of E(k, t) and H(k, t) is obtained by solving the two previous equa-
tions using a third-order Runge Kutta scheme with implicit treatment of viscous
terms. The wavenumber space is discretized using a logarithmic mesh ki+1 = rki ,
r = 101/ f , f = 17 being the number of points per decade. This mesh extends from
kmin = 10−6kL to kmax = 10kη, where kL = 1/L is the integral wavenumber and
kη = (ε/ν3)1/4 is the Kolmogorov wavenumber. The initial Reynolds number based
on theTaylormicroscale is Reλ(0) � 5.104. Finally, the helical spectrum is initialized
as H(k, t = 0) = kE(k, t = 0), which is the maximal helicity condition according
to the realizability condition [9], with E(k, t = 0) ∼ kσ exp(−σk2/2), where σ is
the infrared slope.

3 Spectral Scalings and Non-linear Transfers

The kinetic energy and helical spectra E(k, t) and H(k, t) are first presented in
Fig. 1a for Saffman turbulence, and they both scale in k−5/3 in the inertial range
spanning four decades, from the integral wavenumber kL to the dissipative Kol-
mogorov wavenumber kη, in agreement with the direct numerical simulations of [5].
Such a k−5/3 scaling is consistent with joint-cascades of kinetic energy and helicity
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Fig. 1 Spectra and transfers for Saffman turbulence (σ = 2), with the integral and Kolmogorov
wavenumbers kL and kη: black for kinetic energy, and grey for helicity. aKinetic and helical spectra
E and H . b Total kinetic and helical non-linear transfers SE and SH
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[2], as further shown in Fig. 1b, where both SE and SH are direct transfers, negative
at large scales, and positive at small scales.

Nevertheless, the fact that the cascades of kinetic energy and helicity are direct
does not mean that there are no inverse transfers mechanisms. Indeed, both SE and
SH contain subdominant inverse transfers as shown numerically in Fig. 2: for the non-
linear kinetic energy transfer SE , the usual isotropic part S(iso) is a direct transfer,
from large to small scales, whereas the non-linear retro-action of helicity S(hel) is a
localized large scales inverse transfer. For the non-linear helicity transfer SH , it can
be shown analytically that it is divided into two terms SH1 and SH2, each with zero
integral over the whole wavenumber space. More precisely, SH1 is a direct transfer
like S(iso), and SH2 an inverse one, but unlike S(hel), it spans the entire inertial range.

4 Decay of Helicity

In this part, we aim at predicting the decay of helicity and its impact on kinetic
energy. But first, it is of great importance to determine the large scales dynamics of
homogeneous helical turbulence: indeed, it is known that large scales are crucial and
drive the decay of the kinetic energy in the fully isotropic case [11].

4.1 Infrared Dynamics of E(k, t) and H(k, t)

The emphasis is put here on the infrared dynamics of the kinetic energy and helical
spectra, to determine if the permanence of large eddies (PLE) is verified in Batchelor
turbulence, where at large scales E ∼ k4 and H ∼ k5 with the initial condition H =

nmachico@uw.edu
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Fig. 3 Time evolution of the kinetic and helical spectra E(k, t) and H(k, t) in Batchelor turbulence
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kE . This is of great importance to further predict the asymptotic decay of kinetic
energy and helicity.

For a spectrum, scaling in the infrared range like E(k, t) ∼ B(t)kσ , the perma-
nence of large eddies is said to be verified in decaying turbulence if both B and σ

remain constant throughout the decay.
It is known in fully isotropic turbulence that the PLE is verified in Saffman tur-

bulence, but not in Batchelor turbulence. For the latter, it is revealed in Fig. 3a that
E(k, t) still experiences strong backscatter of energy in the presence of helicity. On
the contrary (still for Batchelor turbulence where H ∼ k5), the PLE is verified for
H(k, t) in Fig. 3b. Furthermore, it appears in Fig. 3a that helicity tends to reduce the
backscatter of E(k, t) compared to the fully isotropic case: indeed, the spectrum E
in grey, corresponding to an isotropic simulation, has experienced more backscatter
than with helicity at t = 106τ0 and the same Reλ.

It is possible to prove this point analytically using non-local expansions, as already
done in the fully isotropic case in [12]. The inverse non-local energy transfer acting
in the infrared range is

T (iso)
− (k) = 14

15
k4

∞∫

kL

θ0pp
E(p)2

p2
dp − 2

15
k2E(k)

∞∫

kL

θ0pp

(

5E(p) + p
∂E

∂p

)

dp,

(2)
where θkpq is the characteristic time of the third-order correlations within the
EDQNM framework [3, 10–12]. Such an expression was derived in [12]. The first
rhs term is responsible for the backscatter of energy that breaks the PLE hypothesis.
The second rhs term is classically written under the eddy-viscous form −2νt k2E ,
and represents the damping of large scales by small-scale turbulence. To understand
why back transfers on E(k, t) are decreased by helicity, one has to expand S(hel)

when k � p ∼ q, which gives
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T (hel)
− (k) = 2

15
k2H(k)

∞∫

kL

θ0pp

p2

(

9H(p) − p
∂H

∂p

)

dp − 14

15
k4

∞∫

kL

θ0pp
H(p)2

p4
dp.

(3)
The second rhs term modifies the backscatter of energy whereas the first one can
also be interpreted as a pseudo helical dissipation term in −2νH

t k2H . Combining
this expression with (2) reveals the impact of helicity on the total inverse non-local
kinetic transfer T E− = T (iso)

− + T (hel)
− in HHT

T E
− (k) = 14

15
k4

∞∫

kL

θ0pp
E(p)2

p2

(
1 −

(
H(p)

pE(p)

)2 )

︸ ︷︷ ︸
≤1

dp − 2k2(νt E(k) + νH
t H(k)).

(4)
Because of the realizability condition 0 ≤ |H |/kE ≤ 1, the parenthesis in the first rhs
term is lower than unity, thus showing that the k4 backscatter of E(k, t) is decreased
by helicity, with respect to fully isotropic turbulence. Similar calculations for the
inverse non-local helical transfer T H− show that there is no term in k4 in the expansion,
thus proving that the PLE should hold for H(k, t), as shown numerically in Fig. 3b.

4.2 Prediction of the Helicity Decay

The prediction of the decay of helicity is made possible by the determination, at large
Reynolds numbers, of theoretical decay exponents: our method relies essentially on
dimensional analysis. It is well-known that one effect of helicity is to slow-down
non-linear transfers [3]: this is a transitory initial feature [4, 10], and the effect of
helicity on the decay when the turbulence is fully developed is more subtle.

Effect of helicity on the energy decay: Simulations show that the decay exponent
α of the kinetic energy K , where K (t) ∼ tα , is not modified by helicity, except in
the case of Batchelor turbulence (σ = 4), because of the reduction of the non-local
inverse transfers analyzed in the previous section. Hence, one would expect the
decay of K (t) to be faster in Batchelor helical turbulence than in Batchelor isotropic
turbulence: indeed, the non-local inverse transfers bring back less energy to the
large scales, thus accelerating the decay. This is recovered in Fig. 4. To analytically
take into account the breakdown of the PLE hypothesis, a backscatter parameter p
is usually introduced for isotropic turbulence [12], which is p(σ = 4) = 0.55 and
p(σ ≤ 3) = 0. Here, in Batchelor helical turbulence, K (t) ∼ t−1.417 is obtained,
which provides a new backscatter parameter pH = 0.14. Consequently, only the
backscatter parameter changes from p to pH for the decay of kinetic energy from
fully isotropic to helical turbulence

nmachico@uw.edu
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Fig. 4 Decay laws for the kinetic (−) and helical (−−) fields, in Saffman (black) and Batchelor
(grey) turbulence. Symbols refer to the theoretical predictions given in (5) for α, (7) for αH , and
(6) for L and LH . a Growth exponents of L and LH . b Decay exponents of K and KH , where ◦
and � refer to the kinetic and helical theoretical predictions respectively

K (t) ∼ tα, α = −2
σ − pH + 1

σ − pH + 3
,

{
pH (σ = 4) = 0.14

pH (σ ≤ 3) = 0
. (5)

These decay exponents for the kinetic energy are assessed in Fig. 4 for Saffman and
Batchelor turbulence

The decay of helicity: The method to predict the decay of helicity KH is similar
to the one of an advected passive scalar, and even more simple. Indeed, as revealed in
Fig. 3b, H(k, t) experiences no strong back transfers, so that the PLE hypothesis is
verified. Therefore, there is no need to introduce a backscatter parameter. It is recalled
that given the present initial conditions, the spectral infrared slope of H(k, t) isσ + 1.
Then, it is reasonable to assume that the kinetic and helical integral scales L(t) and
LH (t) decay similarly, so that their algebraic exponents nL and nLH are equal

L(H)(t) ∼ tnL(H) , nLH = 2

σ + 3
� nL = 2

σ − pH + 3
. (6)

This assumption is completely assessed in Fig. 4. Then, using KH ∼ K/LH gives

KH (t) ∼ tαH , αH = −2
σ + 2

σ + 3
. (7)

Theoretical values of this expression for αH are in excellent agreement with simu-
lations presented in Fig. 4: one can remark that the more σ increases, the more KH

decays rapidly, similarly to the dynamics of K (t).
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5 Conclusion

Three features were addressed in the present work: the prediction of the asymptotic
decay of helicity, its impact on kinetic energy at large Reynolds numbers, and the
infrared dynamics of the kinetic energy and helical spectra E and H . First, it was
shown using non-local expansions in the infrared range for Batchelor turbulence that
helicity reduces the inverse transfers of kinetic energy, so that the backscatter of E
is less intense than in the fully isotropic case. On the contrary, the helical spectrum
H experiences no backscatter so that the permanence of large eddies is verified even
in Batchelor turbulence.

Then, and consistently with the infrared dynamics analysis, it was shown that
helicity slightly accelerates the decay of kinetic energy in Batchelor turbulence.
Finally, a theoretical decay exponent has been proposed for helicity, based on dimen-
sional analysis notably, and assessed numerically: in particular, helicity decays faster
than kinetic energy for a given initial condition at large scales.
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Dual Cascades in Axisymmetric
Turbulence

Bo Qu, A. Naso and Wouter J. T. Bos

Abstract A spectral analysis of strictly axisymmetric turbulence is performed. We
investigate in particular by direct numerical simulation the possible cascades of
energy and helicity. Decaying and forced flows at moderate Reynolds numbers are
considered. A dual cascade, in which energy is transferred to the large scales and
helicity to the small ones, is first evidenced in helical flows. A similar scenario is
then shown to hold in the absence of a net helicity: in this case, energy also cascades
to the largest scales, and positively and negatively polarized helicity are transferred
to the small ones.

1 Introduction

One of the key concepts in turbulence is the existence of cascades of the global
inviscid invariants of the Navier-Stokes equations: energy and helicity in three-
dimensional (3D) turbulence, energy and enstrophy in two-dimensional (2D) tur-
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bulence. We focus here on turbulent cascades in strictly (that is, instantaneously)
axisymmetric turbulence, a system intermediate between 2D and 3D. There has been
recently a growing interest for this idealized system, essentially due to the fact that
theories based on statistical mechanics can be transposed to it [1–4] and gave some
results in qualitative agreementwith those obtained in the (statistically axisymmetric)
von Kármán flow [5–7].

We perform here a spectral analysis of axisymmetric turbulence and investigate
possible cascades of thefirst quadratic invariants of the axisymmetricEuler equations,
i.e., energy E and helicity H1. For this, the axisymmetric Navier-Stokes equations
are integrated by direct numerical simulation using a spectral method. Decaying and
forced flows are both investigated.

The methodology is first described in Sect. 2. The results are then summarized in
Sect. 3. The conclusions are finally given in Sect. 4.

2 Methodology

The system considered in the present investigation is described by the axisymmet-
ric Navier-Stokes equations (the Navier-Stokes equations in cylindrical coordinates
in which all the azimuthal derivatives ∂/∂θ are set to zero). In the absence of vis-
cosity and forcing, these equations conserve an infinite number of quantities, the
so-called inviscid invariants. We will focus here on the quadratic invariants, i.e.
kinetic energy Etot = 〈u2〉/2 and helicity Htot = 〈u · ω〉, by analogy with two- and
three-dimensional turbulence and since spectra measured experimentally in the (sta-
tistically axisymmetric) von Kármán flow were interpreted in terms of cascades of
these quantities [8].

The axisymmetric Navier-Stokes equations are integrated in a cylindrical domain
using a fully spectral method based on an expansion of the velocity field in a basis
consisting of Chandrasekhar-Kendall eigenfunctions of the curl [9, 10]. No fast trans-
form (similar to the fast Fourier transforms) is currently available for these modes,
and the nonlinear term must therefore be calculated in spectral space. The results of
our simulations will be therefore very accurate, but limited to moderate values of the
Reynolds number. The flow is periodic in the axial direction and a non-penetration
condition is imposed on the cylindrical boundary. A forcing term (naturally set to
zero in the decaying simulations) based on the negative viscosity method widely
used in 3D isotropic turbulence [11] allows to maintain a statistically stationary level
of turbulence. Using this forcing scheme allows to control the injection of (zero or
finite) net helicity in the flow. Both helical and nonhelical stationary regimes will be
therefore considered thereafter.

More details on the numerical method can be found in [10, 12].
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Fig. 1 Typical energy
spectra, at different times, in
the decaying case

3 Results

3.1 Decaying Turbulence

Decaying turbulence is first considered so as to guarantee that the results obtained
are not spurious effects of the forcing scheme. As illustrated in Fig. 1, the energy
spectrumunambiguously shows the existence in this systemof both direct and inverse
cascades. The same result was obtained for all the initial conditions considered
(helical or nonhelical flows, vanishing or finite angular momentum, …).

3.2 Stationary Turbulence

Statistically steady flows are then investigated. The energy spectrum obtained at
different times in a statistically stationary helical flow is shown in Fig. 2a. A dual
cascade clearly develops, as in the decaying case. In the stationary regime, the spec-
trum displays a scaling compatible with E(k) ∼ k−5/3 for the inverse cascade and
E(k) ∼ k−6 for the direct one. Such a dual cascade is also visible in the helicity spec-
trum (see Fig. 2b), which is furthermore found to satisfy the relation H1(k) ∼ kE(k).
The scaling E(k) ∼ k−5/3 obtained in the small wavenumbers range is compatible
with an inverse energy cascade scenario.

The previously evidenced cascades are further characterized by measuring the
time-averaged transfer rates of energy and helicity. These quantities show unam-
biguously that energy is preferentially transferred to the large scales of the flow and
helicity to the small ones, thereby evidencing the existence of an inverse energy cas-
cade and of a direct helicity cascade. The same scenario is compatible with energy
spectra measured in the experimental von Kármán flow (only axisymmetric on aver-
age) [8].
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(a) (b)

Fig. 2 a Energy and b helicity spectra, at different times in the forced helical case. The vertical
dashed lines indicate the wavenumbers range in which the forcing is applied

Another interesting feature is the fact that in nonhelical steady flows, a dual cas-
cade persists, which transfers energy to the large scales, and positively and negatively
polarized helicity fluctuations towards the small ones.

These results are presented in more details in [12].

4 Conclusion

It is tempting to compare the spectral analysis of axisymmetric turbulence performed
in the present paper to the well-known features of 3D and 2D isotropic turbulence.
As in 3D, the (main) inviscid invariants of the axisymmetric system are energy
and helicity. However, as in 2D the energy is transferred to the large scales of the
axisymmetric flow, as part of a dual cascade in which helicity is transferred towards
the small scales.

It would be interesting to carry out similar investigations at higher Reynolds
numbers, which would be made possible by using other numerical methods. This
would allow to characterize more precisely the inertial ranges and the associated
scaling laws, in particular in the direct cascade regime (large wavenumber range).
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A Rigorous Entropy Law
for the Turbulent Cascade

André Fuchs, Nico Reinke, Daniel Nickelsen and Joachim Peinke

Abstract There is a lack of high precision results for turbulence. Here we present
a non-equilibrium thermodynamical approach to the turbulent cascade and show
that the entropy generation ΔStot of the turbulent cascade fulfills in high precision
the rigorous integral fluctuation theorem 〈e−ΔStot 〉u(·) = 1. To achieve this result the
turbulent cascade has to be taken as a stochastic process in scale, for which Markov
property is given and for which an underlying Fokker-Planck equation in scale can
be set up. For one exemplary data set we show that the integral fluctuation theorem
is fulfilled with an accuracy better than 10−3. Furthermore, we show that other basic
turbulent features are well taking into account like the third order structure function
or the skewness of the velocity increments.
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1 Introduction

One important question of turbulence theory is to get a profound understanding of
turbulence as a cascade process, that can be understood as the evolution of turbu-
lent structures on different spatial or temporal scales. There have been many works
to achieve a better understanding but rigorous results, like the Kármán-Howarth
equations or Kolmogorov’s 4/5th law, are still rare, cf. [7]. Although these laws are
derived from the Navier Stokes equation, the experimental verification is not of high
precision. The reason for that probably is that the mentioned rigorous results only
hold exactly for the ideal case of infinite Reynolds numbers and homogeneous and
isotropic flow fields. These conditions are difficult to meet for real turbulent flows.
One therefore may state that high precision results are still lacking in turbulence
research.

We present an analysis of the turbulent cascade with respect to the evolution pro-
cess of velocity increments towards smaller scales. The analysis of this data includes
2- as well as 3-point statistics. Evidence of the Markov property for the turbulent
cascade process in scale, which corresponds to a three-point (two-scale) closure of
general joint multi-scale statistics, has been shown in previous studies [4, 9]. Based
on an estimation method by Kramers-Moyal coefficients, a Fokker-Planck equation
for the cascade process can be estimated directly from the measured data, thus the
wholemulti-point statistics is expressed by a differential equation, the Fokker-Planck
equation. This approach is very general and can reproduce all structure functions,
including the third order one, accurately. Interestingly this statistical approach can
be linked to the non-equilibrium thermodynamics of microscopic systems [12]. This
analogy enables to define the thermodynamical quantity of entropy. Furthermore,
precision results on entropy statistics can be shown.

For each cascade trajectory, which we define as the complete evolution of a veloc-
ity increment from the integral length L to the Taylor length λ, the entropy change
can be determined, using concepts from stochastic thermodynamics. Such entropy
changes will fluctuate from cascade trajectory to cascade trajectory and may become
positive (in case of entropy production) and negative (in case of entropy consump-
tion). As a new feature, we find that the entropy fluctuations fulfill nearly perfectly
the integral fluctuation theorem (IFT), which is a fundamental entropy law of non-
equilibrium thermodynamics.

In this contribution,we report on results obtained froma free air-jet experiment [9].
Constant temperature hot-wire anemometry measurements of velocity were done
at a distance of 125 nozzle diameters at the centerline. The data acquisition com-
prises 12.5 × 106 samples at a sampling frequency of 8kHz. This experiment is
characterized by a nozzle-based Reynolds number of about 2.7 × 104, an integral
length L = 67mm and a Taylor length scale of λ = 6.6mm which corresponds to
Reλ = 166.

The paper is organized as follows, firstly the theoretical framework is explained,
secondly results of the stochastic analysis are presented and finally our findings are
summarized.
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2 Theoretical Framework

2.1 Fokker-Planck Equation of Velocity Increment Series ur

The turbulent cascade is taken as a stochastic process described by a Fokker-Planck
equation Eq. (2) and its Kramers-Moyal coefficients [1, 10, 13]. Here we use the
assumption that the turbulent energy cascade possesses a Markov property in scale
down to the so-called Einstein-Markov length (order of Taylor length) [4], which
corresponds to a three-point (two-scale) closure of general joint multi-scale statistics.
We estimate Kramers-Moyal coefficients D(k) directly from experimental data by
using the definition

D(k) (ur , r) = lim
Δr→0

1

k! Δr

∫ ∞

−∞
(ur−Δr − ur )

k p (ur−Δr |ur ) dur−Δr , (1)

where ur is the longitudinal velocity increment series.
Based on the first two terms of the Kramers-Moyal expansion D(1,2) (drift and

diffusion coefficient), which strongly dominate the expansion [1, 10] and theMarkov
property in scale r , a stochastic description of the energy cascade process by aFokker-
Planck equation (r < r0)

−∂r p
(
ur |ur0

) = − ∂u
[
D(1)(ur , r)p

(
ur |ur0

)]
+ ∂2

u

[
D(2)(ur , r)p

(
ur |ur0

)] (2)

can be estimated directly from the measured data. Here the abbreviations ∂r = ∂/∂r
and ∂u = ∂/∂ur are used. As found in many experimental data (see [5, 8–10]) we
find a linear function for D(1) and a parabolic function for D(2)

D(1)(ur , r) = d11(r)ur ,

D(2)(ur , r) = d22(r)u
2
r + d21(r)ur + d20(r).

(3)

The drift and diffusion coefficient, together with an initial probability density
function p(uL) contain the complete stochastic information about the Markov cas-
cade process in scale r .

2.2 Reconstruction of Structure Functions

From the Fokker-Planck equation Eq. (2) it is possible to derive equations for
the structure functions Sk(r) = 〈ukr 〉. To verify the validity of estimated D(1) and
D(2) we investigate the scaling of second, third and sixth order structure function
Sk(r). The self-similar eddy hierarchy in a statistical sense suggests scaling laws for
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turbulence of the form Sk(r) ∝ r ζk with a power law exponent ζk , initiated by works
of Kolmogorov 41 and 62 [2, 3]. This feature of the turbulent cascade process is
investigated in Sect. 3. Structure function Sk(r) is calculated as

Sk(r1) =
∫ ∞

−∞
ukr1 p(ur1)dur1 , (4)

with use of (r1 < r2)

p(ur1) =
∫ ∞

−∞
pstp(ur1 |ur2)p(ur2)dur2 . (5)

To reconstruct the conditional PDF pstp(ur1 |ur2) we use the estimated Kramers-
Moyal coefficients and the so called short time propagator in Eq. (6) [9, 11], that
solely depends on D(1) and D(2), for r2 = lim

Δr→0
r1 + Δr

pstp(ur1 |ur2) = 1√
4πD(2)(ur2 , r2)Δr

exp

(
−

(
ur1 − ur2 − D(1)(ur2 , r2)Δr

)2
4D(2)(ur2 , r2)Δr

)
.

(6)
We are especially interested in the scale-wise evolution equation for the third

order structure function
∂r S

3(r) = S3(r)/r. (7)

In this context, we mention the Kolmogorov’s 4/5-law [7], derived from the Navier-
Stokes equation

∂r S
3(r) = −4/5〈ε〉 + 6ν∂2

r S
2(r) + q(r), (8)

where q(r) is related to the correlation function of the external forcing, ν is the
kinematic viscosity and 〈ε〉 is the mean energy dissipation rate per unit mass. In [9]
the connection between the Fokker-Planck equation of ur and structure functions
was discussed. Integrating Eq. (2) leads to

∂r S
k(r) = −k〈u(k−1)

r D(1)(ur , r)〉 − k(k − 1)〈u(k−2)
r D(2)(ur , r)〉. (9)

Using parametrization given in Eq. (3) one obtains for the third order structure func-
tion

∂r S
3(r) = −3

(
d11(r) + 2d22(r)

)
S3(r) − 6d21(r)S

2(r). (10)

The term d21(r) couples S2(r) with the equation for S3(r), accordingly d21(r) and
S2(r) model a source of skewness throughout the cascade process. In this case, the
set of equations for Sk(r) are closed as they can be solved step by step starting with
S0(r) = 1 and S1(r) = 0. Next, we discuss a simplified case for D(1) and D(2) where
we set d21(r) = 0. The parametrization in terms of d11(r), d20(r) and d22(r), implies
a relaxation of an initial skewness down to smaller scales according to
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∂r S
3(r) = −3

(
d11(r) + 2d22(r)

)
S3(r). (11)

The sign of skewness is given by the initial skewness in S3(L) �= 0 which is known
to be negative. Note the additive term d20(r) in the diffusion coefficient D(2) does
not contribute to the third order structure function, whereas it mixes lower order
structure functions

(
d20(r)Sk−2(r)

)
to all structure functions Sk(r) with k �= 3.

2.3 Integral Fluctuation Theorem (IFT)

The corresponding stochastic process defined in Sect. 2.1 can be interpreted as an
analogue of a non-equilibrium thermodynamic process [6, 12]. In particular, this
allows to apply concepts of stochastic thermodynamics to turbulent flows [6, 8]. It
enables to determine an entropy production of the turbulent cascade, in particular
for every individual velocity increment trajectory u(·) = {ur ; r = L. . .λ} evolving
from the integral length L = 67mm to the Taylor length scale λ = 6.6mm, the total
entropy production ΔStot is given by

ΔStot [u(·)] = ΔSmed + ΔSsys

= −
∫ λ

L
∂r ur∂uϕ(ur )dr − ln

(
p(uλ, λ)

p(uL , L)

)
.

(12)

The total entropy production is given by the sum of two contributions, ΔSmed being
the entropy variation due to the exchange of energy with the surrounding medium
which depends on the evolution through the hierarchy of length scales r in the cascade
and ΔSsys gives the entropy change associated with the change in state of the system
itself. In Eq. (12) ϕ(ur ) is the stochastic potential from the stationary solution of the
estimated Fokker-Planck equation

ϕ(ur ) = ln
(
D(2) (ur , r)

) −
∫ u

−∞
D(1)(wr , r)

D(2)(wr , r)
dw. (13)

Within stochastic thermodynamics, the integral fluctuation theorem (IFT)

〈e−ΔStot 〉u(·) = 1, (14)

where 〈. . .〉 is the average over many fluctuating velocity increments trajectories, is a
fundamental entropy law of non-equilibrium thermodynamics [12], which holds for
any Markov process. It is a relation which expresses the balance between the rela-
tive frequency of entropy-consuming (ΔStot < 0) as compared to entropy-producing
(ΔStot > 0) trajectories associated with the stochastic evolution of velocity incre-
ment trajectories u(·) (individual stochastic trajectories).
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3 Verification of Fokker-Planck Equation

There is the crucial question if the estimated Fokker-Planck equation correctly cap-
tures the cascade process of the turbulent flow. Using Eq. (1) it is always possible to
obtain the functional dependency of D(1,2). With the knowledge of D(1,2) one can
calculate by using Eq. (6) the conditional PDF pstp(ur1 |ur2). The comparison of pstp
with estimated conditional PDF from the measured data can be taken as a quality
check [5, 9, 13]. With this approach, it is possible to find the leading terms of D(1,2),
but it is difficult to judge the meaning of small other functional contributions.

To quantify the accuracy of D(1,2) we will analyze here two-point-statistics in
terms of structure functions and furthermore we will apply concepts of stochastic
thermodynamics as aforementioned in Sects. 2.2 and 2.3. To be more precisely we
conduct a case study on the functional contributions as presented in Table1. Accord-
ing to the different cases a–d we use the specific estimated parameterization of D(1,2)

to reconstruct the selected structure functions. In addition, we compute from Eq. (12)
the total entropy balance and test the validity of the IFT (see Eq. (14)).

3.1 Structure Functions as a Criterion for D(1) and D(2)

Figure1a–c show a good agreement between the directly calculated structure func-
tions from the experimental data and the “reconstructed” structure functions using
the estimated Fokker-Planck equation (case a, c, and d). We see that the different
Fokker-Planck equations reproduce all structure functions, including the third order
one, accurately. Since structure functions are 2-point (one scale) quantities, there is a
wide range of Fokker-Planck equations that can reproduce these structure functions,
which also include the correct deviations from scaling behavior by Kolmogorov 41
and 62 [2, 3]. The dashed line in Fig. 1b represents the −4/5 law, that only holds for
ideal flow conditions (homogeneous isotropic turbulence) and for infinite Reynolds
numbers. For case bwhere D(2) = 0 the short time propagator in Eq. (6) is not defined
thus it is not possible to reconstruct the structure function via a Fokker-Planck equa-
tion.

Table 1 Case study for simplified parametrization of D(1,2) (for all cases d11 �= 0)

D(1,2) Sk(r) IFT

a d20(r) �= 0,
d22(r) �= 0

� 0.98

b (K41) d20(r) = 0,
d22(r) = 0

× ×

c d22(r) = 0 � ∞
d (K62) d20(r) = 0 � ∞
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Fig. 1 a Second, b third and c sixth order structure function Sk(r) as a function of scale r . Shown
are the results obtained from the experimental data (exp) and for different parameterization of the
Kramers-Moyal coefficients presented in Table 1. We plot −S3(r) since the third order structure
function is negative in the inertial range. Dashed line represents −4/5 law. Note that the Einstein-
Markov length is about 5.5mm

3.2 Validity of the Integral Fluctuation Theorem

Next, we use the sensitivity of IFT to quantify the applicability of the estimated
Fokker-Planck equation for describing the turbulent cascade process. As the IFT
must hold for a system that is given by a Fokker-Planck equation, a good convergence
of the integral fluctuation theorem to the theoretical value 1 ensures the validity of
the estimated D(1,2).

For a detailed parameterization (D(1) polynomial of order three and D(2) of order
two) we obtain the results presented in Fig. 2. Using this form of parameterization the
total entropy fluctuations ΔStot , estimated from the experimental data, fulfill with
an accuracy better than 10−3 the validity of the integral fluctuation theorem. Figure
2b, c demonstrates that the convergence of the empirical average 〈e−ΔStot 〉N to the
theoretical value (horizontal dashed line in Fig. 2b) is rather fast. Furthermore the
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Fig. 2 aProbability density function of the total entropy production,b empirical average 〈e−ΔStot 〉N
and c |1 − 〈e−ΔStot 〉N | as function of the number of trajectories N . The dashed line in c represents
a power-law fit by using f (N ) = 5.4N−0.5
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statistics (Fig. 2a) of the total entropy values show that the turbulent cascade process is
linked to an overall entropy production 〈ΔStot 〉 > 0, which is in accordance with the
second law of thermodynamics. Moreover Fig. 2a show that the entropy consuming
trajectories with ΔStot [u(·)] < 0 occur frequently. Similar results can be obtained
for case a with an empirical average 〈e−ΔStot 〉N = 0.98.

As already pointed out, case b is not defined. For the cases of c and d the validity
of the IFT is not confirmed. Using these classes of parameterization the average in
Eq. (14) diverges. Here we should remark that the case d corresponds to the ideal
log-normal model of Kolmogorov [1].

4 Conclusion

In this contribution, we point out that the concept to take the turbulent cascade as a
Markov process in scale and to describe the scale evolution of velocity increments
by a Fokker-Plank equation is in good accordance with structure functions. Thus a
connection to approved results on turbulence known for structure functions can be
drawn. We also see that there are different functional forms of the drift and diffusion
coefficients of the Fokker-Planck equation to reproduce the structure functions. This
is a consequence of the projection of themulti-scale description by the Fokker-Planck
equation onto the one-scale statistics of the structure function.

Based on the concept of a Markov process a local entropy for cascade trajecto-
ries can be defined, using the concepts of non-equilibrium thermodynamics known
for fluctuations in non-equilibrium systems. In addition we show that the IFT as a
generalization of the second law of non-equilibrium thermodynamics holds also for
turbulent flows. The IFT can be taken as a new law for turbulence, up to now only
shown for experimental data but with high precision. The quantities ∂r ur , p(uλ, λ)

and p(uL , L) that are taken directly from themeasured data togetherwith the stochas-
tic properties of the cascade process, described by proper drift and diffusion coeffi-
cients, are in exact balance for the fulfilment of the IFT. Taking the IFT as a valid
law for turbulence it can be used to rule out different functional dependencies of the
underlying Fokker-Planck equation.

Acknowledgements Weacknowledgehelpful discussionswithA.Abdulrazek,A.Engel,A.Girard,
G. Gülker, M. Wächter and T. Wester.
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Evolution of Local Structure
of Turbulent Flow Along Pathlines

Joseph Mathew

Abstract The evolution of invariants of the velocity gradient tensor is examined to
determine local topologies of flow within shear flow turbulence. In a temporal direct
numerical simulation of a round jet, a large number of fluid pathlines were computed
simultaneously, and values of invariants at locations along pathlines were stored. It
turns out that trajectories in the invariant space, corresponding to fluid pathlines, are
far more varied than those of the conditional mean field that has been determined
before. Several trajectories have segments where the invariants have much larger
values than that expected from their joint pdfs. Corresponding large changes are
also observed in the space of the invariants of the strain rate tensor. Although less
frequent, these large departuresmay have consequences for the evolution of turbulent
flow fields.

1 Introduction

Studies of the velocity gradient tensor (VGT) have revealed several features of the
local structure of flows. In several types of flows, such as homogeneous isotropic
turbulence, boundary layer, channel and pipe, and free shear flows, isolines of the
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joint pdf of the 2nd and 3rd invariants (Q and R, respectively; defined below) of the
VGT have obviously similar, teardrop shapes. This implies a prevalence of regions in
the flow which are sheet-like, and those where vortices are being stretched, or com-
pressed, axially. The analyses have taken flowfields at instants from direct numerical
simulations (DNS) to obtain statistics and infer such properties. Although most stud-
ies have taken homogeneous, isotropic turbulence of incompressible flow and found
similar results, qualitative variations have been observed in other situations; e.g.,
when compressibility effects are significant, both expected [8] and unexpected [5]
changes have been observed. The present study is of the local structure and changes
to it along fluid pathlines with an aim of uncovering a mechanistic understanding of
shear flow turbulence.

The velocity gradient tensorA has elements Ai j = ∂ui/∂x j , which are the spatial
derivatives of the Eulerian velocity field ui . It has three invariants: P = −traceA;
Q = 1

2

[
P2 − trace(A2)

]
; R = −det(A). For incompressible flow P = 0. The dis-

criminant surface D = 0, where D = 27R2 + (4P3 − 18PQ)R + (4Q3 − P2Q2),
separates the region in Q-R space where eigenvalues of A are complex (D > 0) and
local topology is focal—like that in vortices—from the region where they are real.
A can be split into symmetric strain-rate and skew-symmetric rotation-rate parts:
A = S + W. With subscripts S and W to denote invariants of these two tensors,
PW = RW = 0 for all flows; PS = P , QS = −(1/2)Si j S ji , RS = −(1/3)Si j S jk Ski
and QW = −(1/2)Wi jWji (see Chong et al. [3] for details). In the analyses presented
below, the flow is incompressible and P ≡ 0.

Most studies of the VGT have sought to find the joint pdf of the invariants Q and
R, and changes to shapes of isolines of this pdf in different regions of a turbulent
flow, such as the layers in channel flows. Others have been to find closures for some
terms in the transport equations for the VGT, so that solutions of the model equations
may, at least qualitatively, resemble the exact evolution. Cantwell [2] showed that the
restricted Euler model, which sets the pressure Hessian term to zero, predicts that (Q,
R) states evolve toward R > 0, close to the discriminant D(Q, R) = 0 curve. This
is correct for a range of |R| that is not too large and D(Q, R) > 0, but is generally
wrong for D(Q, R) < 0. A summary of later models is available [6]. It is useful to
note that modeling has been considered successful when there is a correspondence
to the shapes of the isolines of the joint pdf.

Ooi et al. [7] went further by computing the conditional mean growth rates of
invariants in stationary, homogeneous, isotropic turbulence. They computed vectors
and trajectories in the spaces of the invariants of the VGT, its symmetric and anti-
symmetric parts and of stretching. Trajectories in the conditional mean growth rate
vector field provide a picture of the likely evolution of local topology of fluid pack-
ets. They observed cyclical changes from, say, sheet-like regions to stretching and
then compressing vortical ones, spiralling towards the origin, where invariants and
all gradients are small. Ooi et al. [7] had noted that following fluid pathlines may
be useful but would require expensive computations. Here, results of just such a
computation involving simultaneous tracking of a large number of fluid particles in
a DNS of a turbulent round jet is presented. From data of the invariants at successive
locations of these fluid particles, a direct determination of their history and implied
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topological changes was obtained. A striking observation is that trajectories of indi-
vidual fluid particles in Q-R space are quite different from those of the conditional
mean trajectories.

2 Preparation of DNS Data

A temporal DNS of a round jet was performed. The initial state is a model of a round
jetwhere it emerges fromanozzle,with a top-hat streamwise velocity profile bounded
by a thin, tanh shear layer. Jet centerline velocityU and initial mean diameter D are
the scales used. The DNS employs a Fourier pseudospectral method in a cube of side
4 and a grid of 128 × 128 × 128. The jet occupies a cylindrical region whose axis
coincides with the z-axis of a Cartesian coordinate system. Initial positions of fluid
particles are at gridpoints on a cross-sectional plane x-y over a 90◦ sector of radius
equal to four times the initial jet radius. Successive positions of 3278 particles were
computed simultaneously and local values of vorticity and invariants Q, R, Qs and
Rs were stored.

The initial, jet boundary shear layer rolls up into 4 vortex rings per period, adja-
cent rings undergo pairing, rings undergo azimuthal instability followed by a rapid
breakdown into a roughly cylindrical region of turbulence. Features this simulation
have been discussed at length before [4]; here, the Reynolds number based onU and
D is 2400.

Figure 1 shows a longitudinal section at three instants from the DNS; filled con-
tours of vorticity magnitude are shown. At t = 3, the cylindrical shear layer has
rolled up into 4 vortex rings per period. At t = 8 adjacent vortex rings have merged
into two rings per period. At t = 25 the fine scale structure of the turbulent jet is
evident. Curves in Fig. 2 are indicators of the evolution of the flow in terms of the
kinetic energy E and enstrophy Eω integrated over the simulation volume and scaled
with their initial values E(0) and Eω(0), respectively. Enstrophy grows as the vortex

(a) t = 3 (b) t = 8 (c) t = 25

Fig. 1 Vorticity magnitude on longitudinal plane y = 0. A sequence of 4 vortex rings per period
at t = 3, adjacent rings have merged at t = 10, and a turbulent flow has set in at t = 25
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Fig. 2 Evolution of kinetic
energy (–◦–◦–) and
enstrophy (–•–•–) in
simulation

rings undergo azimuthal instability and breaks down rapidly and then falls slowly
due to net dissipation of the turbulent flow.

3 Analyses of Local Structure

Chong et al. [3] classified the local topology of flow in terms of the nodes, saddles and
foci of critical point analyses of dynamical systems. For incompressible flow, most
regions have one of the four types of local structure shown in Fig. 3a. Special forms
occur along the axes and the discriminant curves. Regions above the discriminant
curve D(Q, R) = 0 have structures that are vortex-like, stretching in quadrant 2, and
compressing in quadrant 1. Below, in D < 0, the structure is sheet-like in quadrant
4, and tube-like in quadrant 3. Figure 3b shows isolines of the joint pdf f (Q, R)

from all points along all computed fluid pathlines of the present simulation. Only the
three standard deviation range (±3σ(Q), ±3σ(R)) has been shown. Isolines cover
3 decades of pdf levels. The shape resembles that usually observed [6].

Values of Q and R at successive positions along many representative fluid path-
lines were stored after every integration time-step. The corresponding trajectories
in Q-R space for pathline subsets are shown in Fig. 4. In each subset, the initial
position on the pathline is at gridpoints which are at roughly the same radius. In
Fig. 4a, pathlines originate from the sheet-like region of the initial cylindrical shear
layer from radial positions r(t = 0) ≈ 0.5. Values of Q and R are much larger than
the 3σ range of the joint pdf (Fig. 3b). Pathlines that originate from r(0) ≈ 1, which
is well outside the jet, enter the turbulent region later—after these fluid packets are
entrained. Values of Q and R over some parts of these pathlines are also outside the
3σ ranges. Of course, these large excursions are not very frequent. The overall shape
of the region occupied by these extreme trajectories is a distortion of the shape of the
isolines of the joint pdf: in Q � 0, the trajectories occupy a greater range of values
of R; in Q � 0, the trajectories form amuch thinner tail about the discriminant curve
in R > 0. In these figures, larger spacing between symbols on curves indicate faster
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(a) Classification (b) Q-R pdf

Fig. 3 Local structure for incompressible flow. a topology types; b isolines of the joint pdf (——).
Discriminant curves D(Q, R) = 0 (– – –)

(a) r(0) ≈ 0.5 (b) r(0) ≈ 1.0

Fig. 4 Trajectories in Q-R for fluid particles whose initial radial position r(0) is roughly the same.
In turbulent region (–•–•–), and in nonturbulent region (–•–•–). D(Q, R) = 0 (– – –)

changes. Over several segments we can observe that changes are also more rapid
where the invariants’ values are larger.

Q-R trajectories for four pathlines originating from radial positions r(0) ≈ 1.0
are shown in Fig. 5. Arrows indicate direction of increasing time. Figure 5a shows
a simple trajectory: (Q,R) states begin near the origin, move towards the quadrant 4
slowly, and then travel rapidly to quadrant 2 and 1, with minor detours, then slowly
within quadrant 1, and eventually to the origin again. The trajectory in Fig. 5b has
the following sequence: origin, along D(Q, R > 0) = 0, retrace past the origin and
along Q > 0, R ≈ 0, a partial anticlockwise circuit in quadrant 2 before reversal,
a rapid foray through quadrants 1, 4, 2, and back to the origin. Besides, the broad
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Fig. 5 A few trajectories in Q-R of particles from radial position r(t = 0) ≈ 1.0

similarity of the trajectories in Fig. 5c, d, note that the initial segments are along
D = 0, and the final segments are along Q = 0, R ≈ 0.

From stationary, homogeneous, isotropic turbulence simulations, Ooi et al. (1998)
extracted mean trajectories in Q-R space. They found the trajectories to spiral clock-
wise to the origin. Also, these trajectories have roughly the same shape, though spi-
ralling inward, as the tear-drop contours of the isolines of the pdf f (Q, R). The
present studies show that trajectories along fluid pathlines are more diverse than has
been inferred from such means and model equations. For ensembles, there are per-
haps many that resemble the pdf (trajectories near the origin in Fig. 4), as indeed they
should to realize the pdf, but there are significant departures on some. The shapes of
the trajectories in Fig. 5 look nothing like that of the pdf! We should expect this to
be significant because because the values of Q and R are everywhere significantly
larger, with consequences for the overall structure and evolution of the turbulent
region.

The progression from 4th to 2nd quadrant can be understood as a sheet-like region
rolling up into a stretching vortex.A large scale version occurs during the initial stages
of the present simulation. The pathlines begin within a large scale cylindrical vortex
sheet and (Q,R) states are along D(Q, R > 0) = 0. The sheet then rolls up into a
sequence of vortex rings and the Q-R trajectories go to the 3rd quadrant and remain
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there for some time. In the turbulent regime, any sheet-like region would be of much
smaller extent, but a similar process of roll-up into a single scroll, or into several
neighboring vortex filaments is possible.

The 1st quadrant flow is that of a compressing vortex. So the progression from
2nd to 1st quadrant is of a fluid particle in a region with a stretching vortex to a
compressing vortex. While this can be achieved by a relaxation and reversal of back-
ground strain, it is tempting to speculate that when Q � 0 in quadrant 2, the travel
to quadrant 1 may, sometimes, involve vortex breakdown at high swirl; most often it
may be merely a (vortical) fluid packet travelling into a region of smaller strain, and
the vortex relaxes. It is nevertheless intriguing that in Fig. 5c, d, the eventual return to
the origin is along R ≈ 0, Q > 0, after travelling right in quadrant 2. Typically, the
subsequent travel from 1st quadrant to 4th is a very much slower process (Fig. 5a),
but not always (Fig. 5b). Over some intervals, trajectories go from quadrant 1 to 2
also (Fig. 5d).

3.1 Qs-Rs Trajectories

The corresponding trajectories in Qs-Rs are simpler and qualitatively similar. The
Qs-Rs plane can be divided into regions where flow is expanding (Rs > 0) or con-
tracting (Rs < 0); along the discriminant D(Qs, Rs) = 0 the flow is axisymmetric
(Fig. 6a); on Rs = 0 the flow is 2-dimensional. These local flow types can be under-
stood by examining the ratios among eigenvalues of the strain-rate tensor S [1].

Ooi et al. [7] found that conditional mean trajectories in Qs-Rs spiral outward
from a point 0 < Rs < D(Qs, Rs) = 0, lying close to the right discriminant curve.
Here, such spiralling trajectories were not observed. There is a preference for Rs > 0

(a) Classification

-3

-2

-1

 0

-3 -2 -1  0  1  2  3

Qs

Rs

(b) Qs-Rs pdf

Fig. 6 Local structure for incompressible flow. a topology types; b isolines of the joint pdf (——).
Discriminant curves D(Qs , Rs) = 0 (– – –)
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(a) r(0) ≈ 0.5 (b) r(0) ≈ 1.0

(c) r(0) ≈ 1.0

Fig. 7 Trajectories in Qs -Rs for fluid particles from initial radial position r(0). In turbulent region
(–•–•–), and in nonturbulent region (–•–•–). D(Q, R) = 0 (– – –). In c, only two trajectories
corresponding to the curves in Fig. 5c, d are shown

at large |Qs |, but not at smaller values. Note, again, that there are large excursions
to values much larger than the 3σ range of the joint pdf f (Qs, Rs) (Fig. 7).

4 Conclusions

Trajectories in the plane of the 2nd and 3rd invariants Q and R of the velocity gradient
tensorwere found corresponding to pathlines in an axisymmetric, turbulent shear flow
fromadirect numerical simulation.Many of these trajectories have the teardrop shape
and spiral inward to the origin, as could be expected from the joint pdf f (Q, R), or
conditional mean trajectories. Surprisingly, there are several trajectories that travel
through parts that are far from the origin, and with a wide variety of changes that are
quite different from the simple inward spiralling. Although such trajectories are less
frequent, since the values of the invariants are large, there may be consequences to
the structure and evolution of turbulence, like internal or fine-scale intermittency.
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Renormalized Equations in Turbulent
Immiscible Gas-Liquid Flows—The
Target on LES-Formulation

M. A. Gorokhovski and V. L. Saveliev

Abstract In the group-theoretical model of stationary homogeneous turbulence
(PRE 72, 016302, 2005), the renormalized form of the Navier-Stokes equations
includes the turbulent viscosity, which appears not from averaging of the nonlinear
term, but from the molecular viscosity term. The next raised question is as follows.
In the immiscible gas-liquid turbulent flow, the motion equation is completed by the
surface tension force, acting on the interface. When such a flow is averaged over
some length-scale, there is no more interfaces. Then at the high Reynolds number,
what is the renormalized form of governing equations in this flow? In the framework
of approach of the aforementioned paper, the result is this: similar to the Smagorin-
sky viscosity, the “effective surface tension coefficient” appears in the invariant to
scaling transformation form. Its expression is discussed in this paper.

M. A. Gorokhovski (B)
Laboratoire de Mécanique des Fluides et d’Acoustique, École Centrale de Lyon,
CNRS-Université Claude Bernard Lyon 1-INSA Lyon, Ecully, France
e-mail: mikhael.gorokhovski@ec-lyon.fr

V. L. Saveliev
Institute of Ionosphere, Almaty 480020, Kazakhstan

© Springer Nature Switzerland AG 2019
M. Gorokhovski and F. S. Godeferd (eds.), Turbulent Cascades II,
ERCOFTAC Series 26, https://doi.org/10.1007/978-3-030-12547-9_5

37

nmachico@uw.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12547-9_5&domain=pdf
mailto:mikhael.gorokhovski@ec-lyon.fr
https://doi.org/10.1007/978-3-030-12547-9_5


38 M. A. Gorokhovski and V. L. Saveliev

1 Introduction

In our earlier paper [1] the group-theoretical model for stationary developed turbu-
lence was developed in lines of classical idea of renormalization group (Kadanoff
[2], Bogolubov and Shirkov [3], Wilson [4]). In relation to Kadanoff’s “block pic-
ture” for the spin field in Ising’s model, the approach in that paper stemmed from
the following statement: If instead of turbulent field v(r), an averaged (or filtered)
on the length-scale σ field, 〈v〉σ (r), is considered, then the last one will “resemble”
the original turbulent field v(r). The exact sense of “resemble” was determined by
the group of renormalization transformations, derived explicitly for both the field of
velocity and its governing equation. In this way the renormalized form of Navier-
Stokes equation was obtained where the turbulent viscosity appeared not from the
gradient approximation of averaged nonlinear term, but from the molecular viscosity
term. Let us consider now the unsteady turbulent flow of the mixture of two incom-
pressible immiscible fluids which are identifiable at any fixed point of the flow, say
one fluid is the liquid, and another fluid is the gas. The density of such continua is
represented by the step function with two values, either the gas or the liquid density:

ρ(r, t) =
{

ρg

ρl
(1)

The simplest model of this flow is given by the following equation:

∂v

∂t
= −∇ · vv − 1

ρ
∇ p (2)

where v represents the velocity field, continuous at each and every material point:

∇ · v = 0 (3)

Although the viscous term in Eq. (2) is omitted for simplicity, the role of viscosity is
not discarded, and the corresponding discussion is postponed to Sect. 2. The momen-
tum equation is completed simultaneously by the mass conservation equation:

∂ρ

∂t
= −∇ · ρv (4)

The followingquestion is addressed in this paper:what is the formofEqs. (2)–(4) after
averaging over some spatial scale σ? One way to answer this question is proposed
in the aforementioned paper [1]. We will first remind the renormalized averaging
formula obtained in that paper.With the help of this formula,wewill averageEqs. (2)–
(4) over a small, residual, length-scale σ0. Using then the renormalization group
transformation, we will transform this averaged equation to the equation for the
velocity field 〈v〉σ (r), averaged over any larger length-scale σ > σ0. If that length-
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scale σ represents the resolved scale in simulation, the renormalized form of the
momentum equation can be regarded in the framework of Large Eddy Simulation
(LES) approach.

2 The Modified “Turbulent” Pressure and, the Momentum
Equations Averaged over a Small Length-Scale

The general averaging operation of a function v(r), depending on radius vector r, is
defined by 〈v〉(r) = ∫ ∞

−∞ v(r′)Ψ (r − r′)dr′, where Ψ (r) is weight function.
When this function is Gaussian:

Ψσ (r) = 1

(
√
4πσ)3

e
−

r2

4σ (5)

the average is given by Gauss transform (filtering):

〈v〉(r) =
∫ ∞

−∞
v(r′)Ψ (r − r′)dr′ (6)

Considering the averaged product 〈vu〉σ of two fields, v(r) and u(r), the following
renormalized averaging formula was derived in [1]:

〈vu〉σ = 〈v〉σ 〈u〉σ + 2σ∇〈v〉σ · ∇〈u〉σ
+ 2

∫ σ

0
dσ ′2σ ′〈〈∇l1∇l2v〉σ ′ 〈∇l1∇l2u〉σ ′ 〉σ−σ ′ (7)

Here the last term represents the integral contribution of all scales. The usage of this
formula was demonstrated in [1] by introducing a simple model velocity field

vi (r) = vi + ai jr j + vrndi (r) (8)

where along with translation, straining and rotation of a fluid particle (a smooth part
with constant vi and ai j ), the velocity includes also the component from random
field vrndi (r). The latter represents the statistically homogeneous and isotropic field;
it is characterized by the internal length-scale σ∗, such that above this scale the
randomness leads to: 〈vrndi 〉σ ′>σ∗ = 0, while below this scale, the field is no more
random 〈vrndi 〉σ ′≤σ∗ = vrndi (r), due to eventual effects of viscosity, or surface tension.
To remove the ambiguity with the upper index rnd in the last case of σ ′ ≤ σ∗, we
denote: 〈vrndi 〉σ ′≤σ = vrndi (r) ≡ v∗

i (r). For the model field (8), the averaging formula
(7) gives:

〈vivk〉σ = 〈vi 〉σ 〈vk〉σ + 2σ∇〈vi 〉σ · ∇〈vk〉σ + δik Ptur (9)
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where δi j is the Kronecker delta and Ptur is the scalar function defined by:

Ptur = 2

3

∫ σ∗

0
dσ ′2σ ′〈∇l1∇l2v

∗
l3∇l1∇l2v

∗
l3〉σ∗−σ ′ (10)

where l1, l2 = 1, 2, 3. For one-fluid continua this scalar function is absorbed in a
modified pressure to remain the averaged velocity field be solenoidal [1]. In the case
of two incompressible immiscible fluids, the situation is more complex, and moti-
vates the supplementary interpretation of the pressure modification. Both equations
together, Eqs. (3) and (4), make up the zero material derivative, Dρ/Dt = 0, i.e. a
fluid particle does not change the density along its trajectory. Thereby the interfaces
of relative motion between two fluids are formed in the transporting mixture. If this
mixture field is averaged over some spatial scale σ , there will be no more inter-
faces between fluids. In this case, let us consider a new variable per unit volume
of mixture—the kinetic energy 〈E〉σ averaged conditionally on one of two fluids,
flowing relatively to another fluid, and thereby straining the latter. It is clear that
the variation of such energy with the change of the mixture density plays the role
of a “potential” for the mutual motion of two fluids. Its contribution to the pressure
modification we associate with the scalar function Ptur in the following form:

Ptur = ∂〈E〉σ
∂〈ρ〉σ (11)

The derivative in Eq. (11) should be taken at the constant momentum of the flowing
fluid, and since the density of this fluid and the density of themixture are proportional,
we have:

∂〈E〉σ
∂〈ρ〉σ = −〈E〉σ

〈ρ〉σ (12)

Considering
∂〈E〉σ
∂〈ρ〉σ in two neighboring points, the modification for the pressure

gradient has due to (12) the following form:

∇Ptur = −〈E〉σ ∇ 1

〈ρ〉σ (13)

Let us average Eq. (2) over some small scale σ0. With Eqs. (9) and (13), we have:

∂〈v〉σ0

∂t
+ ∇ · 〈v〉σ0〈v〉σ0 + 1

ρ
∇ p = 〈E〉σ0∇

1

〈ρ〉σ0

(14)

Here an appraisal of σ0 and of 〈E〉σ0 in the right hand side is made by including the
overall action of the surface tension effects. Due to turbulence in the flowing fluid
relatively to another one, the latter is also involved into turbulent flow and thereby
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is stretched by the turbulent stresses up to the moment when the balance with the
capillary forces is reached.We assume that at the scale σ0 the capillary effects absorb
the effects of “turbulent” stretch characterized here by 〈E〉σ0 :

σ0 =
(

γ

〈E〉σ0

)2

(15)

where γ is the surface tension coefficient. It is known from [5] that the averaged
relative velocity between the turbulent gas at the high Reynolds number and the
inertial particle is controlled by two main parameters: the viscous dissipation of
turbulent energy ε and the typical time of relaxation for particle velocity, referred
to as the Stokes time. In this case, σ0, usually referred to as critical, or maximum
probably length scale, has the following expression [6]:

σ0 =
(

γ v

ερp

)2/3

(16)

where v is the gas viscosity, and ρp is the density of inertial particle. Using the
definition of viscous dissipation 〈ε〉σ0 = 2v〈Sik〉σ0〈Sik〉σ0 , where the elements of the

strain rate tensor are 〈Sik〉σ0 = 1

2

(∇i 〈vk〉σ0 + ∇k〈vi 〉σ0

)
, Eq. (14) may be rewritten in

the following form:

∂〈v〉σ0

∂t
+ ∇ · 〈v〉σ0〈v〉σ0 + 1

ρ
∇ p = −2σ0〈Sik〉σ0〈Sik〉σ0

∇〈ρ〉σ0

〈ρ〉σ0

(17)

Note that in terms of the mixture specific volume θ = ρ−1 (see Eq. (1) for definition),

Eq. (4) may be expressed as
1

θ

Dθ

Dt
= ∇ · v, and Eq. (17) takes the following form:

∂〈v〉σ0

∂t
+ ∇ · 〈v〉σ0〈v〉σ0 + θ∇ p = −2σ0〈Sik〉σ0〈Sik〉σ0

∇〈θ〉σ0

〈θ〉σ0

(18)

The right hand side of Eqs. (17) and (18) represents the effective contribution of
surface tension effects on the length-scale σ0. Let us introduce the ffective surface
tension coefficient γe f f,δ0 :

γe f f,δ0 = 2σ 3/2
0 〈ρ〉σ0〈Sik〉σ0〈Sik〉σ0 (19)

and represent Eqs. (17) and (18) as:

∂〈v〉σ0

∂t
+ ∇ · 〈v〉σ0〈v〉σ0 + θ∇ p′ = γe f f,σ0σ

−1/2
0 ∇〈θ〉σ0 (20)
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We complete this equation by continuity and mass-conservation equations:

∇ · 〈v〉σ0 = 0 (21)

∂〈ρ〉σ0

∂t
= −∇ · ρ〈v〉σ0 (22)

or, equivalently:
∂〈θ〉σ0

∂t
= −〈θ〉2σ0

θ2
∇ · θ〈v〉σ0 (23)

3 Renormalization of the Averaged Equations

Consider in this chapter the continuous scaling transformation from one length-scale,
σ0, to another σ , σ > σ0 (the time variable is not involved into this transformation):

⎧⎨
⎩

r → eτβr
eτβ(1−r·∇)v(r) = eτβv

(
e−τβr

)
eτβ(1−r·∇)ρ(r) = eτβρ

(
e−τβr

) (24)

where β is the rate of the homogeneous scaling, relatively to the evolution parameter
τ :

τβ = ln
√

σ/σ0 (25)

The transformation of rotation and translation should complete (24), as it is done in
[1], but here the emphasis is put on the scaling transformation (24)–(25) only, for the
sake of simplicity. It is easy to show the invariance ofEqs. (2)–(4) to scaling symmetry
transformation (24)–(25). By analogywith [1], the stationary turbulence is associated
here with dynamics of specific class of self-similar solutions of the Euler equation
(2)–(3), for which the evolution in time is the result of continues space symmetry
transformations of the velocity field v(r, t), relevantly to translation, rotation and
scaling. E.g. concerning the scaling symmetry transformations, the time evolution
of v(r, t) is determined by one-parameter sub-group generator β(1 − r · ∇):

v(r, t) = e(t−t0)β(1−r·∇)v(r, t0) (26)

eτβ(1−r·∇)v(r, t) = e(t−t0+τ)β(1−r·∇)v(r, t0) = v(r, t + τ) (27)

An interesting invariance property of such a turbulent statewas found in [1]: the appli-
cation of scaling transformation (24)–(25) to the averagedfield 〈v〉σ0 acts equivalently
(with the accuracy up to the change of stochastic phases) to the averaging over the
length scale σ > σ0, i.e.
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e
ln

√√√√√ σ

σ0
(1−r·∇)

〈v〉σ0 = 〈v〉σ (28)

Therefore applying the scaling transformation (24)–(25) with (28) to Eqs. (19)–(23)
we obtain:

∂〈v〉σ
∂t

+ ∇ · 〈v〉σ 〈v〉σ + θ∇ p′ = γe f f,σ σ−1/2∇〈θ〉σ (29)

where the “effective” surface tension coefficient is introduced:

γe f f,δ = 2σ 3/2〈ρ〉σ 〈Sik〉σ 〈Sik〉σ (30)

with the continuity and the mass-conservation equations in the following form

∇ · 〈v〉σ = 0 (31)

∂〈θ〉σ
∂t

= −〈θ〉2σ
θ2

∇ · θ〈v〉σ (32)
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The Turbulence Cascade in Physical
Space

Javier Jiménez, José I. Cardesa and Adrián Lozano-Durán

Abstract Some recent developments on the physical mechanism of turbulence cas-
cades are summarised. It is first shown that the energy cascade in statistically steady
isotropic turbulence is local in scale, at least on average, and that temporal varia-
tions of the large-scale forcing are transferred to smaller scales as a ‘wave’ consis-
tent with the classical Kolmogorov model. It is further shown that, when energy-
containing structure are individually tracked in band-pass filtered velocity fields,
they also behave classically. The correlation of their physical position with larger
(or smaller) structures is highest towards the beginning (or end) of their lifetimes.
The analysis is then extended to the structures of momentum flux in the logarith-
mic layer of turbulent channels. Small structures grow and shrink smoothly along
their lifetimes, but larger ones change size mostly by splits and mergers involving
structures of similar size. For the largest structures, splits predominate, although not
overwhelmingly.

1 Introduction

Cascades are required whenever a conserved quantity has to be transferred across a
range of scales but, beyond that generic idea, every particular instance of multiscale
transport requires a physical implementation that does not have to be the same in all
cases. In fact, it is probably always true in high-dimensional systems that cascades
include a variety of mechanisms that transfer the conserved quantity in different
directions, in such a way that a one-directional transfer across scales is only true as
a statistical average. The main problem lies in the traditional idea of scale, which,
because of the Fourier uncertainty principle, only takes a definite meaning when
averaged over a region of space larger than the scale in question. Based on the
general idea that the Navier–Stokes equations are local PDEs in physical, but not in
scale space (e.g. Fourier), our group have tried for some time to ascertain whether
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some component of the various transfers in turbulence can be identified locally in
physical space, and to clarify their mechanisms. We primarily do this by isolating
individual intense structures, and tracking them in space, time and, occasionally, also
across scales.

2 The Energy Cascade

The best-known example of a turbulent cascade is the transfer of kinetic energy in
equilibrium isotropic turbulence [4]. If energy is fed by some large-scale forcing, it is
transferred to the Kolmogorov scale, η, to be dissipated by viscosity, but the manner
in which this happens has been the subject of endless discussions. We will first
present evidence that the transfer is local in scale, at least on average. For example,
Fig. 1a shows that, when the flow is separated into scale bands by filtering, and the
forcing is unsteady, the unsteadiness of the sub-grid energy transfer, Σ = −〈τi j Si j 〉,
where τi j is the subgrid Reynolds stress tensor at the chosen filter width, and Si j
is the filtered rate of strain, moves towards bands of smaller scale as a ‘wave’ [1].
The mean 〈·〉 refers to the time-dependent instantaneous average over the whole
computational box. Moreover, the evolution of the transfer rate is self-similar, as
posited by Kolmogorov, in the sense that the delay required by the energy to cross
an octave of scales centred at r is proportional to the local eddy turnover, r2/3/ε1/3,
where ε is the ensemble-averaged energy dissipation rate (Fig. 1b).

The energy cascade in isotropic turbulence is also local in physical space [2].
The band-filtered fields used in [1] can be segmented into individual structures of
intense energy, and these structures can be followed in time. In a first approach, the
evolution in this five-dimensional space (three spatial dimensions, scale, and time)

(a)

(b)

Fig. 1 a Time-scale diagram of Σ(r), with the filter width r decreasing from top to bottom and the
instantaneous mean dissipation 〈ε〉 added as the bottom band. Isotropic turbulence at microscale
Reynolds number Reλ = 384. The dashed-dotted line corresponds to ε1/3Δt = (250η)2/3 − r2/3.
b Dimensionless average delay between the energy transfer at two filter widths, r > ra . Several
homogeneous flows. The slope of the solid line is linear. Reproduced with permission from [1]
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Fig. 2 Intersection ratio of individual structures of size rA with the set of all structures of size rB ,
separated from rA by a factor of two. Normalised to unity for random sets, and plotted as function
of the time within the life of each structure. ◦, rA/η = 30; �, 60; �, 120; �, 240. Solid symbols
are for rB = rA/2; open ones are rB = 2rA. Error bars are two standard deviations. Adapted with
permission from [2]

is too complex to have allowed tracking each structure individually up to now, but it
can be handled statistically. A measure of how related are the location of two flow
scales is the volume of the intersection of their intense structures, which has to be
compared to the null hypothesis of randomly located point sets with the same overall
volume fractions. It is found that structures in energy bands separated by a factor of
2 are more correlated than random, but that those separated by 4 or more are not [2].
This could simply be a sign of spectral leakage in the filter, but the structures are
also tracked in time, so that each of them has a lifetime (which, not surprisingly, is
proportional to r2/3), and the evolution of its correlation can be measured. Figure2
shows that structures of size r aremore strongly correlated with those of size 2r at the
beginning of their life than at the end. The opposite is true for their correlation with
smaller structures of size r/2, in strong agreement with a process in which energy
passes from larger to smaller structures at the same physical location.

3 Momentum Transfer in Shear Flows

Another conserved quantity whose transfer is important is the flux along the wall-
normal (y) direction of streamwise momentum in turbulent shear flows. Tradition-
ally, momentum is considered to be carried by the tangential Reynolds stress, uv,
defined as the product of the streamwise and wall-normal velocity fluctuations. The
structures (Qs) of particularly intense uv are often treated as important momentum
carriers [8], and their organisation is different from that of the energy structures in
isotropic turbulence. Only ‘large’ structures couple strongly enough to the shear of
the mean velocity, S = ∂yU , to carry net mean momentum. But the shear in the
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Fig. 3 Sketch of a simple
evolution graph for Qs. Time
increases from left to right,
and the graph includes a
split. Structure size is
characterised by the diagonal
	 of its circumscribed
parallelepiped

inertial (logarithmic) layer of a wall-bounded flow changes as the inverse of the dis-
tance from the wall, and the result is that the inertial momentum-carrying Qs form
a self-similar hierarchy of different scales in which most relevant Qs are attached
to the wall, in the sense that their size is proportional to their distance from it. The
transfer of momentum across this hierarchy is a problem that has to be understood
as much as the Kolmogorov energy cascade, because equilibrium has to be main-
tained across scales, and the result determines the scaling parameters for the overall
flow; for example, it defines the friction velocity as the uniform velocity scale in
wall-bounded turbulence (and therefore the drag coefficient).

Three-dimensional Qs are studied for turbulent channels in [5], and tracked indi-
vidually in time in [7]. They are found to grow and decay while they merge and split
in complicated temporal graphs that have to be parsed to understand their evolution
(Fig. 3). In agreement with their inertial character, their lifetime is proportional to
their size, but, somewhat surprisingly given that they are mostly attached to the wall,
they are not found to be particularly connected with it. Roughly half of the Qs are
born near the wall and move away from it, while the other half do the opposite. In
fact, Qs were studied in [3] for homogeneous shear turbulence, which shares with
wall-bounded turbulence the role of the shear as a source of momentum transfer and
of turbulent energy, but which has nowalls. Its Qs differ very little from those in wall-
bounded flows, showing that they are a consequence of the shear, rather than of the
neighbourhood of the wall. The relevant condition for Qs to participate inmomentum
transfer is that they should be larger than the local Corrsin scale, Lc = (S3/ε)1/2.
But Lc ∼ y in the logarithmic layer of wall-bounded flows, and most Qs larger than
Lc are also too large to fit in the flow without hitting the wall. They are therefore
attached.

From the point of view of the present paper, the most interesting question is the
relevance ofmerging and splitting in the growth anddecay of themomentum-carrying
structures. Because Qs are defined by thresholding an intense property (uv), they are
born and die as small structures, which at first grow in volume and later shrink. Part of
this evolution is a smooth variationwith time as a consequence of their intensification
and weakening. Figure4a shows that this accounts for most of the change in volume
for Qs smaller than about 100 wall units (defined by the kinematic viscosity and
the friction velocity, and denoted by a ‘+’ superscript). Above that threshold, all Qs
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Fig. 4 a Fraction of the number of Qs that split (solid line) or merge (dashed) at least once in their
lives, as a function of their mean diagonal size averaged over their lifetime. bVolume ratio between
the direct (splits) and inverse (merge) cascade events, as a function of the size of the smallest and
largest fragments in the interaction. The dashed line is 	s = 0.4	b, and the solid one in 	s = 	b.
Contours are, from light to dark, 1.1(0.2)1.7. Both figures refer to Qs above the viscous wall layer
of a turbulent channel with friction Reynolds number Reτ = 4200 [6]

merge or split at least once in their life, and it can be shown that between 50 and 70%
of the volume change of the largest Qs is due to these discontinuous events. If we
interpret the mergers as an inverse cascade to larger volumes, and the splits as a direct
cascade, the direct cascade predominates, although not by a large margin (rough 1.3
on average). Figure4b shows that, disregarding the smallest Qs that cascade seldom,
the direct cascade is a property of large structures that break into (or merge from)
fragments of comparable size. Small fragments of large eddies have almost the same
probability of merging as of splitting, but a large attached Q is roughly twice more
likely to break in half than to be created from two comparable fragments.

In summary, the above examples show that cascades in turbulence can be associ-
ated to definite interactions that take place locally in physical space between entities
of comparable size. In general, both direct and inverse events occur, leading respec-
tively to the generation of smaller and of larger structures, but, in all our examples,
the direct cascade predominates.

Funded in part by the Multiflow and Coturb projects of the European Research
Council.
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Effects of Regenerating Cycle
on Lagrangian Acceleration
in Homogeneous Shear Flow

A. Barge and M. A. Gorokhovski

Abstract The aim of this paper is to identify the effects of the regenerating cycle
phases on the Lagrangian acceleration statistics. Direct Numerical Simulation of
fluid and inertial particles (St = 3.0) moving in a stationary homogeneous shear
flow is performed and the autocorrelation functions of the norm and components
of the Lagrangian acceleration vector are calculated. The energy balance between
turbulent scales is first observed, and the range of scales, sensitive to growth and
collapse phases, is identified. In link to this range, it was shown that the acceleration
norm is correlated longer during a growth phase and shorter during a collapse phase.
This effect is amplified when inertia of particles is increased. At the same time, it
was shown that the acceleration vector components are invariant to the regenerating
cycle.
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1 Introduction

A DNS study of Lagrangian acceleration was mostly focused on the case of homo-
geneous isotropic turbulence. The case of homogeneous shear flow is more close to
realistic flows. However such flows are less studied in terms of Lagrangian statistics
of acceleration. The flowwith homogeneous shear are characterized by the growth of
turbulent structures with time [1, 2]. In computation, this growth takes place until the
structures reach the size of the computational domain [3]. They then collapse, and the
phase of growth restarts again. These phases are accompanied by successive increase
and decrease of energy and of rate of dissipation (see Fig. 2). Thereby surprisingly,
as it is shown in [3], the flow characteristics represent a statistically stationary pro-
cess. Several studies [3, 4] demonstrated that properties and the mechanisms of
such regenerative cycle of structure growth and collapse is similar to phenomena
that appear in wall-bounded flows. This motivates the DNS study of flows with
homogeneous shear, as a proper tool to isolate and to study Lagrangian properties of
flows which mimic the flows closely to the wall. However at our knowledge, the only
DNS observation of the Lagrangian acceleration in flows with homogeneous shear
is the paper [5], in which the authors showed that the norm of acceleration of the
fluid particle is long time correlated and linked to the largest turbulent scales whereas
the acceleration orientation is correlated on times of order of the Kolmogorov time,
and is linked to the dissipative scales. This study was limited to initial phase of the
flow when the structures were only growing. The following question is raised: are
the results of [5] valid when the flow is in the statistically stationary state, and how
statistics of the fluid particle acceleration may be affected by growth and collapse
phases? The next question is this: If particles are inertial, what is their reaction on
growth and collapse phases and how inertia effects react to the process of regen-
erative cycle of turbulent structures? This motivated our work to perform statistics
conditionally on those phases.

The paper is organized as follows: In Sect. 2, numerical methods are presented.
In Sect. 3, a first part shows the sensitivity of turbulent scales to the growth and
collapse phase of the regenerating cycle. In a second part, effects of these phases on
Lagrangian autocorrelations functions of particles acceleration are discussed. Finally,
conclusion will be drawn in Sect. 4.

2 Numerical Methods

We perform DNS of fluid and inertial particles moving in a turbulent flow confined
in a periodic cubic box of size L = 2π m, discretized on 5123 grid points and with
an uniform mean shear S = 3.2 s−1 imposed in one spatial direction. The kinematic
viscosity is chosen as ν = 0.005m2s−1. The mean velocity field is then:

U(x1, x2, x3) = (Sx2, 0, 0) (1)
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Fig. 1 Mean velocity profile
in the homogeneous shear
flow. Mean shear is here
negative

and is illustrated on Fig. 1. The advection by the mean shear makes impossible to
look for periodic solutions of the Navier-Stokes equations in the x2 direction. To
cope with this problem, we followed Rogallo [6] method of moving frame defined
by:

x ′
1 = x1 − Stx2; x ′

2 = x2; x ′
3 = x3 (2)

and we applied the remeshing operation to avoid the numerical instabilities increas-
ing with the mesh deformation. Using periodicity in x1 direction, the computational
domain is transformed like if the box would have been skewed in the opposite direc-
tion of the mean flow. Then the domain moves back to a cubic state and the cycle

starts again. Remeshing is done every time S · t = n + L1

2L2
; n = 0, 1, 2, . . .Navier-

Stokes equations for the fluctuating velocity field are:

∂ui
∂t

+ ∂uiu j

∂x j
+ Su2δi1 = −1

ρ

∂ p

∂xi
+ ∂ui

∂x j∂x j
(3)

∂ui
∂xi

= 0 (4)

The Eqs. (3)–(4) are solved by pseudo-spectral methods in space; non-linear terms
are directly solved with the classical 2/3 rule to avoid aliasing errors and the linear
terms are implicitly calculated. Time integration is performed by a second order
Runge-Kutta scheme. Particles are injected when the flow reaches the statistically
stationary state and their displacements are calculated by integration of their motion
equations:

dxp

dt
= up(t) + δi1Sxp2(t) (5)
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Fig. 2 Time evolution of

energy k = 1

2
〈ui ui 〉V and

dissipation ε = 2ν〈S2i j 〉V in
the homogeneous shear flow.
〈•〉V is the average over the
volume of fluid and 〈•〉t is
the average over the volume
of fluid and time from
stationary state

dup

dt
= u f (xp(t), t) − up(t)

τp
+ δi1Su p2(t) (6)

Here up(t) is the particle velocity, u f (xp(t), t) is the fluid velocity at the particle

position and τp = ρpd2
p

18ρ f ν
the typical response time of the particles. Henceforth the

Stokes number is introduced as St = τp/τη. For each simulations, we consider the
displacement of two types of particles: a fluid tracer and a heavy particle, the latter
is characterized by the Stokes number St = 3.0. From Eq. (6) we can see that the
longitudinal acceleration of particles a1 = a′

1 + Su p2 has a mean acceleration term
Su p2. It has been shown [5] that this term has a negligible contribution to particles
dynamics. Therefore hereafter we will consider only the fluctuating components
of acceleration denoted by a1, a2 and a3. Results are discussed in the next section
(Fig. 2).

3 Results

The Lagrangian statistics are performed conditionally on different phases of the
regenerating cycle by identification of two periods of observation. The first one is
defined between the moment where energy is just stabilized after a decay period
and the moment corresponding to the half of the following increasing period. This
allows to isolate moments where structures are developing and growing. This period
is called hereafter by Energy Rise (ER). The second time window is taken between
themoment where energy is just stabilized after its increasing period and themoment
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Fig. 3 Production P(k), transfer T (k) and dissipation D(k) terms of the energy balance equation
in the homogeneous shear flow as a function of spatial scales conditioned to the growth (ER) and
collapse (EC) phases

corresponding to the half of the next decay period. This period is called by Energy
Collapse (EC).

Because [5] showed that the acceleration statistics are related to different sizes
of turbulent scales, we first identify which scales are sensitive to the regenerat-
ing cycle by focusing on the evolution of energy in the Fourier spectral space of
spatial scales k. Figure3 shows the different terms of the energy balance equation

Σ(k, t) = ∂E(k, t)

∂t
= P(k, t) + T (k, t) − D(k, t) as a function of turbulent scales

and growth/collapse phases. It is seen that a range of scales larger than the shear scale
LS = √

ε/S3 (those scales are dominated by the anisotropy of the mean shear [7]
and characterized by a transverse cascade [8]) are characterized by an equilibrium
state during the growth phase while these large scales are losing the energy during
the collapse phase due to transfer towards smaller scales. The difference can easily
be explained because the very large structures have collapsed and the intermediate
scales can not receive energy anymore from those structures. Consequently, the scales
smaller than the shear scale (these scales are dominated by classic inertial cascade
[7]) are mostly insensitive to the regenerating cycle.

The next step concerns observation of the autocorrelation functions of the ampli-
tude and components of the particles acceleration vector. Since the flow can be
considered as an instationary one on short times, the correlation coefficient was
introduced in the following form:

ρA(τ ) = 〈A′(t)A′(t + τ )〉
√〈A′(t)2〉〈A′(t + τ )2〉 (7)
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Fig. 4 Top panel:
Autocorrelation functions of
the acceleration norm of fluid
particles in the homogeneous
shear flow averaged over the
complete simulation (—) and
conditioned to the growth
phase (− · ·−) and to the
collapse phase (•). Bottom
panel: Same figure for
inertial particles with
St = 3.0

where the angled brackets 〈•〉 denote the average on all particles and A′ the fluctuating
value of A obtained by subtracting 〈A〉 calculated at the considered time. Preliminary
to Lagrangian statistics on different phases of regenerating cycle, the unconditional
statistics show in Figs. 4 and 5 that the acceleration norm of fluid particles is always
correlated on long time while its components are correlated on the Kolmogorov time.
The sameobservation is addressed to inertial particles (results for inertial acceleration
components are not shown here). Since the norm of acceleration is correlated on large
times which are linked to large structures of the homogeneous shear flow, one can
expect the sensitivity of the acceleration norm to regenerating cycle. Figure4 shows
the autocorrelation functions of the acceleration norm for fluid and inertial particles
conditioned to the growth and collapse phase of the cycle. It is seen that the time
correlation of the acceleration norm is larger during a growth phase: the turbulent
structures persist in time. After the collapse, the turbulent structures are smaller,
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Fig. 5 Autocorrelation
functions of the acceleration
vector components of fluid
particles in the homogeneous
shear flow averaged over the
complete simulation (—) and
conditioned to the growth
phase (− · ·−) and to the
collapse phase (•)

and their typical lifetime is shorter. It is seen from Fig. 4 that such sensitivity is
increased with inertia of particles (T|ap |ER/T|ap |EC ∼ 1.8; T|a|ER/T|a|EC ∼ 1.6). Unlike
to the fluid particles, an inertial particle respond to larger turbulent scales due to
filtering effects, being not disturbed by smaller fluctuations in the carrier phase.
Then it turns out that in average, and specifically during the collapse phase, the time
correlation of the acceleration norm is shorter when inertia increases. Concerning the
autocorrelation functions of the acceleration vector components, it is shown in Fig. 5
that the time correlation of the acceleration orientation is, as expected, invariant with
the regenerating cycle: the acceleration orientation is linked to small scales. The
same conclusion can be made for the vector components of inertial particles (not
shown here).

4 Conclusion

In homogeneous shear flow, this communication is addressed to effects of growth
and collapse phases in the regenerative cycle on the Lagrangian autocorrelation
functions of the acceleration of fluid and inertial particles. As it was observed in [5]:
the acceleration norm is long time correlated and linked to the large turbulent scales,
while components of the acceleration vectors are correlated on the Kolmogorov
time. This property is also valid for inertial particles. However it was shown that
acceleration statistics is sensitive to the regenerating cycle. Since scales larger than
the shear scale intervene into growth and collapse phases, whereas scales smaller than
shear scales do not, the acceleration norm is correlated longer during a growth phase
and shorter during a collapse phase. This effect is amplified when inertia of particles
is increased. At the same time the acceleration vector components are invariant to
the regenerating cycle.
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Energy Transfer and Spectra
in Simulations of Two-Dimensional
Compressible Turbulence

Alexei G. Kritsuk

Abstract We present results of high-resolution numerical simulations of compress-
ible 2D turbulence forced at intermediate spatial scales with a solenoidal white-in-
time external acceleration. A case with an isothermal equation of state, low energy
injection rate, and turbulent Mach number M ≈ 0.34 without energy condensate
is studied in detail. Analysis of energy spectra and fluxes shows that the classical
dual-cascade picture familiar from the incompressible case is substantially modified
by compressibility effects. While the small-scale direct enstrophy cascade remains
largely intact, a large-scale energy flux loop forms with the direct acoustic energy
cascade compensating for the inverse transfer of solenoidal kinetic energy. At small
scales, the direct enstrophy and acoustic energy cascades are fully decoupled at small
Mach numbers and hence the corresponding spectral energy slopes comply with the-
oretical predictions, as expected. At large scales, dispersion of acoustic waves on
vortices softens the dilatational velocity spectrum, while the pseudo-sound compo-
nent of the potential energy associated with coherent vortices steepens the potential
energy spectrum.
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1 Introduction

Interstellar turbulence [17] is believed to play an important role regulating star forma-
tion [31] in molecular clouds [20]. However, our understanding of large-scale energy
cycle in the interstellar medium (ISM) of disk-like galaxies remains incomplete. In
particular, it is unclear how the energy injected in the ISM by stellar feedback and
gravitational instabilities at scales comparable to the disk scale height h cascades
to larger and smaller scales, shaping the structure and global stability of interstellar
clouds. The phenomenology of such split energy cascade in quasi-two-dimensional
turbulent thin layers of incompressible fluid has been discussed in [5, 34]. While
the feasibility of inverse energy transfer in the galactic context has attracted some
attention [7, 17], compressibility effects have never been studied quantitatively in
sufficient detail. An important observational signature of the inverse energy cascade
that can be verified numerically is the scaling of the column density spectrum, which
exhibits a break at∼h−1 in a number of nearby disk-like galaxies observed face-on [4,
11, 14–16, 41]. Using numerical simulations of two-dimensional (2D) compressible
turbulence, we recently demonstrated that the inverse cascade is truncated at turbu-
lent Mach numbers approaching unity, when vortices get destabilized due to acoustic
emission [19]. The acoustic vortex instability [8, 22, 23, 35] ultimately provides for
a direct acoustic energy cascade, closing the energy flux loop above the injection
scale [19].

In this communication we further detail energy transfer across scales in 2D, using
numerical simulations of forced isothermal turbulence in a so-called dual-cascade
setting. A high-order accurate low-dissipation numerical method provides enough
scale separation to resolve both large- and small-scale 2D cascades on a 16,3842

grid. Energy transfer is analyzed in spectral space using our new formalism for
compressible turbulence developed in [2] and generalized tomagnetohydrodynamics
in [3].

2 Numerics

We carried out implicit large eddy simulations (ILES) of compressible turbulence in
a square periodic domain L × L covered with a uniform Cartesian grid of N × N
points. The system is governed by the compressible Euler equations

∂tρ + ∇ · (ρu) = 0, (1)

∂t (ρu) + ∇ · (ρuu + pI) = f , (2)

∂tE + ∇ · [(E + p) u] = u · f , (3)

where ρ is the density, u—velocity, p—pressure, and E = ρ(u2/2 + e)—total
energy density, I = {δi j }2i, j=1—identity matrix. A solenoidal, white-in-time random
external force per unit mass a = f /ρ is applied at an intermediate pumping scale
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Table 1 Simulations and parameters

Case N λ f ε f tstart tcnd tsat tend Mend

A 8192 0.012 0.001 0 158 390 450 0.52

B 16,384 0.006 0.001 124 – – 180 0.34

λ f = 2π/k f . The system is closed by an ideal gas equation of state p = (γ − 1)ρe
with the ratio of specific heats set very close to unity, γ ≡ cp/cv = 1.001, e.g., [27].
The dimensionless units are chosen so that the box size L = 1, the mean density
ρ0 = 1, and the speed of sound cs,0 = 1. The rate of kinetic energy injection by the
forcing is relatively small, ε f ∈ [0.001, 0.01], as substantially higher rates would
inhibit the inverse cascade with most of the added energy dissipated in shocks right
at the injection scale. The force correlation time is ∼104 times shorter than the char-
acteristic vortex turn-over time at λ f , τ f = ρ

1/3
0 λ

2/3
f ε

−1/3
f . In this formulation, each

case is fully defined by three input parameters (N , ε f , λ f ), see Table1.
While we computed about a dozen different cases, here we shall focus only on the

two highest resolution weakly forced cases A and B. Case A was evolved through
tend = 450 box-crossing times τ = L/cs,0 with the piecewise parabolic method [10],
reaching the turbulent Mach number M ≈ 0.54. We distinguish the following evo-
lutionary stages: (i) a quasi-incompressible regime with linear total energy growth
E ≡ ∫

E dx ∼ 0.92ε f t at t ∈ [0, 50] andMach numbersM ∈ [0, 0.25], (ii) aweakly
compressible turbulence regime with shocklets at t ∈ [50, 158] and M ∈ [0.25, 0.3],
with E ∝ 0.35ε f t , (iii) an energy condensation event at t ≈ 158, marking a fully
developed inverse energy cascade, followed by (iv) further growth of the condensate
at t ∈ [158, 380] still with E ∝ 0.35ε f t , and (v) energy saturation at t ∈ [380, 450]
and M ∼ 0.54 [19].

Case B was restarted from case A at t = 124 after doubling the inverse cascade
range by combining 4 identical boxes into one larger square box covered with a
16,3842 grid. We then evolved case B for 26 box-crossing times to get rid of all
transients associated with the restart and to further develop the inverse cascade in the
new enlarged domain. Finally, we evolved the case for Δt = 30τ at M ∼ 0.34 and
collected 600 data snapshots at t ∈ [150, 180] to study turbulence statistics. For this
simulation, we used a more accurate method described below, which allowed us to
double the spectral bandwidth in the inertial range of the direct enstrophy cascade
(i.e. below the energy injection scale). Hence, we essentially doubled the extent of
inertial ranges for both incompressible cascades compared to case A.

To evolve case B, we used a variable high-order 3D solver developed for problems
involving turbulence with strong shocks and density variations at flow speeds that
range from nearly incompressible to hypersonic [24, 39] and implemented in the
ADPDIS3D code.Our production runs used an optimal subset of numericalmethods,
which includes: (i) 8th-order-accurate central spatial base scheme that employs a split
form of the inviscid flux derivative for better numerical stability [13]; (ii) non-linear
Ducros et al. sensor [12] to filter the solution and provide extra dissipation where
needed, using a dissipative portion of the 7th-order WENO scheme and limiting the
use of numerical dissipation away from discontinuities with a control parameter,
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distinguishing shocks from vortical flow types; and (iii) 4th-order Runge-Kutta time
integration.

3 Results

Time-averaged velocity power spectra for case B are shown in Fig. 1. The spectrum
is defined by P(u, k) ≡ ∫ |̂u(κ)|2δ(k − |κ |)dκ , where û(k) denotes the Fourier
transform of the velocity u(x) and δ(k) is the Dirac delta function. Averaging over
a short period of time Δt = 30τ at t > 150 is justified because at ε f = 0.001 the
energy growth E(t) ∝ 0.33ε f t is slow and only affects the tip of the spectrum at the
lowest wave numbers, while the rest of the spectrum remains statistically stationary.
As can be seen in Fig. 1, the spectral slopes deviate from classical predictions for
incompressible turbulence in two dimensions [25, 26].

With a well-resolved stochastic forcing, we obtain P(u, k) ∝ k−2 at k < k f

instead of P(u, k) ∝ k−5/3. The same scaling was measured at similar Mach num-
bers in case A, just before the energy condensation occurred [19]. At k > k f , where
one would normally expect to see P(u, k) ∝ k−3, the spectrum does not show any
clear power-law scaling range, even though the numerical method used in case B is
sufficiently accurate to resolve an inertial range.

To discuss the origin of these deviations in compressible turbulence, we use
Helmholtz decomposition u = us + ud , separating solenoidal us and dilatational
ud velocity components. The decomposed spectra P(us, k) and P(ud , k) are also
shown in Fig. 1. The solenoidal component us clearly dominates over the dilatational
one at all wave numbers, except for k � 5k f . A local peak in P(us, k) at k f is asso-
ciated with the forcing, while P(ud , k) does not show any feature at k f because the
external acceleration a = f /ρ is divergence-free.

Fig. 1 Power spectra of the
velocity u (red) and its
solenoidal us (green) and
dilatational ud (purple)
components. The solenoidal
component dominates at
large scales, k � k f , while
the dilatational one
dominates at small scales,
k � k f , resulting in a
‘bottleneck’ in the velocity
spectrum, see the inset for
k3-compensated small-scale
spectra
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Fig. 2 Vorticity power
spectrum is essentially flat at
k < k f , P(ω, k) ∝ k0,
consistent with
P(us , k) ∝ k−2. At k > k f ,
the spectrum closely follows
Kraichnan’s prediction
P(ω, k) ∝
k−1[ln (k/k f )]−1/3 [26], see
compensated spectrum in the
inset
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Fig. 3 Power spectrum of
the velocity divergence
θ ≡ ∇ · u. At large scales,
P(θ, k) ∝ k1/5, while at
k > k f the spectrum scales
approximately as
P(θ, k) ∝ k0, reflecting
P(ud , k) = k−2P(θ, k) ∝
k−2, see the inset
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To detail the velocity scaling further, we show spectra of the vorticity
ω ≡ ∇ × u = ∇ × us and dilatation θ ≡ ∇ · u = ∇ · ud in Figs. 2 and 3, respec-
tively. Above the injection scale, at k/k f ∈ [0.03, 0.3], the vorticity spectrum is
flat P(ω, k) ∝ k0, corresponding to P(us, k) ∝ k−2. There is a slight deep in the
spectrum just above the injection scale at k/k f ∈ [0.3, 1], where a small fraction of
pumped up solenoidal kinetic energy is being converted into acoustic energy.

At k > k f , the vorticity spectrum is steeper than k−1 and hence P(us, k) is steeper
than k−3, as can also be seen in the inset of Fig. 1. The logarithmic correction
[ln(k/k f )]−1/3, however, is sufficient to have a compensated spectrum approximately
flat for about a decade in k (see inset in Fig. 2). The solenoidal velocity spectrum,
thus, closely follows Kraichnan’s prediction [26] for the direct enstrophy cascade
in incompressible 2D turbulence, i.e. P(us, k) ∝ k−3[ln(k/k f )]−1/3 at k > k f . It is
worth noting that smooth flows in ideal 2D compressible hydrodynamics conserve
the potential vorticity ω/ρ of any streamline, but when compressibility is small, the
enstrophy cascade persists, much as in the incompressible case [19].
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Fig. 4 The vorticity PDF is
strongly non-Gaussian,
reflecting the presence of
coherent vortices. Vorticity ω

is normalized by its rms
fluctuations σ
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At the same time, the spectrum of solenoidal velocity P(us, k) ∝ k−2 is substan-
tially steeper than k−5/3 at k < k f . Similar spectral slopes were previously seen in
2D simulations of incompressible turbulence with stochastic forcing in which the
forcing scale λ f is sufficiently well resolved and large-scale friction is not included
[37]. The steep spectra were associated with the emergence of coherent vortices,
which usually coexist with the inverse energy cascade in 2D [9]. The vortices do
not form if λ f is unresolved; they also may get destabilized if a stationary external
force is used [32] or if the order of hypodissipation is small enough [6]. The presence
of coherent vortices is reflected in the strongly non-Gaussian shape of single-point
vorticity PDF (see Fig. 4 and Ref. [37]). Moreover, scaling exponents ζp of the trans-
verse solenoidal velocity structure functions |Δu⊥

s (�)|p ∝ �ζp also show anomalies
with ζp > p/3 at p < 3 and saturate at ζp ≈ 1 for order p ∈ [3, 6] due to the pres-
ence of vortices [38], cf. [6]. Overall, the emerging population of vortices appears to
substantially control the dynamics of 2D turbulence in our cases A and B.

Let us now consider the spectrum of dilatation (Fig. 3), which has a small pos-
itive slope P(θ, k) ∝ k0.2 at k < k f and then flattens to P(θ, k) ∝ k0 at k > k f .
The dilatational velocity spectrum at small scales P(ud , k) ∝ k−2 is consistent with
theoretical prediction for the potential velocity component in acoustic turbulence by
Kadomtsev and Petviashvili [21]. Indeed, at small Mach numbers, the direct acoustic
energy and enstrophy cascades proceed independently of each other at k � k f .

At k < k f , we observe a slightly more shallow spectrum of dilatational velocity
P(ud , k) ∝ k−1.8. Due to dispersion of acoustic waves on large-scale coherent vor-
tices, the slope is expected to lie approximately half-way between −2 (the case of
purely potential velocity [21]) and−11/7 ≈ −1.57 (as suggested for 2D in Ref. [18]
based on arguments similar to those advanced for 3Dacoustic turbulence byZakharov
and Sagdeev [40], see also [28–30, 33]).

Besides the velocity spectra, it is worth inspecting the spectral densities of kinetic
and potential energy, K (k) = P(ρu, u; k)/2 andU (k) = P(ρ, e; k)/2 +U0δ(k)/2,
respectively (here U0 ≡ ∫

ρedx). Indeed, the total energy E = ∫ ∞
0 E(k)dk =
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Fig. 5 Total E(k) (red),
kinetic K (k) (green), and
potential U (k) (brown)
spectral energy densities.
Also shown is the dilatational
component Kd (k) (purple)
of the kinetic energy in
detailed equipartition with
the potential one
Kd (k) ≈ U (k) at k � k f
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K +U = ∫ ∞
0 [K (k) +U (k)]dk is an ideal invariant of the isothermal system.

Following Ref. [2], we define the spectral densities as cospectra P(a, b; k) ≡∫ [̂a(κ) · b̂∗
(κ) + â∗(κ) · b̂(κ)]δ(k − |κ |)dκ/2, with a = ρu, b = u in case of the

kinetic energy and a = ρ, b = e for the potential energy. While these generic
definitions are valid for arbitrary degree of compressibility, in the Mach num-
ber regimes realized in case B, the kinetic energy spectra can be reasonably well
approximated by K (k) ≈ ρ0P(u, k)/2 at all resolved wave numbers. Likewise, the
kinetic energy spectral density can be approximately decomposed into solenoidal
and dilatational parts K (k) ≈ Ks(k) + Kd(k), where Ks(k) = ρ0P(us, k)/2 and
Kd(k) = ρ0P(ud , k)/2.

Figure5 shows the relevant spectral energy densities: total E(k), kinetic K (k),
potential U (k), and dilatational kinetic Kd(k). Overall, these look similar to the
corresponding velocity spectra, except for U (k), which is new. One can clearly see
the detailed acoustic energy equipartitionU (k) ≈ Kd(k) at k � k f [2, 36]. However,
at large scales, the presence of coherent vortices breaks this equipartition, as pseudo-
sound component of U (k) associated with the vortices makes the potential energy
exceed Kd(k) at k < k f . The inset in Fig. 5 details the pseudo-sound contribution
U (k) − Kd(k) shown in black, which scales approximately as k−3. This scaling
can be readily derived, assuming that centrifugal force is balanced by the pressure
gradient in coherent vortices and P(u, k) ∝ k−2. We thus see a large-scale excess of
U (k) as another (purely compressible) signature of the presence of coherent vortices
in the inertial range of inverse energy cascade.

Finally, spectral energy fluxes computed using the formalismdeveloped inRef. [2]
are shown in Fig. 6. The kinetic ΠK (k) (green) and potential ΠU (k) (brown) energy
fluxes form a flux loop at k < k f , as solenoidal kinetic energy inversely cascades to
large scales,where it gets converted into acoustic energy,which thendirectly cascades
to small scales [19]. The net total energy flux Π(k) = ΠK (k) + ΠU (k) (red) is split
in two roughly equal parts: one cascading inversely to feed the continuing energy
growth of the system, and another cascading directly to rid the systemof the excessive
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Fig. 6 Net Π(k) (red),
kinetic ΠK (k) (green), and
potential ΠU (k) (brown)
spectral energy fluxes
normalized by the kinetic
energy injection rate ε f .
Note that the total energy
E(t) is not statistically
stationary and continues to
grow at a rate of
approximately 0.33ε f within
the time-averaging interval
t ∈ [150, 180]

-1

-0.5

 0

 0.5

 1

-2.5 -2 -1.5 -1 -0.5  0  0.5  1  1.5

Π
(k

)/
ε f

log10 k/kf

Π ΠK ΠU

acoustic noise. In the mean time, shock dissipation actively drains the kinetic energy
of the isothermal system across scales. It is worth noting that the kinetic and potential
components of the net flux are comparable, while the kinetic-to-potential energy
ratio generally oscillates around 10%. Thus, even small compressibility can alter
or even reverse the energy transfer across scales. Another remark due here is on
the notion of ‘kinetic energy cascade’ sometimes used in compressible turbulence,
even though K is not an invariant of the dynamics, e.g., [1]. Our 2D case provides
a curious illustration, as the solenoidal and dilatational components of the kinetic
energy cascade in opposite directions at k < k f .

4 Summary

We presented results of high-resolution numerical simulations of compressible 2D
turbulence forced at intermediate spatial scales with a solenoidal white-in-time exter-
nal acceleration. We studied in detail a case with an isothermal equation of state, low
energy injection rate, and turbulent Mach number M ≈ 0.34 without energy conden-
sate. Our analysis of energy spectra and fluxes shows that the classical dual-cascade
picture familiar from the incompressible case is substantially modified by compress-
ibility effects. While the small-scale direct enstrophy cascade remains largely intact,
a large-scale energy flux loop forms with the direct acoustic energy cascade compen-
sating for the inverse transfer of solenoidal kinetic energy. At small scales, the direct
enstrophy and acoustic energy cascades are fully decoupled at low Mach numbers,
and hence the corresponding spectral energy slopes comply with theoretical predic-
tions [21, 26], as expected. At large scales, dispersion of acoustic waves on vortices
softens the dilatational velocity spectrum [33, 40], while pseudo-sound component
of the potential energy associatedwith coherent vortices steepens the potential energy
spectrum.
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The Exact Solution to the 3D Vortex
Compressible Euler Equation and the
Clay Millennium Problem Generalization

S. G. Chefranov and A. S. Chefranov

Abstract The general exact solution of the Cauchy problem to the 3D Euler vortex
equation for compressible flow in unbound space is obtained. This solution has
singularity at finite time and coincides with the vortex solution of the 3D Hopf
equation for particles motion by inertia. A closed description of the evolution of
enstrophy and all higher moments for the corresponding vortex field is established,
giving an exact solution to the problems of closure in the theory of turbulence. On
the base of this solution the smooth solution of the Navier-Stokes 3D equation for
viscous compressible medium is obtained taking into account the effective viscosity
and representation for the pressure field, which follows from the integral entropy
balance equation, not from the medium equation of state. The above provides a
positive solution for the Clay Millennium Problem (www.claymath.org) just in the
case of its generalization on theNavier-Stokes equation for the compressiblemedium,
for which an absence of smooth solutions on finite time interval has been a priori
assumed before.

1 Introduction

1. The Euler equations, which express the impulse and mass conservation laws,
for the case of ideal compressible medium are well-known for already more than
250years (since 1755) and have the following form [1–4]:

∂ui
∂t

+ uj
∂ui
∂xj

= 1

ρ

(
fi − ∂p

∂xi

)
(1)
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∂ρ

∂t
+ ∂

∂xi
(ρui) = 0 (2)

where according to the repeated indices meant is a summation from 1 to n (n is a
dimension of space), and ui; fi; p; ρ the components of the velocity field, the external
forces field, field of pressure anddensity, respectively. Ifwe consider not only external
forces, but also the force associated with themedium viscosity, then Eq. (1) coincides
in form with the Navier-Stokes equation, obtained later and known since 1827 [3].

At the same time Eq. (1) exactly coincides with the Navier-Stokes equation for
viscous compressible medium, if for the force fi in (1) the following representation
takes place [3, 4]:

fi = η
∂2ui
∂x2k

+
(
ζ + η

3

) ∂

∂xi

(
∂uk
∂xk

)
(3)

In (3) η, ζ are the constant coefficients of viscosity and the second viscosity, respec-
tively.

2. Since 2000 the problem of the existence of smooth solutions for the three-
dimensional (3D) Navier-Stokes equation is one of the seven fundamental problems
for the Millennium Prize formulated at the Clay Mathematical Institute [5]. In [5]
this problem is formulated not for the general form of the Navier-Stokes equations
(1) and (3), but for the special case when the approximation of an incompressible
medium ρ = const is assumed to be fulfilled in (1)–(3) for zero divergence of the
velocity field

divu ≡ ∂uk
∂xk

= 0 (4)

A necessary condition for carrying out this approximation is the assumption that the

Mach numbers Ma = |u|
c

� 1 are small (where c is the speed of sound in a given

medium).
Such a formulation is connected not only with the explicit simplification of the

form of system (1)–(3). The main thing here is the a priori idea that the complete
system (1)–(3) cannot have smooth solutions on an arbitrarily large time interval.
The reason for this is the possibility of appearance of a singularity (collapse) arising
in the solution in a finite time, as, for example, in case of collapse of a traveling
nonlinear wave in an ideal compressible medium [6]. At the same time it is assumed
that the consideration of the viscosity forces cannot lead to the regularization of
the corresponding solutions, at least in the case of a 3D vortex solution having the
greatest theoretical and applied value. To understand whether this is really so, it is
necessary to have at least some class of exact nonstationary 3D solutions of system
(1)–(3).

3. L. Euler also noted the complexity of the analysis necessary to obtain the general
form of the solution of system (1), (2) and pointed out the importance of obtaining
at least particular solutions of these equations [1]. Thus, for example, in [1] (see also
[2]), considered is the solution corresponding to an exact hydrostatic equilibrium,
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when in (1) the total force on the RHS of Eq. (1) is equal to zero and all the velocity
field components are identically equal to zero. In [1] also considered is the case when
at zero balance of forces on the RHS of (1) the velocity is no longer zero, but equal
to a constant value that is the same for all particles in the medium.

Following this logic of Euler’s work [1], and also under the condition of zero
balance of forces on the RHS of the Euler equation (1), we can consider that despite
the velocity is constant for each particles, it is not necessarily to be the same for
different particles of the medium. Besides, the requirement of equality to zero of the
LHS of Eq. (1) leads to the following nonlinear equation for the velocity field:

∂ui
∂t

+ uk
∂ui
∂xk

= 0, i = 1, . . . , n (5)

This equation, obtained from (1) under condition of zero balance of forces in
the RHS of Eq. (1), describes inertial motion of the medium particles and is the n-
dimensional generalization of the well-known one-dimensional equation for nonlin-
ear travelling wave, sometimes called as the Hopf equation [6]. In one-dimensional
case Eq. (5) is obtained within the limit of large Mach numbers and from equa-
tion, firstly considered by Riemann [3] (see Eq. (101.2) in [3]). Therefore Eq. (5) is
sometimes called as the Riemann equation.

The closed (as opposed to (1)–(3)) system of equations of type (5), (2) is also
obtained from the equations of hydrodynamics of self-gravitating dust matter when
considering the formation of a large-scale structure of theUniverse under the assump-
tion of zero pressure p = 0 in (1) [7–10]. The same system of Eqs. (5), (2) is also
obtained when expanding the Mach numbers Ma � 1 in inverse powers, for exam-
ple, in the hydrodynamic description of the granular media dynamics, when the
contribution to (1) associated with the pressure gradient is a small value of order
O

(
1/Ma2

)
,Ma � 1 [11–13].

4. It is also known that the Hopf equation (5) can describe the process of the
nonlinear travelling wave collapse in compressible medium [6] that, as noted above,
has determined the limitation in selecting the formulation of the Clay Millennium
Prize problem by limitMa � 1, corresponding to the approximation of incompress-
ible medium [5]. In that regard, a special interest attracts just the vortex solution
of the Hopf 3D equation (5), for which a potential possibility for realization of the
enstrophy explosive growth and the vortex field higher moments is caused by not
only the vortex filament stretch effect, but the vortex field generation at the expense
of finiteness of the velocity field divergence in the compressible medium flow.

Actually, after applying the curl operator to the Hopf equation (5) the Euler vortex
3D equation (also called the Helmholtz vortex equation) follows from it and has the
form:

∂ωi

∂t
+ uk

∂ωi

∂xk
= ωk

∂ui
∂xk

+ ωi
∂uk
∂xk

(6)

where ω = rotu. Exactly the same equation is obtained when applying the curl oper-
ation to initial Euler equation (1) [if in (1) rotf = 0 and rot( 1

ρ
�p) = 0].
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Thus, the nonstationary vortex solution of Eq. (5) definitely determines the form
of the Eq. (6) solution for the vortex field of the compressible ideal medium flow.

However, all well-known solutions of the Hopf 3D equation (5) are obtained only
in Lagrange variables [7, 14]. Therefore they do not give the solution for the Euler
vortex 3D equation (6) for the vortex field just in Euler variables. At the same time,
for both the problems of astrophysics, considered in [7, 10] and hydrodynamics
of granular media [11–13] noted is the importance of just the vortex solutions for
the Hopf equation (5) [10–12]. In connection with the Clay Millennium Problem
consideration [5] it also attracts great interest to obtain the solution for just the
equation for the vortex field (6) with a subsequent evaluation of viscosity force effect
on a possibility of regularization of the solution singularity, appearing at the expense
of presence of the terms in the RHS of Eq. (6) (the first of which is responsible for
3D effect of vortex filaments stretch).

5. In 1991, in [15], the general exact vortex solution of Eq. (5) was obtained in
Euler variables, the vortex field of which strictly satisfies the nonlinear nonstationary
Eq. (6) for arbitrary smooth initial fields defined in an infinite space (see also [16],
where a more detailed derivation of this solution is given).

In the present paper, as in the preprint [16], on the basis of the solution [15]
an analytic solution of the Navier-Stokes equations (1) and (3) for a compressible
medium is obtained with a model accounting of the friction force effect. This is
necessary for the regularization of solution (5) and (6) that loses its smoothness in
a finite time t0 of the solution collapse realization. The value of the minimum time
for the solution t0 collapse depends on the initial conditions and can be determined
in explicit form for the obtained exact solution of Eqs. (5) and (6) (see formula (3.7)
in [16]).

In particular, it is shown that when choosing the coefficient of uniform friction,
when introducing member −μui into the RHS of the Hopf equation (5), which
satisfies the criterion:

μ >
1

t0
(7)

the solution already becomes regular and keeps smoothness for arbitrarily large
intervals of time of the solution evolution. In condition (7) the value of the friction
coefficient is equal to μ = v/l2min, where v is the coefficient of kinematic viscosity
of the medium, and lmin ∝ 1/kmax is the characteristic scale, associated, for example,
with the inevitable cutoff wavenumbers at some maximum number kmax, that is
typical for any numerical simulations on the basis of Eq. (1).

Indeed, in [17] the possibility of the appearance of an effective viscosity associated
with spectral cutoff at large wavenumbers is shown in numerical simulations based
on the 3D Euler equation for an ideal medium.

Thus, only when we take into account the regularity condition (7), it is possible to
avoid the occurrence of instabilities caused by the loss of smoothness of solutions in
finite time, that allows us to qualitatively and quantitatively expand the predictability
limits on the basis of the corresponding numerical calculations using the hydrody-
namic equations. Up to now, numerical calculations based on the Euler equation
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did not take into account the need to establish a correlation between the initial data
used, which determine the value of t0 in (7), and the value of the cutoff scale which
determines the value of μ in the left side of inequality (7).

It is also shown that when modeling viscous forces by introducing a random
Gaussian field �V (t) (with the substitution of ui(x, t) → ui(x, t) + Vi(t) in (5)), the
regularization of the singular modes in the evolution of the solutions of the vortex
3D Euler equation (6) is already achieved for any arbitrarily small effective viscosity
coefficient �V , determined in the form

〈Vi(t + τ)Vj(t)〉 = 2vδijδ(τ ) (8)

where the angular brackets denotes the statistical averaging, δ is a Dirac delta-
function, and δij is a unity matrix.

Thus, in this paperwe establish the possibility of the existence of a smooth solution
on an unlimited interval of time for the analytical approximate (only because of the
use of the model representation for the viscosity forces) solution of the Navier-
Stokes equation describing the flow of a compressible medium. For the pressure
field corresponding to this solution, a representation providing a sufficient condition
for the positive definiteness of the rate of change in integral entropy is used, which is,
as shown below, more correct than the traditional use of the equation of the medium
state. As a result, it is shown that a positive answer to the generalization of the
Clay Millennium Problem formulated in [5] is possible exactly for the case of a
compressible medium.

Besides, the expressions for the integral of the square of the vortex field (enstro-
phy) and for all higher moments of the vortex field are obtained for the exact solution
of the vortex 3DEuler equation (6). This corresponds to the establishment of an exact
solution of the well-known closure problem in the theory of turbulence, to the solu-
tion of which only approximate approaches have been developed by W. Heisenberg,
A. N. Kolmogorov et al. earlier [4].

2 Energy and Entropy Balance Equation

1. The system of the Euler equations for an ideal compressible medium (1), (2) and
the corresponding system of Navier-Stokes equations under condition (1)–(3) are not
closed, since, for example, in the three-dimensional case it consists of four equations,
but, at the same time, contains five unknown functions, namely three components of
the velocity field, the pressure field and the field of the medium density.

To close this system in the limit of small Mach number the approximation of
an incompressible medium is traditional used when the density is assumed to be a
constant value and zero divergence condition (4), which follows from this continuity
equation (2) in case of this assumption, takes place.

For the compressible medium usually some additional equation of state [1–3],
which connects the functions of density and pressure (here and below, let us consider
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an isothermal medium for simplicitys sake) is used to close the system of equations.
Besides, it is assumed that the medium is in a locally thermodynamic equilibrium
state, when the time of relaxation to this state is much smaller than the typical time
of the flow dynamics of the medium. This assumption, however, must certainly be
violated in case of velocities of themedium corresponding to not small and especially
large Mach numbers, and also in case of slow relaxation processes, for example, in
the presence of chemical reactions [3].

Therefore, instead of introducing any equation of state, it seems natural to obtain
an additional equation for the pressure field closing the system of Eqs. (1)–(3), as
proposed in [3] for the case of slow relaxation processes (see (81.4) and (81.6) in
[3]). In the present paper we propose to obtain an equation for the pressure field
from the consideration of the integral entropy balance equation and the condition of
positive definiteness of the integral entropy rate of growth.

At first, let us obtain from (1) to (3) the following equation of the integral kinetic
energy balance for the compressible medium E = 1

2

∫
dnxρu2 flow:

dE

dt
= −η

∫
dnx

(
∂ui
∂xk

)2

+
∫

dnx
[
p −

(
ζ + η

3

)
divu

]
divu (9)

This expression under condition (4) exactly coincides with the given in [3] (see
(16.3) in [3]) in case of incompressible medium and serves as its generalization for
the compressible medium flow.

From the condition of conservation of total energy [3] Eh = ∫
d3x

(
ρ
u2

2
+ ρε

)

and the balance equation (ε is a density of the internal energy; see derivations in
[16]):

∂

∂t

(
ρ
u2

2
+ ρε

)
=

− ∂

∂xk

[
uk

(
ρ

(
u2

2
+ 
0

)
+ p −

(
ζ + η

3

)
divu

)
− η

∂

∂xk

(
u2

2

)]

+T

(
∂

∂t
(ρs) − B

T

)
,

B = η

(
∂ui
∂xk

)2

−
[
p −

(
ζ + η

3

)
divu

]
divu

(10)

follows the balance equation for density (per unit mass) of entropys

∂

∂t
(ρs) = B

T
(11)

where T is the temperature.
From (11) we obtain the following equation of the integral entropy S = ∫

d3xρs
balance:
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d

dt
S = η

∫
d3x

1

T

(
∂ui
∂xk

)2

−
∫

d3x
1

T
divu

[
p −

(
ζ + η

3

)
divu

]
(12)

Comparing the form of Eqs. (12) and (9), for the considered isothermal case (when
T = T0 = const), we obtain the following exact relation:

T0
dS

dt
= −dE

dt
(13)

In [3] (see paragraph 79 in [3]) relation (13) is derived as a certain fundamental
relation which must be executed for any mechanical system tending to thermody-
namic equilibrium from a given nonequilibrium state.

However, in [3] this relation is not derived directly for the hydrodynamics of a
viscous compressible medium, as opposed to the present paper, where relations (12)
and (9) are derived independently and lead exactly to equality (13).

In [3] the relation of form (13) is used only for obtaining the value of velocity of

changing the integral kinetic energy of compressible medium
dE

dt
, on the basis of the

obtained in [3] equation of the integral entropy balance and corresponding expression

for derivative
dS

dt
. In this case, however, the expression for

dE

dt
(see (79.1) in [3])

differs significantly from (9).
This difference is caused by the fact that, as opposed to the derivation of relations

(10)–(12), the derivation of the total energy and entropy balance equations in [3]
is based on the application of the relations typical for the medium thermodynamic
equilibrium state to the nonequilibrium pressure field entering the Navier-Stokes
equation for a flow of compressible viscous medium (1.1).

Hence the conclusion follows that the use of thermodynamic equilibrium repre-
sentations for the pressure field entering the Navier-Stokes equation for a viscous
compressible medium, as it has been done in [3], is inadmissible because of the
resulting contradiction with the fundamental relation (13) [3], proved in the present
paper for also the nonequilibrium hydrodynamics of a viscous compressiblemedium.

Indeed, the obtained in [3] expression
dS

dt
does not satisfy Eq. (13) taking into

account formula (9), which is obtained only on the basis of Eqs. (1)–(3) without
involving any thermodynamic relations.

It means that the use of the equation of state, which is usually applied [1–3] for
closing the system (1)–(3), is also inadmissible in describing the flow of a viscous
compressible medium, and instead an additional equation for the pressure field must
be obtained by other way.

This additional equation is obtained from a sufficient condition for the positive
definiteness of the integral entropy (12) growth rate, which has the following form:

p =
(
ζ + η

3

)
divu (14)
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Equation14 is an additional equation to system (1)–(3) and makes it closed. In
[3] (see (81.4) and (81.6) in [3]), a similar expression for pressure in the form of a
linear function of the divergence of the velocity field was also obtained, albeit from
other considerations, with a coefficient of proportionality equal to the coefficient of
the second viscosity. Moreover, in [3] it is also proposed to consider this relation
between the pressure and the divergence of the velocity field instead of the medium
state equation. Let us note that the condition for the extremum for the functionals
(9) and (12) also yields a relation for determining the pressure as a linear function
of the divergence of the velocity field, which corresponds to the already necessary
extremum condition for functionals (9) and (12).

When the Eq. (14) is satisfied for the pressure field, the Navier-Stokes equations
(1) and (3) reduces to an equation of the three-dimensional Burgers equation type,
for which in the next section proposed is an approximate solution based on the
assumption of the possibility of modeling the viscosity force either due to a uniform
friction −μui, or by means of a random Gaussian velocity field �V (t) of the white
noise type.

3 Analytical Solution of the Navier-Stokes Equation

1. Let us find the solution of closed system (1)–(3) and (14) on the basis of the exact
solution of the Hopf equation (5) satisfying the vortex form of the Euler equation (6)
obtained in [15] and having the following form (see also [16]):

ui(�x, t) =
∫

dn�ξ �u0i(�ξ)δ
(�ξ − �x + t�u0(�ξ)

)
det Â (15)

where det Â is a determinant of matrix Â ≡ Anm = δnm + t
∂�uon
∂�ξm

, and �u0i(�x) is an

arbitrary initial smooth velocity field. This solution preserves smoothness only for
time t < t0, for which condition det Â > 0 is executed, where t0 is a minimal time,
in space coordinates, for which determinant det Â = 0 vanishes.

In particular, for one-dimensional case n = 1 we have det Â = 1 + t
du01
dξ1

and

solution (15) exactly coincides with the solution obtained in [18, 19]. At the

same time t0 = 1

max |du0/dx| > 0 and, for example, for initial distribution u0(x) =

a exp
(−x2/L2

)
, a > 0 we have t0 = L

a

√
e

2
, where x = xmax = L/

√
2 and the solu-

tion singularity can be realized only for x > 0.
2.When introducing into Eq. (5) the homogeneous friction with coefficientμ > 0

the solution for modified equation (5) is obtained from (15) if to substitute in (15) the
new time variable by changing t → τ t = (

1 − e−μt
)
/μ. Besides, it is obvious that if

condition (7) is satisfied, solution (15) remains smooth for any arbitrarily large times.
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Actually, under condition (7), even in the limit t → ∞, determinant det Â does not
vanish, remaining positive, since the condition τ(t) < t0 is preserved in this limit. At
the same time the noted modification of solution (15) satisfies vortex 3D equation
(6) when introducing member −μωi into the right side (6).

3. If we replace ui → ui + Vi(t) in (5), then solution (15) will still satisfy Eqs. (5)
and (6) if we replace x → x − B(t), B(t) = ∫ t

0 dt1V(t1) in 15.
If we assume that the velocity field �V (t) is a randomGaussian field of white noise

type satisfying the condition (8), then after statistical averaging of this modification
of expression 15we obtain for the average velocity an expression that remains smooth
for any time intervals and has the following form:

〈ui〉 =
∫

dnξu0i (ξ)

∣∣∣det Â∣∣∣ 1(
2
√

πvt
)n exp

[
− (x − ξ − tu0(ξ))2

4vt

]
(16)

Thus, a smooth for any times solution of the Navier-Stokes equation for a viscous
compressible medium in the form (16) is obtained. It takes place under condition
of taking into account the relations (14) in (1) and (3), and it is permissible to use

instead of term
η

ρ

∂2ui
∂x2i

in the RHS of (1) for modeling the viscosity force a random

Gaussian velocity field whose correlator has the form (8) like for white noise. In limit

v � η

min ρ
this substitution seems justified, where value v is determined in 8 and

corresponds to the level of white noise simulating the effect of viscosity forces. This
method of simulating the viscosity does not lead to the appearance of hyper viscosity
effects (when instead of the Laplacian in the Navier-Stokes equation introduced is a
viscosity force proportional to the Laplacian in a degree higher than one [20]).

4. Equation of continuity (2) has a structure which exactly coincides with equation
for vortex field (6) in two-dimensional case, when in the RHS of (6) the first term
is absent. For solution (15) the vortex field in two-dimensional case exactly satisfies
Eq. (6) and has the following form:

ω(�x, t) =
∫

d2�ξω0(�ξ)δ
(�ξ − �x + t �u0(�ξ)

)
(17)

whereω0(�x) is an initial distribution of the vortexfield onplane. In case of substitution
ω0(�x) → ρ0(�x) expression (17) gives the distribution for the density field (not only in
two-dimensional, but also in three-dimensional case, if the integration is considered in
three-dimensional space in 17 and all the vectors appearing in (17) are also considered
as three-dimensional).

The exact solution of the three-dimensional Euler vortex equation (6) correspond-
ing to the velocity field (15) has the following form:

ωi(x, t) =
∫

d3ξ

(
ω0j (ξ) + tω0j

∂u0i(ξ)

∂ξj

)
δ (ξ − x + tu0 (ξ)) (18)
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whereω0 = rotu0. The expression for enstrophy corresponding to exact solution (18)
has the following form:

Ω3 ≡
∫

d3xω2
i (x, t) =

∫
d3ζ

(
ω0i + tω0j

∂u0i
∂ζj

)2

/ det Â (19)

The expressions for any higher moments of the vortex field are obtained similarly.
For simplicitys sake, let us give them only for two-dimensional case, when they have
the following form:

Ω2(m) =
∫

d2xωm =
∫

d2ξ
ωm
0 (ξ)

detm−1 Â
;

Ω2(2m) =
∫

d2xω2m =
∫

d2ξ
ω2m
0 (ξ)

det2m−1 Â
; m = 1, 2, 3, . . .

(20)

Thus, the exact solution of the closure problem, the main problem in the theory of
turbulence, is obtained. In particular, from (20) it follows that in limit t → t0 we have
inequality Ω2

2(m) � Ω2(2m), which is typical for realization of the high intermittency
of turbulence [20].
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A Subgrid-Scale Model for Large-Eddy
Simulation of Liquid/Gas Interfaces
Based on One-Dimensional Turbulence

A. Movaghar, R. Chiodi, O. Desjardins, M. Oevermann and A. R. Kerstein

Abstract The interface/turbulence interaction between two fluids in a turbulent
environment has an important role in many technical processes, e.g. primary liq-
uid atomization in combustion devices. Primary atomization has a significant role in
spray formation and its characteristics. The resulting dynamics typically span 4–6
orders of magnitude in length scales, making detailed numerical simulations exceed-
ingly expensive. This motivates the need for modeling approaches based on spatial
filtering such as large-eddy simulation (LES). In this paper, a new approach based
on One-Dimensional turbulence (ODT) is presented to describe the subgrid interface
dynamics. ODT is a stochastic model simulating turbulent flow evolution along a
notional one-dimensional line of sight by applying instantaneous maps that represent
the effects of individual turbulent eddies on property fields. It provides affordable

A. Movaghar · M. Oevermann
Department of Mechanics, Chalmers University of Technology, Gothenburg, Sweden
e-mail: movaghar@chalmers.se

M. Oevermann
e-mail: michael.oevermann@chalmers.se

R. Chiodi · O. Desjardins (B)
Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, USA
e-mail: olivier.desjardins@cornell.edu

R. Chiodi
e-mail: rmc298@cornell.edu

A. R. Kerstein
Consultant, 72 Lomitas Road, Danville, CA, USA
e-mail: alan.kerstein@gmail.com

© Springer Nature Switzerland AG 2019
M. Gorokhovski and F. S. Godeferd (eds.), Turbulent Cascades II,
ERCOFTAC Series 26, https://doi.org/10.1007/978-3-030-12547-9_10

83

nmachico@uw.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12547-9_10&domain=pdf
mailto:movaghar@chalmers.se
mailto:michael.oevermann@chalmers.se
mailto:olivier.desjardins@cornell.edu
mailto:rmc298@cornell.edu
mailto:alan.kerstein@gmail.com
https://doi.org/10.1007/978-3-030-12547-9_10


84 A. Movaghar et al.

high resolution of interface creation and property gradients within each phase, which
are key for capturing the local behavior as well as overall trends. ODT has previ-
ously been shown to reproduce the main features of an experimentally determined
regime diagram for primary jet breakup. Here a new approach called VODT is pre-
sented which produces a size-conditioned as well as a total time rate of generation of
droplets for given flow conditions at an interface. At the LES level, the total droplet
generation from VODT is interpreted as a rate of mass conversion of LES-resolved
liquid into unresolved droplets. Preliminary results of applying VODT to a cell with
a planar-shear-layer are discussed at the end of the paper.

1 Introduction

The interaction between turbulence and interfaces of immiscible fluids is seen in
many engineering applications, e.g., primary atomization in combustion devices. The
atomization process plays a significant role in combustion performance, including
efficiency and emissions. Despite its importance, a detailed description of primary
atomization has remained elusive, due in part to insufficient understanding of how
interfaces modulate the surrounding flow field and undergo breakup. Many attempts
have been made to describe interfacial instabilities using linear stability analysis,
however, these only provide a very limited picture of interfacial dynamics, especially
in turbulence and complex geometries. Because of this, there remains a need to
understand and model the interactions between two immiscible fluids in a turbulent
environment.

Predictive simulations with high spatial and temporal resolution, i.e., Direct
Numerical Simulations (DNS), offer an alternative way to study liquid-gas inter-
face dynamics during primary breakup. But despite the significant benefits provided
by DNS, the large computational cost precludes their use in many flows of engineer-
ing interest. Therefore, there is a need for appropriate interface dynamics models
lower the computational cost of predicting the atomization process. While requiring
physical models for the small unresolved scales of the flow, Large-Eddy Simula-
tion (LES) has shown to be a useful tool that can provide much more flexibility on
resolution coarser than DNS by introducing a spatial filter into the governing equa-
tions and resolving only the scales larger than the filter width [3]. However, the LES
sub-filter models typically neglect the contribution of the surface tension term and
are based on a cascade process hypothesis that may be questionable in the context
of surface tension-driven atomization. This leads the need for a new LES subgrid
interface dynamics model.

A One-Dimensional Turbulence (ODT) model is considered here as an afford-
able model for simulating large Reynolds and Weber number flow configurations.
ODT is a stochastic model simulating turbulent flow evolution along a notional one-
dimensional line of sight by applying instantaneous maps that represent the effects
of individual turbulent eddies on the flow properties. ODT has recently been used by
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the authors [5, 6] to reproduce the main features of an experimentally determined
regime diagram for primary jet breakup.

ODT can be used both as a stand alone tool and as a sub-grid model for LES
or RANS. This creates a possibility to use ODT as a subgrid resolution model in
LES simulations to describe/model subgrid interface dynamics. This approach is
described in detail in the following sections.

2 Governing Equations

The flows investigated in this study are governed by the incompressible Navier-
Stokes equations for immiscible two-phase flow. The momentum equation is given
by

∂ρu

∂t
+ u · ∇ρu = −∇p + ∇ · [μ(∇u + ∇T u)] + σγ δ(x − xΓ )n, (1)

where u is the velocity, ρ the density, p the pressure, and μ is the dynamic viscosity.
The last term in Eq.1 is the singular surface tension force where γ denotes the
curvature of the interface, δ is the Dirac delta function, xΓ is the point on the interface
Γ closest to the point x and n is the interface normal vector.

To compute the phase interface, in addition, a transport equation for the liquid
volume fraction α in a computational cell is solved

∂α

∂t
+ ∇ · (uα) = 0. (2)

The interface unit vectorn and the interface curvatureγ canbe theoretically expressed
in terms of the liquid volume fraction as

n = ∇α

|∇α| , γ = ∇ · n. (3)

Following the continuum surface force approach [2] the surface tension force in Eq.1
is modelled as

σγ δ(x − xΓ )n = σγ∇α. (4)

LES formulation is based on applying spatial filtering to Eq.1. The filtered struc-
tures or large scales of the flow field are resolved directly, though the terms filtered
out need to be modeled. These terms are called sub grid scale (SGS) terms. If they
are small enough they behave isotropic and geometry independent. The SGS terms
can be closed by applying a model e.g. the Smagorinsky model. However, these
models usually neglect the effect of the sub-filter surface tension term and need to
be reconsidered.
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Fig. 1 Using ODT as a
sub-filter model for LES

In particular, LES does not see interface wrinkles below its resolution scale, so
the LES-resolved interface is much smoother and has less total surface area than the
true interface. Therefore it doesn’t fully account for the true total amount of stored
surface-tension area. As Fig. 1 illustrates, when the Weber number is high enough
there are some scales of interface wrinkling that are not resolved by the LES and
cause droplet generation. The following sections describe how ODT can be used to
model these unresolved scales.

3 One-Dimensional Turbulence (ODT)

The ODT model of Kerstein used in this study is briefly described in this section.
For a fully detailed description we refer to Kerstein et al. [4], Ashurst et al. [1], and
its extension to modelling primary breakup by Movaghar et al. [6].

ODT is a stochastic model simulating the evolution of turbulent flow along a
notional line of sight through a three-dimensional flow. Here ODT line is oriented
in the transverse y direction or normal to the interface. This setup provides high
lateral resolution of the relevant physics near the interface. On the other hand, one-
dimensional formulation provides the affordability needed to capture the full range
of scale separation at high Reynolds and Weber numbers.

In ODT formulation the fields on the 1-D line of sight are evolved by two different
mechanisms: molecular diffusion or time advancement and eddy events representing
advection.

Time advancement of the present ODT formulation is expressed schematically as

∂ui
∂t

− ν
∂2ui
∂y2

= Eddies, (5)
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where ν is the kinematic viscosity and the indices i = 1, 2, 3 denote the streamwise,
lateral and spanwise velocity components, respectively, corresponding to the spatial
coordinates (x, y, z). This equation formally represents the two processes that can
change the value of ui at a given location y and time t.

The eddy events representing advection may be interpreted as the model analog
of individual turbulent eddies. In ODT, an eddy of size l is represented by an instan-
taneous map acting on each property field within an interval [y0, y0 + l] on the line.
The mathematical formulation of the map should satisfy measure preservation and
continuity of mapped profiles. The new velocity field after the map event is given by,

ûi(y, t) = ui(f (y), t) (6)

where the inverse of the triplet map is specified by

f (y) = y0 +

⎧
⎪⎪⎨

⎪⎪⎩

3(y − y0), if y0 ≤ y ≤ y0 + (1/3)l,

2l − 3(y − y0), if y0 + (1/3)l ≤ y ≤ y0 + (2/3)l,

3(y − y0) − 2l, if y0 + (2/3)l ≤ y ≤ y0 + l,

y − y0, otherwise

(7)

If the eddy range [y0, y0 + l] contains no phase interfaces, then it is a single-phase
eddy whose implementation is the same as in previous ODT formulations. If instead
the eddy range contains an interface then it is amultiphase eddy requiring the domain-
integrated energy conservation. This requires that the change of kinetic energy after
the eddy event, ΔEkin is equal and opposite to any surface-tension potential-energy
change, ΔEσ caused by triplet mapping of phase interfaces.

For this purpose, the kernel functions ciK(y) and biJ (y) are added to the ui profile
created formerly by triplet mapping. On this basis Eq. 6 is rewritten as

ui(y) → ui(f (y)) + biJ (y) + ciK(y) (8)

and
ρ(y) → ρ(f (y)), (9)

where f (y) is the inverse of the triplet map, K = y − f (y), J = |K |, and bi and ci
are assigned based on physical modeling. The requirement

∫
K(y)dy = 0 enforces

momentum conservation.
ODT samples eddy events from an instantaneous distribution that evolves with

the flow. These events are individually parameterized by position y0 and size l.
The number of events during a time increment dt for eddies located [y0, y0 + dy]

in the size range [l, l + dl] is denoted λ(y0, l; t)dy0dldt, where the event rate density
λ is defined as

λ(y0, l; t) = C/(l2τ(y0, l; t)). (10)
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with dimensions of events/(location × size × time). The adjustable parameter C
scales the overall eddy frequency and τ is the eddy time scale. To find this eddy time
scale, the square of the velocity implied by l and τ is modeled as

(l/τ)2 ∼ Efinal − Z(ν2/l2). (11)

On the right hand side, the first term is the final value of the available kinetic energy,
denoted Ekin in the absence of surface-tension effects, Efinal = Ekin − ΔEσ and the
second term involving the parameter Z suppresses unphysically small eddies, such
as those smaller than the Kolmogorov scale. Following [6], ΔEσ is formulated as

ΔEσ = − 4σ

ρeddyl
. (12)

BecauseΔEσ and the last term in Eq.11 are both negative, the right-hand side of that
equation can be negative but the left-hand side must be positive. This is an indication
that the selected eddy is energetically forbidden, corresponding to λ = 0 for such
eddies.

4 Virtual ODT for LES/VOF Closure

As described, ODT can be used as a stand alone computation tool. This creates a
possibility to use ODT to compute a subgrid breakup table. As shown in Fig. 1 it is
assumed that the ODT closure of LES/VOF can be formulated on an ODT domain
locally normal to a given interface element in every interface LES cell. For generality
the interface is allowed here to be at any location y = I on the ODT domain where I
is the interface location. ODT produces a size-conditioned as well as a total time rate
of generation of droplets at a given VOF interface. At the LES level, the total droplet
generation is interpreted as a rate Ṁ of mass conversion of LES-resolved liquid into
unresolved droplets that are then deemed to reside in the gas phase. Accordingly,
for an interface element within a LES cell, droplet generation causes recession of
the interface at a speed Ṁ /(Aρl) inserted as a source term into Eq.2 and updates
the LES governing equations. A reduced formulation of ODT, called virtual ODT
(VODT), that is suitable for economical closure in this manner is introduced next.

As discussed earlier, ODT contains two main mechanisms, viscous time advance-
ment and eddy events. For the tabulation purposes, we suppose there is no viscous
advancement but only eddy sampling.Nevertheless the accepted eddies are not imple-
mented and just their statistics are collected. Because the VODT state is not time
advanced, the only effect of eddy events is droplet generation and the implied reces-
sion of the liquid surface. Therefore, eddies entirely contained in one phase have no
effect, leaving only multiphase (hence droplet-forming) eddies to be considered. By
not implementing the eddies, the eddy rate distribution is stationary. Thus the initial
rate distribution is used to evaluate the rate of production of a droplet of any size.
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The effect of surface tension (and hence theWe dependence), which does not appear
in Eq.5, is brought into the formulation through the physical modeling that specifies
the eddy rate distribution.

A VODT droplet-forming eddy ranges from some location y0 < I to a location
y0 + l > I , which implies l > I − y0 where. Based on the triplet-map definition,
the eddy transfers 2/3 of the liquid interval [y0, I ] to the droplet, while the rest
remains in liquid form as defined in VODT. The implied surface recession is then
Δy = 2

3 (I − y0), corresponding to the LES-level volume conversion ΔV = AsΔy
where As is the surface area of VOF interface element.

Δy is the only available length scale from which the droplet diameter D can be
inferred, so D = BΔy is assumed, where B is a tunable parameter. Then the ODT
droplet is deemed to represent N physical droplets, where N = ΔV/

(
π
6D

3
)
is based

on assuming spherical droplets. Using ΔV = AsD/B, this gives N = 6As/(πBD2).
N need not to be an integer because it is meaningful only in terms of droplet statistics.

At the LES scale, it is assumed that the droplet spectrum in the gas phase is
represented by a histogram based on either linear or geometric sized bins. Uniform
linear bins of size dD are assumed here for illustration, although the reasoning is
more general. To complete the formulation of VODT outputs, the total generation
rate G(D) of droplets in the size range [D,D + dD] is evaluated. To do this, the
droplets number probability distribution, g(D) = dG

dD per unit diameter increment is
first evaluated. Based on the the results that follow, g(D) can be integrated over dD
intervals to obtain the binned generation rates G(D).

The fixed VODT flow state is piecewise linear in u, where the slope discontinuity
is determined by steady state momentum-flux balance at the phase interface, which
is at the domain midpoint. The domain size, velocity difference across the domain,
surface tension, and the phase viscosities and densities define a particular case.

The ODT eddy rate distribution λ(y0, l), which has no t dependence, has been
evaluated exactly in closed from as a function of y0 and l for a specified VODT
state. To evaluate g(D), this distribution is integrated over its arguments subject to
the constraint D = BΔy = 2

3B(I − y0), re-expressed as y0 = I − 3
2
D
B . Formally this

involves insertion of δ(y0 − I + 3
2
D
B ) into the integral over dy0, and thus

g(D) = N (D)

∫ h−I+ 3
2
D
B

3
2
D
B

dl
∫

dy0 λ(y0, l)δ(y0 − I + 3

2

D

B
)

= 6As

πBD2

∫ h−I+ 3
2
D
B

3
2
D
B

dl λ(I − 3

2

D

B
, l).

The moments of the drop number probability distribution are then defined by

Gi(D) =
∫ Dmax

Dmin

g(D)DidD.
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G0 is the total number of droplets generated per unit time, G1 is the total sum of
diameter of the droplets per unit time, πG2 is the total surface area of the droplets
per unit time and πG3/6 is the total volume of the droplets per unit time.

5 Results and Conclusion

As discussed, for this simple applicationVODT reduces to an algebraic system that is
economical enough for on-the-fly runtime implementation.ThismakesVODTacom-
putationally affordable tool to study different atomization processes. Figure2 shows
a normalized droplet atomization rate of interfacial breakup in different Reynolds and
Weber numbers. The droplet generation rate, G0, shows the total number of drops in
time and is normalized by local shear Δu/h. As seen in the Fig. 2, for relatively low
injection velocities the atomization rate is primarily governed by the liquid surface
tension. In Fig. 2 the density and viscosity ratios are both equal to 1. By varying
the liquid/gas density ratio and keeping the viscosity ratio constant, Fig. 3 is gener-
ated, showing the atomization rate. As shown, VODT can generate the entire droplet
dependent moments of the generation rate, Gi(D) e.g. total volume of the drops per
unit time for any flow condition.

As discussed earlier the main scope of this paper is to propose VODT as a subgrid
model for LES/VOF simulations. Like ODT, VODT has three adjustable parameters
C, Z, B that need to be calibrated for this planar shear layer application.

A possible basis for this that does not require external input is to run LES/VOF/
VODTat different LES resolutions for the same case. If VODT is a good closure, then
these results should all predict the same flow development and droplet statistics. As
resolution improves, some of the droplet generation seen at the VODT level at coarse
LES resolution should becomeLES-resolved,withVODTstill giving the same results
as at lower LES resolution for droplets still not resolved. This approach is currently
under study and outcomes will be a part of discussions in future publications.

Fig. 2 Normalized droplet
generation rate [-]
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l/ g = 100

l/ g = 50

l/ g = 1

Fig. 3 Normalized droplet generation rate at ρl/ρg = 1, 10, 100 with μl/μg = 100
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Energy Transfer Between Scales
and Position in a Turbulent Recirculation
Bubble

J.-P. Mollicone, F. Battista, P. Gualtieri and C. M. Casciola

Abstract The energy transfer among the different scales of the turbulent structures
is analysed by means of the generalised Kolmogorov equation (GKE). The equation
is applied to a turbulent channel with the addition of a bump which creates a strong
shear layer and separation bubble. The GKE can provide an intricate description of
the energy scale-by-scale budget in both physical and separation space, through the
identification of the regions of production and dissipation of energy. Conventional
one-point statistics do not allow any analysis across scales. The GKE statistics show
that the turbulent structures follow two paths: they are trapped by the recirculation
bubble, deformed and dissipated or they are convected downstream by the shear layer
and elongated in the streamwise direction. These paths correspond to the direct and
inverse energy cascades, respectively. The main feature of this complex flow is that
the energy dynamics depends, in a non-trivial way, on both the physical position
and separation scales, and does not follow the classical energy path occurring in
homogeneous isotropic turbulence.
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1 Introduction

The generalisation of the classical Kolmogorov equation [8] has been proposed in
various anisotropic and inhomogeneous cases, for example, in shear dominated flows
[2, 3] and channel flow [4, 5, 10].

Direct numerical simulation (DNS) and experimental data are analysed to address
the energy path in the physical and separation spaces. Concerning the numerical
simulations, the generalised Kolmogorov equation (GKE) is used to characterise
different scales in the in homogeneous shear flow [3], for example to discern between
large scales which are dominated by shear or small scales of dissipative nature. In
wall-bounded flows, experimental data [5] explores the large scale dynamics effect
on the dissipative small scales at different distances from the walls. For the same
geometry, data obtainedbyDNShavebeen analysed to address the energyproduction,
transfer and dissipation dependence on the wall distance [4, 10]. Turbulence models
and control systems can make use of these knowledges to accurately treat turbulent
flows, even in inhomogeneous anisotropic conditions [15].

In the present work, the GKE is used to investigate the energy dynamics in a more
complex geometry that involves turbulent channel flow in which one of the walls is
decorated with a bump. The bump generates a strong shear layer and recirculation
bubble, two features whose inhomogeneity and anisotropy make the GKE analysis
challenging but yet interesting. The shear layer is the main source of energy, which
is transferred both in space (in the recirculation bubble or downstream in the bulk of
the channel) and among the scales, due to themodification of the turbulent structures.
This complex dynamics is accessible only through the GKE.

2 Computational Approach

The Navier-Stokes system of equations in incompressible form,

∂u
∂t

+ u · ∇u = −∇ p + 1

Re
∇2u + f ∇ · u = 0, (1)

has been solved by DNS in a channel geometry with a bump at the lower wall. In
Eq. (1), u is the velocity, p is the hydrodynamic pressure and f is the body force
forcing the flow across the channel. The Reynolds number is Re = h0Ub/ν = 2500,
where h0 is half the nominal channel height, Ub is the bulk velocity and ν is the
kinematic viscosity. h0, h0/Ub and ρU 2

b are the characteristic reference length, time
and pressure scales, respectively.

Approximately four hundred time-uncorrelated velocity and pressure fields were
collected, at steady state, for statistical analysis. The domain has size [Lx × Ly ×
Lz] = [26 × 2 × 2π ] and is discretised with 120 million grid points. Nek5000 [6],
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a solver based on the spectral element method (SEM), see [14], is used to solve
the system (1). For additional details on the numerical setup and the flow features
see [11, 12].

3 The Generalised Kolmogorov Equation (GKE)

A generalised form of the Kolmogorov equation, meaning it can be applied to inho-
mogeneous conditions, can be derived using different methods [7, 9, 17]. The Kol-
mogorov equation, and consequently its generalised form, reveals the turbulence
dynamics not only at physical points in the fluid domain but also the dynamics at
each scale [1, 16]. In a form that groups together similar terms in relation to their
physical interpretation, the GKE reads

∇ · Φ6 = Π6 − 4 ε∗ , (2)

whereΦ6 = (ΦX , Φr ),Π6 = Πr + ΠX and ε is the turbulent kinetic energy dissipa-
tion.ΦX andΦr are the energy fluxes in the physical space, see Eq. (4), and separation
space, see Eq. (4), respectively. Π6 = Πr + ΠX is the sum of energy production in
the separation and physical spaces, respectively, see Eq. (5).

Φr = 〈|δu|2δu〉 + 〈|δu|2δU〉 − 2ν∇r 〈|δu|2〉 (3)

ΦX = 〈|δu|2u∗〉 + 〈|δu|2U∗〉 − ν

2
∇X 〈|δu|2〉 + 2

ρ
〈δpδu〉 . (4)

Πr = 2〈δu ⊗ δu〉 : ∇rδU ΠX = 2〈u∗ ⊗ δu〉 : ∇XδU , (5)

Avariable having an apostrophe, such asx′,means it is taken at a position separated
by the vector r = x′ − xwith respect to x.Xc = (x + x′)/2 defines the coordinate of
themid-point between points x′ and x. Fluctuations are in lower-case whilst averaged
quantities are in upper-case. The mid-point average is denoted by an asterisk, e.g.
u∗ = (u′ + u)/2, whilst an increment is denoted by δ, e.g. δU = U′ − U.

The GKE for our domain reduces to a five-dimensional equation since the span-
wise direction is a homogeneous one. The independent coordinates are the two phys-
ical Xc and Yc and the three separation rx , ry and rz coordinates. One-point statistics
only give information on the energy behaviour in the physical space, for example
using the equation for the mean flow kinetic energy and the equation for the turbu-
lent kinetic energy. On the other hand, Eq. (2) can determine the energy exchange
between regions of production and dissipation also in separation space.
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4 Results

Themain features of interest in the flow domain are the shear layer and the recirculat-
ing regionwhich formbehind the bump. Figure1 shows the instantaneous streamwise
velocity, at Re = 2500, in an (x, y) plane. The bump restricts the flow and causes
it to accelerate and separate behind the bump, with a complete re-attachment of the
flow downstream of the bump. A description of the flow, including extensive one-
point statistics, are discussed by [12]. The present work is dedicated to applying the
GKE, see Eq. (2), to investigate the energy fluxes through the space of positions
and separations, with particular attention to the shear layer and recirculating region.
The phase space that can be scrutinised involves the five dimensions (Xc,Yc, rx ,
ry, rz). These correspond to two centre point positions (Xc,Yc) and the three sep-
arations (rx , ry, rz). In the following, with reference to Fig. 2, the results are in
two-dimensional sub-spaces. One sub-space is (Yc, rx ) with fixed rz = ry = 0 and
the other is

(
Yc, ry

)
with rx = rz = 0. The remaining variable is fixed at the stream-

wise station Xc = 5.8, which intersects both the shear layer and the recirculating
region after the bump.

Fig. 1 Snapshot of the instantaneous x-direction (streamwise) velocity in an (x, y) plane at Re =
2500

Fig. 2 Net productionΠ6 − 4ε∗ as contour plots with in-plane flux componentsΦ6. Panel (a): ΦY
and Φrx in the plane (Y, rx ) |ry=rz=0. Panel (b): ΦY and Φry in the plane

(
Y, ry

) |rx=rz=0
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Figure2a shows the net productionΠ6 − 4ε∗ in the plane (Y, rx ) |ry=rz=0. The flux
Φ6 is projected onto the plane and therefore the corresponding components shown
as vectors are ΦY and Φrx . The net production has a peak at Y = 0.5 and rx � 0.5.
The Y -coordinate corresponds to the distance of the shear layer from the bottom
wall. At the top wall, the effect of the bump is minimal and is qualitatively similar
to a planar channel flow [4]. The vectors, depicting the flux, transport the squared
velocity difference, |δu|2 in both space and across scales. In panel (a), this transport
corresponds to displacement in the Y -direction (wall normal direction in space) and
to different rx scales, respectively. The flux is directed towards the small scales,
Φrx < 0), corresponding to a direct cascade, at the top wall. At the top of the shear
layer the trend is similar but less intense. Inside the recirculating region, that is under
the shear layer, the vectors point towards the large scales, Φrx > 0. The physical
explanation to this process is attributed to the formation and progressive elongation
in the streamwise direction of turbulent structures which arise from the shear layer.

Figure2b shows the net production Π6 − 4ε∗ in the plane
(
Y, ry

) |rx=rz=0. The
vectors now represent the fluxes ΦY and Φry . The upper and lower green regions
of the coloured contour plot represent strong net production when one point in the
domain is correlated with the shear layer. The upper region is created when the point
in the shear layer is correlated with the bulk flow whilst the lower region arises from
the correlation of a point in the shear layer with another one below it, that is in
the recirculating region. A larger range of scales is present in the upper region with
respect to the lower one since the latter is physically limited by the lower part of
the domain. In these regions, the net production is a source from which the fluxes
in the upper region move towards the wall and the fluxes from both regions move
towards small wall-normal separation. This shows that |δu|2 (the squared velocity
difference), originating from a larger scale, is transported by the fluxes to smaller ry
scales and into a dissipative region.

Figure3 shows the fluxes in three coordinates planes in the compound space of
positions and separations. The plots refer to X0 = 5.8 and correspond to the planes(
Y, ry

) |rz=0,rx=0, (Y, rx ) |ry=0,rz=0, and
(
rx , ry

) |Y=0.5,rz=0, respectively. The compo-
nents of fluxes, represented as vectors, are

(
ΦY , Φry

)
,
(
ΦY , Φrx

)
, and

(
Φrx , Φry

)
,

respectively. The contour plots indicate the net energy source, Π6 − 4ε∗. The figure
links the two-dimensional sub-manifolds previously observed and provides a gen-
eral idea of the structure function dynamics in these parts of the five-dimensional
hyperspace. The effective source Π6 − 4ε∗ is particularly strong when a point in the
shear layer is correlated with a point above or below it, explaining the strong oblique
structures appearing in the contour plot in the front plane of Fig. 3 (corresponding
to Fig. 2b). Fluxes are directed from these sources towards smaller ry , which in turn
are directed to larger scales in the (Y, rx ) plane.
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Fig. 3 Fluxes in three coordinates planes in the compound space of positions and separations.
The plots refer to X0 = 5.8 and correspond to the planes

(
Y, ry

) |rz=0,rx=0, (Y, rx ) |ry=0,rz=0, and(
rx , ry

) |Y=0.5,rz=0, respectively. On these planes the components of fluxes, represented as vectors
in the plane, are

(
ΦY , Φry

)
,
(
ΦY , Φrx

)
, and

(
Φrx , Φry

)
, respectively. The contour plots indicate the

net energy source, Π6 − 4ε∗

5 Conclusions

The generalised Kolmogorov equation (GKE) is applied to a turbulent channel flow
that is modified with a bump at one of the walls. This introduces interesting features
such as a strong shear layer and a large recirculating region, which are points of
interest since they involve complex energy behaviours. The GKE, generally used in
simpler flow domains, has been applied to study the present anisotropic and inhomo-
geneous domain. Themain feature of theGKE is that it accounts for energy dynamics
in both the physical and separation spaces and can be applied to more complex flows,
extending the original scale-by-scale analysis used by Kolmogorov in homogeneous
and isotropic turbulence.

The GKE, projected onto adequate sub-spaces to visualise results, shows intense
peaks of net production that are located at points that correlate with the shear layer.
This is the main source of turbulent fluctuations in the domain and is responsible
for the creation of turbulent structures just after the bump that are then transported
downstream and elongated in the streamwise direction. Fluxes from the shear layer
are either directed towards bulk of the flowor are captured by the recirculating region.
The GKE confirms that complex energy mechanisms are present in all the possible
five dimensions [13] and that they arise due to the bump and walls.
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Nonlinear Transverse Cascade—A Key
Factor of Sustenance of Subcritical
Turbulence in Shear Flows

D. Gogichaishvili, G. Mamatsashvili, G. Chagelishvili and W. Horton

Abstract We analyze the essence of nonlinear processes that underlie turbulence
sustenance in spectrally stable shear flows. In these flows, the strong anisotropy
of velocity shear-induced nonmodal growth phenomenon in spectral (k-)space, in
turn, entails the anisotropy of nonlinear processes in this space. Consequently,
the main novel nonlinear process is transverse, or angular redistribution of modes
in Fourier space referred to as the nonlinear transverse cascade rather than a mere
direct/inverse cascade. It is demonstrated that nonlinear coherent as well as turbulent
states are sustained via a subtle interplay of the linear nonmodal growth (that has tran-
sient nature) and the nonlinear transverse cascade. This course of events exemplifies
the well-known bypass scenario of subcritical turbulence in spectrally stable shear
flows. In this proceedings paper, we present selected results of our simulations of
hydrodynamic andMHD 2D plane shear flows to demonstrate the transverse cascade
in action.
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1 Introduction

Delay in the understanding of turbulence phenomenon in smooth shear flowswas due
to a certain inadequacy of the canonical/modal/spectral approach—spectral decom-
position of perturbations in time and subsequent analysis of eigenfunctions—to study
their linear stability, which ultimately led to the change of paradigm to, so-called,
nonmodal approach [1]. Although, retrospectively a thinking inertia pretty long was
clutching on the modal approach, now the phrases: shear flow nonnormality, non-
modal approach, transient growth, bypass concept of turbulence, etc. are already in
common parlance of the fluid dynamical and astrophysical disk communities.

In the beginning of the 1990s, the non-normality of shear flows was revealed and
extensively studied by the hydrodynamic community [1–3]. Drawbacks of the tradi-
tional modal analysis when applied to shear flows have been disclosed. As a result,
from the 1990s the mathematical approach was shifted from modal to the nonmodal
approach and a breakthrough in the understanding and precise description of linear
shear-induced transient phenomena followed. It was shown that in spectrally stable
hydrodynamic shear flows perturbations of specific spatial structure (orientation)
exhibit linear transient growth and hence are short-lived in the linear limit [2, 4–6].
However, under certain favorable circumstances, finite amplitude perturbations can
be maintained over much longer times by the shear flow. Specifically, the imperfect
linear transient growth,which is the only energy source for perturbations (turbulence)
in these flows, must be bolstered up by nonlinear positive feedback, i.e., the nonlinear
processes play a vital role in this case: they close the feedback loop, thereby ensuring
the sustenance. This interplay between linear transient growth and nonlinear posi-
tive feedback forms the basis for the bypass concept, which was elaborated by the
hydrodynamic community to describe the transition to and sustenance of turbulence
in spectrally stable shear flows (see, e.g., [7–9]). However, the bypass concept is
commonly illustrated on toy models [3] or on phenomenological analysis in physi-
cal space [10]. For this reason, it is appropriate to take another route and consider the
flow with simplest/constant shear profile and investigate in detail the linear transient
and nonlinear processes as well as their interplay in spectral (k-)space. Firstly, a con-
stant shear flow is a quite realistic/useful model and secondly, canonical nonlinear
processes, such as direct/inverse cascade, are usually studied in spectral space. There-
fore, it is natural to ask how flow shear enriches the canonical nonlinear processes,
whether modifies the direct and inverse cascades, or leads to the appearance of a new
type of cascade process. The following thoughts can contribute to the clarification of
these questions. The shear-induced linear transient growth of a perturbation mode is
mainly determined by the orientation of its wavevector (e.g., [5, 11–13]): the spatial
Fourier modes that have a wavevector orientated in a certain direction with respect
to the flow draw energy from it and amplify, whereas modes with other orientation
of the wavevector lose energy to the flow and decay. This anisotropy of the linear
energy-exchange processes with respect to wavevector orientation (angle), in turn,
causes anisotropy of nonlinear processes in k-space. In particular, as revealed in our
studies of hydrodynamic (HD) and magnetohydrodynamic (MHD) smooth shear
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flows [14–17], the primary nonlinear process in the presence of flow shear is in fact
the so-called, nonlinear transverse cascade—transverse, or angular redistribution of
Fourier modes in k-space—instead of a direct or inverse one. In these papers, we
examined in detail key features of the transverse cascade in 2D and 3D constant shear
flows by combining direct numerical simulations and, based on that, a detailed anal-
ysis of the dynamics in spectral space. The nonlinear transverse cascade represents
an alternative to the canonical direct and inverse cascades when large-scale shear of
flow velocity is imposed. Nevertheless, apparently, the thinking inertia still persists
regarding this new type of shear-induced nonlinear cascade. In this connection, in
this proceedings paper, following our studies [14, 15], we intend to show as vividly
as possible the action of the nonlinear transverse cascade by analyzing the interplay
of the latter with linear transient growth in k-space in the 2D case. In Sect. 2, we
describe the dynamics of coherent cyclonic and anticyclonic vortices in 2DHD plane
constant shear flow. The coherence of perturbations leads to a regular, easily recog-
nizable nonlinear transverse/angular redistribution of modes in (kx , ky)-plane, i.e.,
the transverse cascade. At the same time, we present the corresponding mathemati-
cal scheme, clarifying the interplay of the linear transient and nonlinear transverse
cascade processes. In Sect. 3, we analyze sustained MHD turbulence in spectrally
stable 2D plane constant shear flows with an uniform magnetic field parallel to the
flow. The interplay ensuring the sustenance of subcritical turbulence in realistic 3D
HD and MHD shear flows are presented in [16, 17].

2 Coherent Vortices in 2D HD Plane Shear
Flows—Nonlinear Transverse Cascade

The nonlinear transverse cascade and its interplay with the linear transient growth
can be clearly demonstrated in (kx , ky)-plane by analyzing the dynamics of coherent
cyclonic and anticyclonic vortices in 2D homogeneous constant shear flow,U0(x) =
(0, Ax),with the shear parameter A > 0 [14]. The nonlinear dynamical equation for
the stream function of perturbations, ψ , is

[
∂

∂t
+U0(x)

∂

∂y

]
Δψ + J (ψ,Δψ) − νΔ2ψ = 0, (1)

where the spatial operators J (.,.) andΔ are, respectively, 2D Jacobian and Laplacian
and ν is the viscosity. The velocity and energy density of perturbations are expressed
via ψ and density ρ, respectively, as

vx = −∂ψ

∂y
; vy = ∂ψ

∂x
, e(x, y, t) = 1

2
ρ

[(
∂ψ

∂y

)2

+
(

∂ψ

∂x

)2
]

.
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Initially we impose coherent vortices with Gaussian shape of stream function in the
(x, y)-plane:

ψ(x, y, t)|t=0 = nb exp

(
− x2 + y2

l2

)
. (2)

where n = −1 and n = 1 corresponds, respectively, to cyclonic and anticyclonic
vortices with amplitude b > 0. We introduce non-dimensional variables,

τ ≡ At, (X,Y ) ≡ (x, y)

l
, B ≡ b

Al2
, Ψ ≡ ψ

Al2
, E ≡ 2e

ρA2l2
, Re ≡ Al2

ν
,

and perform spatial Fourier transform with respect to the coordinates X and Y ,

Ψ =
∫

dkxdkyΨk exp(ikx X + ikyY ). (3)

Substituting Eq. (3) into Eqs. (1) and (2), we obtain evolution equation for Ψk:

k2
∂Ψk

∂τ
− ky

∂(k2Ψk)

∂kx
+ k4

Re
Ψk =

∑
k=k′+k′′

(k ′
xk

′′
y − k ′′

x k
′
y)k

′2Ψk′Ψk′′ , (4)

with the corresponding initial condition in Fourier plane

Ψk|τ=0 = nB exp

(
−k2x + k2y

4π2

)
,

where k2 ≡ k2x + k2y . The nonlinear term on the right hand side (rhs) of this equation
describes three-wave interactions. Equation (4) forms the basis of the numerical study
to explore quantitatively the dynamics of the stream function, spectral energy density,
and total energy of cyclonic and anticyclonic vortices. However, to investigate the
physics of the phenomena, one has to analyze the dynamical equation for the spectral
kinetic energy density, Ek = k2|Ψk|2, which follows from Eq. (4),

∂Ek

∂τ
= ky

∂Ek

∂kx
+ 2kxky

k2
Ek − k2

Re
Ek + Nk, (5)

where Nk is the nonlinear term:

Nk =
∑

k=k′+k′′
(k ′

xk
′′
y − k ′′

x k
′
y)k

′2(Ψ ∗
k Ψk′Ψk′′ + ΨkΨ

∗
k′Ψ

∗
k′′).

The terms on the rhs of Eq. (5) represent four–three linear and one nonlinear—
basic phenomena: (i) the linear flux of the spectral kinetic energy parallel to the kx -
axis; (ii) the energy exchange between the perturbation modes and the background
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Fig. 1 Normalized total
energy versus time for finite
amplitude (B = 3) coherent
anticyclonic (red) and
cyclonic (blue) vortex
perturbations at Re = 1000

flow; (iii) the viscous dissipation; (iv) the nonlinear processes that redistribute the
energy of perturbationmodes in k-plane via triad interactions, but do not change their
total energy. The interplay of these basic phenomena defines ∂Ek/∂τ . By solving
numerically Eq. (4), or equivalently Eq. (5), one can get full information on all the
physical quantities and underlying dynamics.

The evolution of the perturbation energy normalized to the initial value E/E0

for the coherent anticyclonic and cyclonic perturbations are presented in Fig. 1. The
energy of the anticyclonic vortex increases monotonically, while the energy of the
cyclonic one initially increases and then oscillates weakly around a constant value.
Since the linear dynamics of the perturbations are identical, the difference in the
energy evolutions is due to the effect of nonlinearity in (kx , ky)-plane characterized
by Nk. For the anticyclonic vortex, this term is presented (at B = 3 and Re = 1000)
in the upper two plots of Fig. 2 at τ = 0.5 and 2. The nonlinearity redistributes the per-
turbation energy from the blue areas (where Nk < 0) to the red ones (where Nk > 0).
The green refers to areas where Nk � 0. As it is seen, as a result of the nonlinear
interactions, energy is being transferred from quadrants I I and I V (where Nk is pre-
dominantly negative), to quadrants I and I I I (where Nk is predominantly positive).
This nonlinear angular redistribution, or transverse cascade, repopulates the growing
modes, which further extract shear flow energy and are amplified in quadrants I and
I I I of k-plane, where kxky > 0, due to the second rhs term in Eq. (5). This nonlinear
feedback mechanism results in the growth of the total energy (red curve in Fig. 1)
and hence sustenance of the coherent anticyclonic vortical perturbations. In addition,
it is seen that the domain of significant nonlinear activity shrinks in time towards
lower wavenumbers, i.e., an inverse cascade is also at work. However, the dominant
nonlinear process is the transverse cascade.

The lower two plots of Fig. 2 show that the transverse cascade is also strongly pro-
nounced for coherent cyclonic vortex. However, in this case the nonlinear dynamics
is more complicated. The positive and negative feedbacks alternate in time. Indeed,
we see that nonlinear interactions redistribute energymainly overwavenumber angle,
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(a) (b)

Fig. 2 The spectrum of the nonlinear term Nk(kx , ky, τ ) for the coherent anticyclonic (upper two
plots) and cyclonic (lower two plots) vortices with Re = 1000 and B = 3 at times τ = 0.5 and 2,
respectively. Nonlinearity redistributes mode energy from the blue areas (where Nk < 0) to the red
ones (where Nk > 0)—the nonlinear transverse cascade is strongly pronounced. (These figures are
reproduced from Ref. [14])

from quadrants I I and I V to quadrants I and I I I at τ = 0.5 and vice versa at τ = 2.
Hence, the transverse cascade repopulates growing modes (for which kxky > 0) at
τ = 0.5, contributing to an increase in the cyclonic vortex total energy. By contrast,
the repopulation of decaying modes by the transverse cascade leads to a decrease
in the total energy at τ = 2. This results in the oscillations in the total energy (blue
curve in Fig. 1). So, in the case of the cyclonic vortex, the transverse cascade does
not ensure a continuous positive feedback.
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3 Sustaining Turbulence in Spectrally Stable 2D MHD
Plane Shear Flows

Now we move to the MHD case and, following Ref. [15], demonstrate manifes-
tations of the nonlinear transverse cascade for sustained 2D MHD turbulence in
incompressible constant shear flow, U0 = (0,−Ax), threaded by an uniform back-
ground magnetic field parallel to the flow, B0 = (0, B0y) (with A, B0y > 0). This
flow is spectrally stable and hence the turbulence is subcritical by nature, being
supported energetically only by shear flow non-normality induced transient (non-
modal) growth. As for the essence of the nonlinear processes, it is again a transverse
redistribution of kinetic and magnetic spectral energies. We present the results of
direct numerical simulations in (kx , ky)-plane, demonstrating the dominance of the
transverse cascade in 2D MHD plane shear flows too.

We consider basic equations of non-ideal incompressible MHD flow and use nor-
malized variables by taking the shear time, A−1, as the unit of time; the Alfvén speed,
uA = B0y/(4πρ)1/2, as the unit of velocity; 
 ≡ uA A−1 as the unit of length; and B0y ,
as the unit of the magnetic field perturbations (see details in [15]). Figure3 shows the
time-development of the domain-averaged perturbed kinetic, 〈EK 〉, and magnetic,
〈EM 〉, energies as well as the Reynolds, 〈uxuy〉, andMaxwell−〈bxby〉 stresses. After
an initial growth phase, the energies and stresses settle down to a quasi-steady state
of sustained turbulence. In this state, the kinetic and magnetic energies are compa-
rable. The Maxwell stress is much larger than the Reynolds stress, indicating that
the turbulent transport and energy extraction from the mean flow are ensured by
the magnetic field perturbations—the Maxwell stress counteracts dissipative pro-
cesses and plays a decisive role in the maintenance of the turbulence. Therefore,
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Fig. 3 (left) the domain-averaged a perturbed kinetic, 〈EK 〉, and magnetic, 〈EM 〉, energies as
well as b the Reynolds and Maxwell stresses versus time. (right plot) Logarithm of the time-
averaged magnetic energy spectra in (kx , ky)-plane in the quasi-stationary turbulent state. The
dashed rectangle encloses the central, small wavenumber area of (kx , ky)-plane that is vital for the
sustenance of the turbulence. (These figures are reproduced from Ref. [15].)
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we analyze only dynamical equation for nondimensional magnetic spectral energy,
EM = |bx |2 + |by|2:

∂EM

∂t
+ ky

∂EM

∂kx
= IM + IMK + DM + NM , (6)

where, the second term on the left hand side is the flux of the spectral magnetic energy
parallel to kx axis, IM is theMaxwell stress spectrum, describing themagnetic energy
exchange with the mean flow and perturbation modes, IMK is the exchange between
the kinetic and magnetic spectral energies, DM is the resistive dissipation term and
NM is the nonlinear transfer of the magnetic spectral energy in (kx , ky)-plane:

IM = −bxb
∗
y − c.c. = 2kx ky

k2
EM , IMK = iky(uxb

∗
x + uyb

∗
y − c.c.), DM = −2k2

Rm
EM

NM (k, t) = i(kyb
∗
x − kxb

∗
y)

∑
k=k′+k′′

[
ux (k′, t)by(k′′, t) − uy(k′, t)bx (k′′, t)

] + c.c. .

The simulations have indicated that IMK � IM , therefore, in Figs. 3 and4we show
only time-averaged EM , IM and NM in (kx , ky)-plane in the quasi-steady turbulent
state. With these plots we can understand the action of the last two dynamical terms
and the resulting anisotropic energy spectrum (Fig. 3). Similar to the energy spectrum,
IM and NM are also strongly anisotropic over wavenumbers, being tilted towards
the kx -axis due to the shear (Fig. 4). IM mainly operates at 0.05 < k < 0.5 on the
kx/ky > 0 side, where it is positive (red and yellow) and supplies the modes with
energy at these wavenumbers. Specifically, a cycle of the sustenance scheme is the
following. The modes that are initially on the left side of the injection region, where
IM > 0, drifting along the kx -direction, go into this region. As a result, their magnetic

Fig. 4 The time-averaged spectra of IM (left) and the nonlinear transfer term NM (right) ink−plane
in the state of quasi-steady turbulence. NM transfers magnetic energy anisotropically (transversely)
in wavenumber plane, away from regions where NM < 0 (blue) to regions where NM > 0 (yellow).
(These figures are reproduced from Ref. [15].)
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energy starts to growdue to the action of IM . Afterwards, thesemodes enter the region
where the nonlinear term is negative NM < 0 (blue) and hence acts to transfer part
of the amplified magnetic energy of these modes back to the area where NM > 0
(yellow), fromwhich these modes started off, thereby replenishing newmodes there.
This positive nonlinear feedback is an essential link that closes the cycle loop. Thus,
in this cycle, the modes acquire magnetic energy from the flow due to the injection
term IM . Part of this energy goes into the kinetic energy due to the nonlinear term in
the spectral kinetic energy equation (not given here) and the other part into magnetic
energy of the newly generated modes, which go through the cycle again; the rest is
eventually dissipated. In this way, a positive feedback loop—interplay of the linear
transient amplification and nonlinear transverse cascade of the magnetic spectral
energy—is established, ensuring the long-term sustenance of the turbulence.
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Incompressible Homogeneous
Buoyancy-Driven Turbulence

Benoît-Joseph Gréa and Olivier Soulard

Abstract We review recent results concerning the idealized framework of incom-
pressible homogeneous buoyancy-driven turbulence, shedding light on the mixing
process occurring in variable density fluids subjected to accelerations. Self-similar
analysis, results from numerical simulations and anisotropic spectral models estab-
lish the sensitivity of the late time dynamics to the distribution of energy at large
scales, to the different properties of the mixing and to the resonances inside the mix-
ing zone when a time-varying acceleration is applied. The isotropic and anisotropic
part of turbulent spectra are also investigated. Different scenarii are proposed to
explain how the turbulent scales within the inertial range are altered by buoyancy
forces.

1 Introduction

Turbulent mixing subjected to buoyancy forces is ubiquitous in astrophysics, geo-
physics andmany engineering applications such as inertial confinement fusion (ICF).
It often results from accelerations applied at the interfaces of variable density fluids,
leading to the classical Rayleigh-Taylor, Richtmyer-Meschkov or Faraday instabili-
ties1 [1–5]. These destabilization mechanisms, if strong enough, generate non-linear
interactions between modes and give birth to turbulent mixing zones.

Among others, two important questions have motivated engineers and researchers
for years: What are (i) the dynamics of the mixing zones and (ii) the main features
of turbulence driven by this process? Many studies addressing this problem already
evidenced how these two aspects are closely entangled.Yet regarding these questions,

1Corresponding respectively to constant, impulsive or oscillating accelerations.
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the role of initial conditions and how buoyancy forces influence the cascade remain
not fully understood.

Recent results obtained at CEA in collaboration with LFMA allow to get new
insights in this problem and we propose to briefly review them in this chapter. As
often in fluid dynamics, the present approach extensively uses numerical simulations
in order to assess and confront the theory. However, simulation still suffers from
inherent limitations due to the difficulty of reaching high Reynolds numbers and to
the finite size of computational domains. In order to overcome this problem, two-
point anisotropic turbulence models are developed and implemented. This combined
strategy relying on theory, simulation andmodel reveals itself fruitful and constitutes
perhaps the principal originality of the present method.

For simplicity, we limit the context of this study to miscible and incompress-
ible fluids as in [3]. In addition, we discuss only unstable configurations discarding
important problems such as stably stratified turbulence.

This chapter is organized as follows: First, we introduce the homogeneous frame-
work and the associated spectral anisotropic model in order to explore buoyancy
driven turbulence. Then, we investigate the dynamics of turbulent quantities, show-
ing its relation with large scales structures, the characteristics of the mixing and
internal gravity waves. Finally, we turn our attention to smaller scales detailing how
they are influenced by buoyancy forces.

2 Stratified Homogeneous Turbulence as a Paradigm
for Buoyancy-Driven Turbulence

Homogeneous approximations have played an important role in turbulence history,
starting from the pioneering works on homogeneous isotropic turbulence (HIT) [6],
and extended later to anisotropic flows [7]. Accordingly, many closures introduced
for turbulencemodelling and fast pseudo-spectral Fourier based algorithms for direct
numerical simulations (DNS) have benefited from this idealized concept.

In the context of buoyancy-driven turbulence, in particular related to the Rayleigh-
Taylor instability, the homogeneous assumption can apply to turbulent quantities at
the center of the mixing zones due to a scale separation between the mean density
gradient and the integral scale of turbulence (see [8]). Therefore, many homogeneous
frameworks for buoyancy-driven flows have been proposed, in particular by [9–11].

The equations of stratified homogeneous turbulence (SHT) addressing the turbu-
lent velocity u(x, t) and concentration c(x, t) fields in the Boussinesq limit take the
following form [12, 13]:

∂t c + (u · ∇)c = − 1

L
u3 + DΔc, (1)

∂tu + (u · ∇)u = −∇ p + 2AtcG(t)n + μΔu, (2)

∇ · u = 0, (3)
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Fig. 1 Fluctuating density field at different times extracted from a DNS of unstably stratified
homogeneous turbulence detailed in [16]. The simulation uses 20483 grid points. The energetic,
dissipative and grid scales are also indicated. Top row: Horizontal plane. Bottom row: vertical plane.
From the initial isotropic condition, the work of buoyancy forces can be observed by the growth
and elongation along the vertical direction of turbulent structures

L̇ = 12
λ

L
〈u3c〉 , (4)

with p(x, t) the fluctuating reduced pressure, G(t)n the acceleration vector aligned
with the vertical direction 3, At the Atwood number, μ and D the viscosity and
diffusion coefficient. Fluctuating turbulent quantities have zero mean 〈u〉 = 〈c〉 =
〈p〉 = 0 and are assumed homogeneous. Remark that the acceleration G(t) is time
varying, allowing various changes of sign.

One important characteristic of this system is the feedback of turbulence on the
mean density gradient or equivalently2 themixing zonewidth L . This is expressed by
Eq. (4) which has been derived in the context of the rapid acceleration model [14].
Thus, within the SHT framework, it is possible to mimic frozen stratifications by
setting λ = 0, but also evolving mixing zone with λ = 1, corresponding to Rayleigh-
Taylor flows for instance.

The question of howwell SHT is able to reproduce the characteristics of turbulence
in a mixing zone comes naturally. From [15], it appears that the energetic and smaller
scales of turbulence are qualitatively well reproduced in SHT. Besides and as may
be expected, the larger ones differ due to inhomogeneous effects.

Despite this limitation, working within the SHT framework presents many advan-
tages. DNS (see Fig. 1) are facilitated as confinement effects due the finite size of the

2Assuming the mean density profile is linear inside the mixing zone.

nmachico@uw.edu



116 B.-J. Gréa and O. Soulard

computational domain are delayed.3 The simplifications provided by the theoretical
background allow for the derivation of two-point anisotropic turbulence models as
detailed in the following section. It is important to stress that most theories or models
dedicated to turbulent mixing layers should also apply to SHT, and can be validated
against it.

3 Exploring High Reynolds Number with Spectral
Anisotropic Models

The simulations of unstable mixing layers become costly due to the growth of the
Reynolds number. This limitation comes from the constraints to keep the resolution
of small scales but also to avoid spurious effects when the turbulent eddies reach the
size of the computational domain. In consequence, an appealing strategy consists in
developing turbulence models not restricted by the Reynolds number values and able
to reproduce efficiently the phenomenology of buoyancy-driven turbulence.

The closure choice and the description level for a turbulence model result from a
compromise between complexity and accuracy. In that matter, two-point anisotropic
spectral models based on eddy-damped quasi-normal Markovian (EDQNM) and
applied to SHT seem well adapted (see [16–19]).

These models express the dynamics of anisotropic spectra for the velocity and
the buoyancy fields. Due to their axisymmetric description, they can evaluate exactly
the buoyancy production and the redistribution by rapid pressure effects. This aspect
appears very important to capture the late-time dynamics of the mixing zone. Models
which do not fulfil this condition, based on one-point description or even using shell-
integrated spectra as [20, 21] for instance, need corrections to produce the right values
for the buoyancy production as they underestimate large scales anisotropy.

In order to assess the validity of the model, many comparisons were performed
against SHT simulations at different initial conditions [16, 17] (see Fig. 2). This
procedure permits to identify various defects. Some have been known for a long time
in classical isotropic EDQNM closures, such as the underestimation of backscatter
transfers at large scales and of energy values at small scales often attributed to the
intermittency problem.Besides, the distortions coming fromdiscarding the buoyancy
production in the equation for triple correlations have been corrected by changing the
eddy-damping term in the closure. The level of modelling derived by this procedure
has been shown to reproduce accurately one-point and two-point turbulent quantities
provided by the DNS (see for instance Fig. 2).

The anisotropic EDQNMmodel can be used with confidence to explore the mix-
ing layers dynamics and the scale-by-scale distribution of turbulent energy at high
Reynolds numbers. This also allows to study the influence of initial conditions beyond
the reach of simulations, as will be detailed in the next section.

3The limitation in SHT simulations principally comes from the growth of the integral scale but not
the mixing zone width which is modelled contrary to classical mixing layer simulations.
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Fig. 2 Density spectra at
different times
corresponding to the SHT
case detailed in [16] and also
shown in Fig. 1. Plain lines:
DNS. Dashed lines:
EDQNM.

4 Self-similar and Non Self-similar Dynamics

Unstably stratified homogeneous turbulence (USHT)4 reaches self-similar states at
late times, similar to Rayleigh–Taylor turbulent mixing zones.

In USHT with frozen stratification, λ = 0 in Eq. (4), the turbulent quantities
experience an exponential growth which is further characterized by a parameter β

such that the length scale of the flow � and its kinetic energy K grow as:

USHT(λ = 0) : �(t) ∝ eβt/2 , K (t) ∝ eβt .

In Rayleigh–Taylor turbulence and USHT taking into account the feedback on the
mean density gradient, λ = 1, the central self-similar parameter is the growth rate
coefficient α. It is such that the mixing zone width L evolves as:

Rayleigh − Taylor or USHT(λ = 1) : L(t) = 2αAtG0t
2 ,

For both flows, it is important to be able to predict the values of coefficient α or
β which appear to depend on initial conditions [22]. As in homogeneous isotropic
turbulence (HIT), the self-similar properties of USHT are expected to be influenced
by large turbulent scales [23, 24], i.e. by scales much larger than the integral scale of
turbulence. For instance, in HIT, the decay rate of kinetic energy in the self-similar
regime is deduced from the principle of the permanence of large eddies and depends
on the power law exponent of the turbulent spectrum at small wave numbers, also
called “infrared” exponent [25, 26] and denoted by s0 (see Fig. 3).

A similar link exists between large scales and self-similarity in USHT. This con-
nection was studied in [27]. In this work, it was shown that equatorial wave vectors

4Special SHT case with a constant destabilizing accelerations G0.
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Fig. 3 Time evolution of
kinetic energy K for
different infra-red slope
s0 = 2, 3, 4 from [16]. Plain
line: DNS. Dashed line:
EDQNM. Dotted line:
Theory with β = 4/(s0 + 3).
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evolve linearly from their initial conditions when s0 < 4. This is the equivalent of
the permanence of large eddies observed in HIT. Note that other directions do not
verify this property. Using this result, a relation that links β or α to s0 can be derived:

β = 4

(s0 + 3)
and α = 2

(s0 + 2)(s0 + 3)
.

Besides, simple expressions relating the correlations of concentration and velocity
to the value of the growth parameter can also be obtained.

An alternative characterization of self-similarity can be envisioned. In [14], it was
proposed to express α as a function of a the global mixing parameter Θ . The latter
quantity is a segregation ratio which gives an indication on the degree of mixing. In
this regard, let us precise that the evolution of a turbulent mixing zone is influenced
by the level of mixing it experiences: the more mixing there is, the less potential
energy is available and the slower the growth of the zone is. This property has long
been identified and accounted for in models describing Rayleigh–Taylor turbulence
[28]. In particular, the RapidAccelerationModel (RAM) [14] has been used to derive
that:

α = Λ2(1 − Θ)2

1 + Λ(1 − Θ)
,

with Λ ≈ 0.7 a parameter characterizing the directional anisotropy of the flow [29].
The prediction made in [14] was checked against numerous experiments and sim-
ulations and was found to be in good agreement with them. In particular, it agreed
with the simulations described in [30].

In [27, 31], this relation was extended to express all the second order moments
of the concentration and velocity fields as a function of Θ . These expressions give
access to how mixing influences the repartition of kinetic and potential energies and
their anisotropy.
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Fig. 4 SHT DNS with periodic acceleration G(t) = G0(1 + F cosωt) corresponding to the Fara-
day instability [33]. Top: Time evolution of the mixing zone. Bottom left: Vertically elongated
structure of density from DNS at ωt = 105. Bottom right: Kinetic energy E and density Ecc spec-
tra at ωt = 105

While the self-similar dynamics of mixing layers has been extensively studied,
it occurs scarcely in nature and applications, essentially for two reasons: First, the
duration of the transient regimemaybe long. This explain for instancewhy the growth
rate coefficient α is difficult to measure in many Rayleigh-Taylor experiments and
simulations. In addition, if the acceleration is time-varying, then the turbulence time
scales cannot adapt instantaneously to the buoyancy forces.

Non self-similar dynamics are more difficult to investigate as they evolve in a
larger phase space. This aspect has bitter consequences for one-point turbulence
models which, inmost case, do not capture correctly the transient while still behaving
correctly in the self-similar regimes as shown in [32].

In addition, time-varying accelerations can produce resonances inside the mixing
layer and trigger a parametric instability similar to the classical Faraday instability
appearing at vibrated interfaces. This leads to the growth and the saturation of the
mixing zone, which can be studied and predicted within the SHT framework (see
[33] and Fig. 4). This phenomenon explains the complex behaviour of a mixing
zone experiencing acceleration decceleration then reacceleration phases [34, 35].
However, the question of how to model mixing zones subjected to such instabilities
remains pending.
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5 Scaling Laws of Turbulent Spectra

As explained before, the scaling laws of SHT in the inertial range are similar to
those in inhomogeneous mixing layers, driven by the Rayleigh–Taylor instability for
instance.

Several theories of Rayleigh–Taylor small scales have been expressed in the lit-
erature [36–41]. All of them postulate that, for scales much smaller than the integral
length scale and much larger than the viscous scale, there exists an “inertial” range
where turbulent spectra are scale-similar. However, different scaling laws, stemming
from different physical arguments, are predicted in [36–41]. These scaling laws are
quantitatively very close to one another. The kinetic energy spectrum is found to
have a scaling exponent of −2 in [39], −7/4 in [37, 38] and −5/3 in [36, 40, 41].
The latter corresponds to the standard Kolmogorov–Obukhov theory. Unfortunately,
current simulations [42] and experiments [43] do not allow one to discriminate these
values, as they do not reach high enough Reynolds numbers.

From there, two ways can be explored to gain additional knowledge. The first one
consists in using theoretical arguments. This course was pursued in [40], where an
extension of the Monin–Yaglom relation to Rayleigh–Taylor turbulence, taking into
account the inhomogeneous character of the flow and the action of buoyancy forces,
was proposed. Among the mentioned theories [36–41], only those corresponding to
a classical Kolmogorov–Obukhov scaling were compatible with thisMonin–Yaglom
relation. As a result, only those theories were fit to describe asymptotically small
scales in Rayleigh–Taylor turbulence.

The second way consists in capitalizing on the possibilities offered by USHT [12,
13, 16–18, 27] and its EDQNM modelling [16–18] to explore very large Reynolds
numbers. In [16, 18], the properties of USHT at very high Reynolds numbers were
scrutinized. One of the main results of these studies was to demonstrate the exis-
tence of an inertial range with a scaling exponent compatible with the Kolmogorov–
Obukhov theory.

Beyond this aspect, it has beennoted that anisotropyhas a strong imprint on inertial
scales. Following [45, 46], two main physical processes are expected to drive these
properties. The first one corresponds to the local action of buoyancy forces and leads
to equilibrium spectra. The second one results from the non-local action of transfer
terms and is associated with zero-modes, i.e. of modes which nullify the anisotropic
part of transfer terms.

The equilibrium mechanism has been studied in [47] and leads to a k−3 scaling
for the velocity and concentration anisotropic spectra and to a k−7/3 scaling for the
concentration flux spectrum. The EDQNM model proposed in [16–18] for USHT
was used to test these scalings at high Reynolds numbers [16, 18]. A systematic
departure from these equilibrium scalings was identified, suggesting the presence of
zero-modes.

The properties of zero-modes were then studied in [44]. The zero-mode analysis
showed that the velocity and concentration zero-modes display approximate k−7/3

scalings. As a result, at very small scales, the velocity and concentration zero-modes
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Fig. 5 Vertical velocity
spectrum E33 and its
isotropic and anisotropic
contribution from USHT
EDQNM simulation at
turbulent Reynolds number
= 107 [44]. Black line: total.
Red line: isotropic part.
Yellow and blue line:
Anisotropic polarisation and
directional part

Wave number k

E33

become larger than equilibrium spectra, which, we recall, scale as k−3. Therefore,
one of the main result of [44] is that the anisotropy of the velocity and concentration
spectra is due to the non-local non-linear transfer terms and scales as k−7/3 (see
Fig. 5). This prediction agrees with the simulations of [16, 18].

As for the concentration flux, the zero-mode analysis also yields an approximate
k−7/3 scaling. This scaling is close to but different from the equilibrium one. This
small variation is such that the the zero-mode contribution will eventually become
negligible at highwave numbers. Consequently, the outcome is here the inverse of the
one derived for the velocity and concentration spectra: for the smallest scales of the
inertial range, the anisotropy of the concentration flux spectrum is linked to the local
action of buoyancy forces. Besides, we also derived another noticeable result for the
concentration flux spectrum. Indeed, the zero-mode contribution decays only slightly
more rapidly than the corresponding equilibrium contribution. When cast in terms of
Reynolds numbers, this property implies that the inertial slope of the concentration
flux exhibits a slow convergence to−7/3. As a result, zero-modes provide a possible
explanation for observations on this slow convergencewhich have already beenmade
in different contexts [48].

6 Conclusion

In this review, it is shown how a combined strategy between theory, numerical sim-
ulations and models allows to get insight in the phenomenology of incompressible
homogeneous buoyancy-driven turbulence. New results concerning the dynamics
and structure of the flow are thus established, listed below:
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• The late time dynamics depend on the initial distribution of energy at large scales.
• The mixing zone growth rate and the Reynolds stress tensor in a mixing zone can
be derived solely from the global mixing parameter and to a lesser degree to the
directional anisotropy.

• The final sizes of mixing zones subjected to parametric instability for time-varying
accelerations have been predicted.

• The isotropic part of turbulent spectra in the inertial range obeys the Kolmogorov-
Obhukov phenomenology.

• The anisotropic part of velocity spectra seems determined by the non linear transfer
through ‘mode zero’, while the linear buoyancy effects appear sub-dominant.
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Small Scale Statistics of Turbulent
Fluctuations Close to a Stagnation Point

Peter D. Huck, Nathanael Machicoane and Romain Volk

Abstract Experimental data measured with a 3d Shadow-Particle Tracking
Velocimetry (S-PTV) setup in fully developed turbulence (Reλ = [175 − 225]) is
presented. The underlying flow is of the von Kármán type and as other similar flows,
its mean flow is bistable, the two states having the topology of a stagnation point
with one contracting and two dilating directions. Tracer particle trajectories permit
the investigation of the inhomogeneity and anisotropy of the smallest scales, namely
acceleration statistics. The local variance and time-scale of acceleration components
are shown to mimic the large scale properties of the flow, the time-scales being more
anisotropic than the variances. We explain the hierarchy of time-scales by investigat-
ing the Lagrangian Taylor micro-scale which is related to acceleration and velocity
variances, and discuss the very high Reynolds number regime.

1 Introduction

Inhomogeneity in fluid flows is inherent in natural and industrial contexts with exam-
ples in the free shear and convection of the planetary boundary layer [1] or rotation
in stirred chemical reactors [2] and compression in piston engines [3]. Among the
canonical flow types investigated in the literature, strain is an important mechanism
that has been used to investigate the link between the imposed mean-field and the
resulting anisotropy [4, 5] and theoretical formulation of the role of rapidly applied
strain to turbulence succeeded in providing a mechanism to predict anisotropy [6].

Recent experimental [7] and numerical [8] investigations have demonstrated that
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accurate prediction is limited to larger scales when applied deformation is not suffi-
ciently rapid to attain the small dissipative regions of the turbulence. Only recently
have simulations investigated the implications of strain on the small dissipative scales
of turbulence [9] demonstrating stronger root-mean-square (rms) acceleration in
compressed directions than in divergent directions in asymmetric strain. Interest-
ingly, recent study has not lead to conclusive explanations of the role such flow
conditions have on dissipative scale temporal dynamics.

In this contributionwe build upon these conceptswith an experimental Lagrangian
investigation of fully developed turbulence (Reλ = [175 − 225]). In particular, a
highly inhomogeneous and anisotropic von Kármán type flow is studied. Though
often thought to belong to the free-shear category [10], recent study has pointed to
the fundamental role of the stagnation point at the center of the flow [11]. By way
of analogy with the characterization of spatial velocity gradients (Eulerian Taylor
scale, λ) [12], the Lagrangian Taylor scale [13] is used to characterize high frequency
motions and provides a reasonably accurate estimation of acceleration anisotropy,
both in terms of temporal correlation and amplitude.

2 Experimental Set-Up

The device used in this investigation is the so-called von Kármán flowwhich consists
of a square cylindrical enclosure, 15cm on each side, with two counter-rotating disks
of radius R = 7.1 cm driven at equal rotation frequencies by constant-current motors
that are separated by 20cm, as depicted in Fig. 1a. Our experiments rely on a Shadow-
Particle Tracking Velocimetry [14] where two perpendicular collimated beams per-
mit the tracking of small objects over a large volume [11] approximately (6 cm)3

(Fig. 1b). Trajectories are reconstructed using typical particle tracking algorithms
[15] applied to films obtained with two high speed cameras (Phantom V.12, Vision
Research, 1Mpix@7 kHz) with a resolution 800× 768 pixels, and a frame rate of
fs = 12 kHz.
A vast literature exists on the bistable nature of the von Kármán flow (e.g. [16,

17]) measured primarily in round cylinder geometries. The present square cylinder
manifests another type of bistability for which the lifetime of the two states (charac-
terized from LDV measurements, not shown here) is much longer than the duration
of each movie. A explained in [14], it is possible to separate S-PTV data into two
ensembles, each one corresponding to one of the two states, using the kinetic energy
contained in each velocity component averaged over the ensemble of trajectories
measured in a single film. Such conditioning allows for a reconstruction of averaged
flow properties in 3D for each states such as the mean flow as shown in Fig. 1b for
the case of the x-dominant state. The topology of each state have a peculiar topology
(see [14] for more details): the x-dominant state, which will be investigated in the
following, presents a stagnation point near the originwith one stable direction (x) and
two unstable directions (y and z) as depicted in Fig. 1b, c, while x and y directions
are exchanged in the y-dominant state (Fig. 1d). We note that the volume over which
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Fig. 1 Experimental apparatus. a The square cylindrical enclosure of the von Kármán flow consists
of two counter rotating disks driven at equal rotational frequencies. b Reconstructed mean flow for
the x-dominant state. Left: arrows indicate (〈vx 〉, 〈vy〉)measured in the (xy) plane, the color coding
for 〈vz〉. Right: arrows indicate (〈vz〉, 〈vx 〉) measured in the (zx) plane, the color coding for 〈vy〉. c
Sketch of the mean flow orientation in the x-dominant state. d Sketch of the mean flow orientation
in the y-dominant state.

Table 1 Parameters of the flow. �, rotation rate of the discs; ε, dissipation rate obtained from
the power consumption of the motors. The kinematic viscosity of the water-UconTM mixture is
ν = 8.2 × 10−6 m2 s−1 with a density ρ = 1000 kg m−3. The dissipative time-scale and length-
scale are τη = √

ν/ε and η = (ν3/ε)1/4, the Taylor-based Reynolds number being estimated as

Reλ =
√
15v′4/νε with v′ =

√
(〈v′

x
2〉 + 〈v′

y
2〉 + 〈v′

z
2〉)/3 and Re = 2πR2�/ν

� (Hz) v′ (ms−1) τη (ms) η (µm) εm
(W kg−1)

Reλ (–) Re (–)

4.2 0.34 3.2 162 0.8 175 16,200

5.5 0.45 2.1 131 1.9 200 21,200

6.9 0.56 1.5 111 3.6 225 26,700

the statistics are computed is larger than the Eulerian integral scale L = v′3/ε = 4.8
cm, where v′ is the rms value of the fluctuating velocity, permitting an investigation
of their inhomogeneity. Various Eulerian statistics are given at the geometrical center
of the flow in Table 1.
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2.1 Inhomogeneity in the Acceleration Magnitude

The stagnation point is responsible for a large amplification of fluctuations in the
contracting direction (x) while attenuation is observed in the dilating directions [11].
As a consequence the total velocity fluctuations 〈v′2〉 increase as particles approach
the stagnation point (Fig. 2a), indicating spatial inhomogeneity, with an anisotropy
level 〈v′2

x 〉/〈v′2
z〉 which nearly doubles as the stagnation point is reached (Fig. 2a,

inset).
As displayed in Fig. 2b, the acceleration component magnitude (normalized by

its maximum value at the center to account its Reynolds number dependence) is also
found to increase when approaching the center. Such spatial profile of acceleration
fluctuations is reminiscent of the non homogeneity in average dissipation, which
was found maximum near the geometrical center [11]. This is because acceleration
variance is expected to depend on dissipation following the Heisenberg-Yaglom
relation 〈a2i 〉 = a0,iε3/2ν−1/2 [18], where a0,i is a non-dimensional function of the
Reynolds number. As opposed to the increasing anisotropy of velocity fluctuations,
the three components of the fluctuating acceleration increase in equal proportions
so that anisotropy is constant over the entire region of Fig. 2b with the hierarchy
〈ax 2〉 > 〈ay2〉 > 〈az2〉. This shows that the anisotropy observed in the large scale
quantities propagates down to the very small scales of turbulent fluctuations as was
observed in [15].

(a) (b)

Fig. 2 Velocity fluctuations statistics at Reλ = 200. a Overall increase in velocity fluctuations
(〈v′2〉 = (〈v′

x
2〉 + 〈v′

y
2〉 + 〈v′

z
2〉)/3) normalized by its value at the origin. Inset: anisotropy

between the converging (〈v′
x
2〉) and diverging (〈v′

z
2〉) fluctuations. bAcceleration magnitude statis-

tics. ◦ : Reλ = 175, � : Reλ = 200, � : Reλ = 225. a Normalized acceleration variance where
qa = (〈ax 2〉 + 〈ay2〉 + 〈az2〉) is evaluated at (0, 0, 0).
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2.2 Acceleration Time Scales and Anisotropy

We now investigate the temporal dynamics at small scale and focus on the auto-
correlation function of the acceleration components Ri

a(τ ) = 〈ai (t)ai (t + τ)〉/〈a2〉.
Because the flow is non homogeneous, we restrict to trajectories passing through a
ball of 1 cm in diameter whose center is located at the origin (0, 0, 0). Figure3a plots
the auto-correlation function versus normalized time τ/τη where τη = (ν/ε)1/2 takes
the Reynolds number dependence into account and permits a collapse of the three
curves. The plots show that the temporal dynamics is anisotropic since the curves
do not have the same zero crossing time t0. In order to get a robust estimate of the
acceleration characteristic time, we measure the integral time τa,i = ∫ t0

0 Ri
a

(
τ
)
dτ

for each component i = x, y, z.
The inset of Fig. 3a displays the normalized acceleration integral time obtained

for different locations of the ball center along the x axis. As stagnation point is
approached, the integral time τa,i decreases. This is consistent with an increase of
dissipation close to the geometrical center as this time scale is expected to be propor-
tional to τη = √

ν/ε as shown in homogeneous and isotropic turbulence (HIT) [19].
However, we observe τa,i become increasingly anisotropic and attain a maximum
at the flow geometric center with the hierarchy τa,x/τa,z > 1 whereas 〈ax 2〉 > 〈az2〉.
This observation is somewhat counter-intuitive when considering τa � √

ν/ε which
would suggest a scaling law τa ∝ (ν/〈a2〉)1/3. However, the opposite is observed;

(a) (b)

Fig. 3 Acceleration auto-correlation and spectra at the stagnation point. ◦ : Reλ = 175, � : Reλ =
200, � : Reλ = 225. a Acceleration correlation function (ax , blue, az green) near the stagnation
point for all Reynolds numbers. Inset: acceleration integral time normalized by the dissipative
time-scale τη = √

ν/ε. The black curves are averages of the three Reynolds numbers to serve as a
reference. bUnfiltered acceleration spectra at the stagnation point normalized using the dissipation
(ax , blue, az green).
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the strongest component (x) has the largest acceleration time whereas the weakest
component (z) has the smallest time-scale.

In order to understand how acceleration variance and time-scale are influenced by
the large scales, we display in Fig. 3b the acceleration spectra of ax and az , computed
directly from the raw acceleration trajectories. The spectra are related to the auto-
correlation functions by the following relationship:

φa,i (ω) = 2

π

∫ ∞

0
Ri
a(τ ) cos(ωτ)dτ. (1)

They have been normalized by επ−1 which has been used in the literature to account
for Reλ dependence [20, 21]. This figure shows that anisotropy is contained in the low
frequencies below ωτη � 1 while higher frequencies in the deep dissipative region
(ωτη > 1) become isotropic. It is seen from this figure that integral quantities such
as acceleration variance 〈ai 2〉 = ∫ ∞

0 φa,i (ω)dω and acceleration time-scale have a
contribution from low frequencies, i.e. from scales larger than the dissipative scales,
which are non isotropic.

It is not evident from the acceleration spectrum to estimate the acceleration
time-scale, but its hierarchy may be understood by computing the Lagrangian Tay-
lor scale τL (not to be confused with the eulerian Taylor microscale λ), which
is defined from the short time evolution of the velocity auto-correlation function
1/τ 2

L
= −1/2 dRL/dτ 2(0). Indeed, this time scale can be linked to the acceleration

and velocity variances through the relationship

〈ai 2〉Ri
a(τ ) = −〈v′

i
2〉 d2

dτ 2
Ri
L(τ ), (2)

which is valid for statistically stationary signals. The Lagrangian Taylor time-scale
of component i then writes τ 2

L ,i = 2〈v′
i
2〉/〈ai 2〉, which shows that this time-scale is

influenced both by large and small scales. Although τL is not the same as τa , the latter
is only slightly larger than the former, i.e. in the central region τai � [1.25 − 1.45]τη

and τL ,i � [4 − 6]τη dependingon the component observed.As such, τL falls squarely
in the region of frequenciesmost strongly contributing to the anisotropy as seen in the
spectra of Fig. 3b. Anisotropy can thus be estimated: τa,x/τa,z � 1.13 asmeasured by
the integral time scales in Fig. 3(a inset) while τL ,x/τL ,z � 1.33 as estimated from
τ 2
L ,i = 2〈v′

i
2〉/〈ai 2〉. The Taylor timescale over predicts the anisotropy by roughly

20% and explains why acceleration time-scales are less isotropic than acceleration
variances.

In a similar flow velocity anisotropy ratio has been shown to decay slowly to
just below v′

x/v′
z � 1.5 at Reλ � 1000 [22] while the ratio of acceleration rms

decays to nearly 1.1. However, as shown above, time scales imply interaction of
both large (velocity) and small (acceleration) scales. Consequently, the persistent
anisotropy in the large scales resulting from the presence of the stagnation point
inhibit isotropization of time scales at large Reynolds numbers. Indeed, Lagrangian

nmachico@uw.edu



Small Scale Statistics at a Turbulent Stagnation Point 131

measurements spanning Reλ = [450 − 810] indicate very little evolution in τax/τaz
[23].

3 Conclusion

This article presented an experimental investigation of Lagrangian data in the fully
developed turbulence of a von Kármán flow. The flow presents a bistability and each
state can be investigated separately by conditioning on the kinetic energy contained in
each component. Restricting the data analysis to only one state, the turbulent velocity
fluctuations were seen to be strongly inhomogeneous close to the stagnation point.
Additionally, anisotropy measured between the converging and weakest diverging
direction increased monotonically. The turbulent dissipation rate was observed to be
dominated by the converging direction and mirrored the evolution of the turbulent
velocity fluctuations. Interestingly, the acceleration variance followed the tendency
of the turbulent dissipation and velocity fluctuations to increase, though unlike the
latter, acceleration anisotropy remained almost constant.

Although the relationship small scale anisotropy can be linked to the large scales,
this relationship is incapable of predicting anisotropy among the acceleration time-
scales. The hierarchy of time-scales was explained by investigating the Lagrangian
Taylor scale τL = √

2v′2/a2. The presence of v′ in this relationship suggests an influ-
ence from lower frequencies, which is confirmed from the inspection of acceleration
spectra. Frequencies close to ω = 2π/τL contribute most strongly to anisotropy in
the acceleration magnitude whereas the deep dissipative region (ωτη > 1) becomes
isotropic. Similar behavior is apparent in the acceleration auto-correlation which by
consequence lead to anisotropic measurements of its integral scale τa .

The literature contains sparse discussion of the anisotropy of small scale statistics
and this study proposes a framework in which they may be understood. The deriva-
tion of τL follows from the kinematic relationship between velocity and acceleration
auto-correlation functions and is expected to not only hold for the fluid particle trac-
ers studied here, but for particles whose dynamics are dominated by their inertia.
Further study into the effects of inhomogeneity and anisotropy for these particle
classes is of great interest for the atmospheric dispersion of pollutants [18, 24] and
the process of rain and ice formation.
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Anisotropic Turbulent Cascades in
Rotating Homogeneous Turbulence

D. Vallefuoco, F. S. Godeferd, A. Naso and A. Delache

Abstract We consider homogeneous turbulence submitted to the effect of an exter-
nal rotation of the system. The presence of the Coriolis force results in anisotropic
dynamics and structure of the flow, due to the presence of propagating inertial waves,
and of a modified dynamics. The anisotropic structure of the flow is analyzed by
maps of second- and third-order two-point correlation statistics in physical separa-
tion space, distinguishing between axial and perpendicular separation. Second-order
statistics permit to assess the anisotropy of the flow which develops due to the pres-
ence of rotation. However, nonlinear dynamics has to be characterized by examining
the third-order correlation term in the Kármán-Howarth-Monin equation, in which
the non linear term appears as the divergence of the flux vector F. We show that maps
of the components of F permit to examine the detailed anisotropic interactions, and
to discuss the results of our Direct Numerical Simulations to that from Kolmogorov
theory, from wave turbulence theory and from experiments.

1 Introduction

Flows submitted to the action of rotation are ubiquitous in nature, for instance large
scale motion in geophysical flows. Cyclones and anticyclones in the atmosphere
are the result of a complex mix of phenomena related to temperature variations,
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humidity, etc., in which the Earth’s rotation does not play the least role. Thus, rotat-
ing flows generally exhibit two-dimensionalization tendencies, such that turbulent
structures get elongated along the axis of rotation. The corresponding dynamics, or
energy exchanges, is rather complex, since it involves a combination of transfers in
scale space—associated with a given length scale � or wavenumber k ∼ 1/�—and in
direction θ—being that of the two-point vector which is considered when taking the
correlation for computing � or being the orientation of the wavector kwhere |k| = k.
The energy transfer at each scale is therefore a balance between dissipation and non
linear transfer modified by the presence of the Coriolis force [1]. If one considers the
non linear timescale τNL—also the eddy turnover time—and the rotation timescale
τΩ � 1/Ω , the ratio between the two is the Rossby number Ro = τΩ/τNL = u′�/Ω ,
where u′ is a characteristic velocity at scale �. Thus, the relative importance of the
Coriolis force in the flow dynamics can be evaluated fromRo. IfRo � 1, rotation has
very small effect on the flow structures, and one expects a classical dynamics close to
that of isotropic turbulence. IfRo � 1, inertial waves are rapid and the flow evolution
is strongly driven by the Coriolis force. The scale separation corresponding to the two
ranges has been discussed in a phenomenological way by Zeman who proposed that
the relevant separating length scale be lz = (ε/Ω3)1/2, where ε is the kinetic energy
dissipation [2]. In addition to phenomenological arguments, existing experimental
[3, 4] and numerical studies [5–9] confirm the existence of a range of scale specif-
ically affected by rotation, and several studies conclude to the relevance of lZ for
providing an estimate of the transition scale between rotation-affected large scales
and isotropic smaller scales. This however requires that the Rossby number be not
too large—in that case rotation is only a weak perturbation to the flow dynamics—or
too small—in that case all scales are strongly affected by rotation, at finite Reynolds
number Re = UL/ν, where ν is the kinematic viscosity and U and L macroscopic
velocity and length scales.

These results are however based on a local analysis of two-point correlation statis-
tics, but the understanding of the origins of the modified dynamics requires to inves-
tigate third-order statistics. Moreover, the strong anisotropy between axial (along
the rotation axis) and perpendicular directions also has to be taken into account in
the detailed analysis of the flow dynamics. Therefore, we propose to investigate in
the present work third-order correlation statistics in physical space, which play an
important role in the creation of anisotropy of two-point second-order statistics.

Detailed statistics are thus obtained in terms of the vector r separating two points
in space, so that the two-point velocity correlation is R(r) and the energy flux is
Π(r, t) = ∇ · F/4 where F(r, t) = 〈δu(δu)2〉 is the flux density and δu the velocity
increment between the two points. These quantities are used to characterize the
anisotropic energy budget based on the Kármán-Howarth-Monin equation, in terms
of separation scale |r| and polar angle θ .

Let us however recall that there is exact equivalence between physical and spec-
tral space statistics, for both second- and third-order moments of velocity [10]. For
instance, in isotropic turbulence, the two-point velocity correlation tensor is related
to the kinetic energy spectrum via
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Rii (r) = 2
∫ ∞

0
sin(kr)/(kr)E(k)dk (1)

and the third-order structure function is related to the kinetic energy transfer spec-
trum:

〈δuL(δu)2〉 = 4r
∫ ∞

0
g(kr)T (k)dk

where δuL is the longitudinal projection of the separation vector and g(k) is a simple
weighting function as in Eq. (1) (see details in [11]).

Of course, in anisotropic turbulence, as in rotating turbulence, directional θ -
dependence of the statistics has to be taken into account, so that the mathematical
formalism is more complicated, but, in principle, Fourier-transforming physical- or
spectral-space statistics permit to switch identically from one dual space to the other.

We therefore propose in this work to present statistics of the equivalent in physical
space of the energy transfer in spectral space, which is the flux divergence Π(r), and
we will present maps of the flux F(r) itself. For this we use a database of Direct
Numerical Simulations which has been developed for forced rotating homogeneous
turbulence [13].

2 Dynamical Equations for Rotating Turbulence

We recall here the dynamical equations for rotating turbulence. The Navier-Stokes
equation for the velocity field u in a rotating frame is

∂t ui + u j∂ j ui = − 1

ρ
∂i p + fi + ν∇2ui + Fi , (2)

where f = −2Ω × u is the Coriolis force per unit mass, p the pressure field corrected
by the centrifugal force. We can consider both the unforced, freely decaying case,
where the forceF = 0, or a statistically steady flow which results from a forcing at
large scales.We can use two kinds of forcing in our simulations, but only results of the
second shall be presented in the present proceedings for the sake of conciseness: the
ABC-flow forcing which consists of periodic three-dimensional vortices associated
with a single wavelength [12], or the forcing by a large-scale flow which evolves
according to the truncated Euler equations. Thus, ABC-forcing is permanent in time,
whereas turbulent structures in the Euler flow are time-evolving, although their global
energy is conserved since the truncatedEuler systemof equations is conservative. The
Navier-Stokes equations are solved in a tri-periodic domain using a classical pseudo-
spectral method with 1024 Fourier modes in each direction, a third-order Runge-
Kutta time-scheme, and full de-aliasing. The flow is evolved from an initial random
distribution of velocity until a statistically converged state is reached. Statistics are
then accumulated over the duration required to achieve adequate sampling. (See
details of the method in [13, 14].)
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The statistics which are computed permit to close the balance equation which is
chosen in the form of the Kármán-Howarth-Monin (KHM) equation. This equation
describes the evolution of the two-point velocity correlation Ri j (r, t) = 〈ui (x, t)
u j (x + r, t)〉, where 〈〉 are in principle spatial or ensemble averages. In the present
study, we also take advantage of the possibility of averaging in time. The KHM
equation is therefore derived from Eq. (2) by assuming homogeneity, that is the
independence of the statistics on the position, but not necessarily isotropy.

Multiplying Eq. (2) by u(x + r) and taking the average, one obtains an equation
for the two-point correlation Ri j (r) whose trace R ≡ Rii is taken to yield the KHM
Eq. [10]:

1

2
∂t R(r, t) = 1

4
∇ · F

︸ ︷︷ ︸
+ ν∇2R︸ ︷︷ ︸ + φinj(r, t) , (3)

Π(r, t) − D(r, t)

where D(r, t) is the dissipation term andΠ(r, t) is the energy flux which stems from
the flux density vector field

F(r, t) = 〈δu (δu)2〉. (4)

The last term in Eq. (3) is the contribution due to the forcing, obtained by cor-
relating the velocity with the forcing F . In the stationnary regime we consider, the
first term of Eq. (3) vanishes. Note that background rotation is not explictly present
in the KHM equation, due to the fact that the Coriolis force does no work. Note also
that the KHM equation is formally equivalent to a Lin-type equation for the energy
density spectrum

∂t e(k, t) = T (k, t) + 2νk2e(k, t) + φ̂inj(k, t) ,

where rotation does not appear explicitly either. It manifests only in a complex
way through the T (k, t) term whose distribution is modified with respect to that of
isotropic turbulence.

3 Two-Point Second-Order Statistics

Wefirst illustrate second-order statisticswith results ofDirectNumerical Simulations
of Euler-forced rotating turbulence without helicity forcing at Reynolds number
Reλ = 187 based on the Taylor microscale λ, and moderate Rossby number Roω =
ω′/Ω = 2.02, computed from the r.m.s. vorticity ω′.

We compute the trace of the two-point velocity correlation tensor R(r) as a func-
tion of the separation vector r. Since the flow is statistically axisymmetric, we only
retain the explicit dependence on the perpendicular coordinate ρ ≡ r⊥, and on the
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Fig. 1 Maps of the two-point velocity correlation R(r) normalized by u2rms for Euler-forced rotating
turbulence without helicity forcing at Reλ = 187 and Roω = 2.02. The red circles show the Zeman
scale lZ = (ε/ (2Ω)3)1/2. Note that the right figure uses a a narrower range of separation scales

axial (along rotation axis) coordinate ζ ≡ r‖. In isotropic turbulence, R only depends
on the distance r = |r| and not on its orientation. In rotating turbulence, we observe in
Fig. 1 that even at a Rossby number which is not small, of order unity, the isolines of
R(r) are clearly elongated along the vertical direction. The trend is more pronounced
at decreasing Rossby number. Figure1 thus shows that two-point correlation at large
scales is enhanced along the rotation axis, which is consistent with the fact that tur-
bulent structures are elongated in this direction. A complete two-dimensionalization
of rotating turbulence would imply that R(r) be independent of ζ , so that the isolines
would become exactly vertical.

However, a careful observation of the isolines of the figure shows that the
anisotropy is less in the small scales, and almost recovers isotropy below the Zeman
scale which is indicated by a red circle on the plot. This is consistent with the above-
mentioned phenomenology stating a reduced relative effect of rotation at scales
smaller than lZ . Similar results were obtained in the rotating experiment by [15].

4 Third-Order Statistics

We now consider the third-order vector moment, for which inertial laws are avail-
able from the literature in both the isotropic and the rotating cases. For instance,
in isotropic turbulence Fϕ = Fθ = 0 and the distribution of Fr is derived from the
famous four-thirds Kolmogorov law 〈δu3L〉 = −(4/5)εr [16, 17].

Figure2 shows the distribution of the third-order vector moment radial compo-
nent Fr non dimensionalized by the isotropic analytical prediction −(4/3)εr , for
two orientations of the separation vector, namely along the axis (r⊥ = 0, θ = 0)
and perpendicular to it (r‖ = 0, θ = π/2). Recall that the exact −4/3 proportional-
ity constant is obtained in isotropic turbulence only at very large Reynolds number
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Fig. 2 Third-order vector
moment radial component
Fr non dimensionalized by
−4εr/3, along the directions
θ = 0 (r⊥ = 0) and π/2
(r‖ = 0). Data from DNS of
Euler-forced rotating
turbulence without helicity
forcing

Reλ, in excess of ∼2000 [17], and is asymptotically reached by the correlation from
below, that is with smaller values than 4/3 (in amplitude, thus dropping the negative
sign). Thus, moderate Reynolds number simulations are expected to display values
Fr/(−4εr/3) < 1. In our DNS of rotating turbulence, Fig. 2 shows that the perpen-
dicular component curve is indeed located below the threshold value. However, along
the rotation axis, the distribution of Fr overshoots the −4/3 value and indicates that
fluxes are larger than what they would be in isotropic turbulence. In addition, the
maxima of both curves at θ = 0 and θ = π/2 are located at different scales. This
also indicates a global equilibriumwhich is achieved at different scales depending on
the considered orientation. In other words, one could also say that only the statistics
along θ = 0 appear to be mostly affected by rotation.

Figure3 shows the different terms appearing in the KHMEq. (3). All the terms are
non dimensionalized by kinetic energy dissipation ε. Adding up all the terms shows
that the equation is almost exactly balanced, taking into account the samplingwhich is
poor in the very large scales (small wavenumbers where the spectral discretization is
coarsewith respect to larger wavenumbers). A first observation is that the distribution
of all three terms—flux, dissipation, forcing residual—is anisotropic in the large
scales. It becomes more and more isotropic at smaller scales, again below the Zeman
length scale. As expected, dissipation is maximal at the smallest scales, way below
lZ , but non negligible dissipation is still present in the inertial range. Accordingly,
the other two plots of Fig. 3, for Π and residual term Φ, exhibit similarity in the
large and inertial scale ranges, since they both contribute most to the balance of the
KHM equation at these scales. If one considers the distribution of the flux Π along
a circle, that is at uniform separation scales whatever the orientation, one observes
that it is more intense along the perpendicular direction than along the axial one.
Although we consider here the equation for correlations R, this reminds of the fact
that the spectral energy transfer in rotating turbulence is also concentrated towards the
equatorial direction, corresponding also to a concentration of energy in this spectral
region.

Finally, Fig. 4 shows the streamlines of F in the (r⊥,r‖) plane. In isotropic tur-
bulence, the streamlines are expected to be exactly radial, since energy is flowing
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Fig. 3 Maps in the (ρ = r⊥, ζ = r‖) plane of the terms appearing in the KHM equation for 10243

DNS of rotating Euler-forced turbulence without helicity forcing. From left to right and top to
bottom: flux Π/ε normalized by KE dissipation, normalized dissipation term, normalized residual
term. Note that a smaller range of scales is considered for the viscous term ν∇2R. The red cir-
cles indicate the Zeman scale lZ = (ε/ (2Ω)3)1/2. Separation coordinates are normalized by the
Kolmogorov microscale η

Fig. 4 Vector field (Fr , Fθ ) in the (ρ = r⊥, ζ = r‖) plane, and corresponding streamlines in linear
(left panel) and logarithmic (right panel) scale. 10243 DNSof Euler-forced turbulencewithout helic-
ity forcing, corresponding to moderate Rossby number rotating turbulence. Separation coordinates
are normalized by the Kolmogorov microscale η
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from scale to scale. In rotating turbulence, this symmetry is broken and anisotropy is
expected. Thus the map of F is informative of the details of the transfers that occur
between scales and directions. It provides even more information about the sources
and sinks in scale and orientation space than the spectral transfer term T (k), since
the latter is only equivalent to the divergence −∇ · F/4.

The left panel of Fig. 4 shows that the flux vector is clearly oriented along the
axial direction at large axial separation r‖, and at smallish perpendicular separation
r⊥. However, again in the region close to the equator, i.e. for small r‖, the direction
of the flux vector quickly re-orients towards the origin, so that it becomes more
and more horizontal. It therefore seems that two phenomena are at play: (a) at large
and inertial vertical scales the flux occurs mostly direction-wise, whereas (b) at small
axial scales it becomesmore like a downscale flux. Althoughwe consider here forced
turbulence, this also reminds of the two regimes which are observed in decaying
rotating turbulence starting from isotropic initial conditions, in which anisotropy
develops first as a directional transfer of energy towards horizontal motion in the
energetic scales, and is later followed by a growth of structural anisotropy linked
with the dimensionality of the flow [18].

It is of course rather difficult to come up with analytical predictions for the dis-
tribution of the flux in anisotropic turbulence. Nonetheless, a corresponding inertial
law for rapidly rotating turbulence has been proposed by Galtier [19]. According to
this theory, the streamlines of F should be proportional to ζ = ρ4/3, the radial flux
component |Fr | should slightly decrease with θ and the ortho-radial one Fθ should
be positive, i.e. F should be deflected towards the horizontal axis with respect to the
radial direction.

Accordingly, we plot the streamlines ζ(ρ) in logarithmic scale in the right panel
of Fig. 4. The streamlines are basically divided into two parts, one at large scale with
a slope larger than one (corresponding to radial F), the other at smaller scale with a
slope smaller than one. In the presented DNS, the Rossby number is not low enough
for recovering exactly the 4/3 predicted slope, but other DNS runs at lower Rossby
number (not presented here, see [13]) do display this 4/3 slope in the inertial range,
which is consistent with the assumption of rapid rotation of the inertial theory.

5 Conclusion

Wepresent in thiswork results on third-order statisticalmoments of velocity in forced
rotating turbulence. These statistics have to be studied in order to evaluate the origin
of the anisotropy in the flow in terms of dynamical transfers. The computation of the
flux vector moment permits to compare its distribution to Kolmogorov prediction
for the third-order velocity increment, the famous −4/5–law, for asymptotically
high Reynolds number turbulence, but also to the predictions of the theory of inertial
wave turbulence for asymptotically small Rossby number.We show that, in our finite-
Reynolds, finite-Rossby number Direct Numerical Simulations, statistical features
of rotating turbulence are overall not too far from the idealized cases. This is true
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for the one case presented in this work, considering Euler-forced turbulence without
injection of helicity. Helical forcing modifies significantly the dynamics of the flow,
and larger departures from isotropic turbulence or wave turbulence are observed
[13]. Assessment of these conclusions ought to be done at larger Reynolds number,
in order to get closer to actual flow regimes, such as those observed in geophysics.
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Self-similarity in Slightly Heated
Annular Jet with Large Diameter Ratios

A. Bouha, E. Varea, B. Patte-Rouland and L. Danaila

Abstract The study aims at furthering our understanding and quantifying the influ-
ence of coherent structures on small-scale turbulence and passive scalar mixing, in
an annular jet configuration with large diameter ratios. This ’bluff-body’ geometry
is close to that widely used in combustion for flame stabilization [1]. A passive con-
taminant is introduced in the flow, through a slight heating. We report the evolution
along the jet axis of the following quantities: mean values of the longitudinal velocity
and passive scalar (Ū and Θ̄), as well as the energy and scalar dissipation rates (ε̄
and χ̄ ). It is shown that these statistics:

• decay as x−1 and x−4, where x is the streamwise direction, similarly to the decay
in the far-field of classical jets (CJ);

• unlike the CJ, they reach self-similarity faster, a behaviour that may be attributed
to the presence of coherent structures.
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1 Introduction

Annular jets (hereafter AJ) are widely used in industrial processes. They are known
for their ability to mix inlet flow with the ambient on relatively short distances
compared to standard jets. As far as combustion is concerned, this ’bluff-body’-type
geometry allows for a better stabilization of the flame, thus leading to reduction
of pollutant emissions [1]. In the case of exhaust fan or chimney, the jet plume is
reduced. The dilution of pollutants is enhanced, which decreases the risk of high
concentration pollutant pockets transported by wind [2].

Albeit the initial conditions for AJ and classical round jets (CJ) are different, AJ
also comprise three regions: (i) the initial, (ii) the intermediate and (iii) the fully
developed zones. Unlike the CJ, the mean velocity and turbulence intensity profiles
become self-similar over a shorter distance downstream, [3].

Moreover, it is well recognized that in the ’bluff-body’-type geometry of AJ,
coherent structures develop in the intermediate zone [3]. It has been shown that
coherent structures significantly alter the energy transfer to the small dissipative
scales, as already reported e.g. in shear flows [4], grid turbulence configurations [5]
or wake flows [6]. To the best of our knowledge, there has been no previous attempt
to assess the passive scalar behaviour in AJ flows. The scalar is represented by
the temperature which is considered as mixed species and the passive character of
the scalar is discussed hereafter in Experimental Conditions sub-section. Therefore,
this study aims at evaluating the mean values of velocity Ū and scalar Θ̄ along
the AJ axis. Particular attention will be paid to the evolution of the kinetic energy
and scalar dissipation rates, respectively ε̄ (ε̄ = 15ν(∂u/∂x)2 [7], ν is the kinematic
viscosity, u is the longitudinal velocity fluctuation, [..] refers to as time average)
and χ̄ (χ̄ = 3α(∂θ/∂x)2 [7], θ is the temperature fluctuation and α is the thermal
diffusivity), respectively. The dissipations of kinetic energy and/or scalar variance
act over the small scales and balance the budget of energy and scalar variance.

The paper is organized as follows. In Sect. 2, the experimental configuration,
conditions and measurement apparatus are presented. In Sect. 3, the decay rates for
the mean velocity and scalar are discussed, as well as the dissipation rates of the
kinetic energy and scalar variance. The behaviour of these quantities is critically
compared to that already reported in the literature for CJ. Finally, conclusion will be
drawn in Sect. 4.

2 Experimental Set-Up

2.1 Experimental Configuration

A schematic of the AJ is shown in Fig. 1. Air enters in the set-up from the bottom,
through symmetrical annular inlets. Togenerate a top-hat velocity profile at the nozzle
exit, the fluid passes through fluidized bed of glass balls with a diameter of 2mm, five
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Fig. 1 a Schematic of the annular jet (AJ) nozzle of outer diameter D0 and inner diameter Di . b
Image of the AJ set-up

layers of silk filters and finally through honeycomb cells. The convergent part was
designed with a specific curvature—see [8]—to avoid boundary layer detachment.
The outlet nozzle is characterized by an outer diameter D0 = 53.88mm, and an
inner diameter Di = 48.75mm. The inner disk thickness is e = 2.56mm. The
diameters ratio, ζ = Di

D0
= 0.91, is significantly higher than that used in Ko and

Chan [3] (ζ = 0.45) or than that ofWarda et al. [4] (ζ = 0.71).However, our diameter
ratio is close to ζ = 0.96 of Aly et al. [9]. As mentioned in [3], large diameters ratio
are consistent with reduced reattachment distances.

2.2 Experimental Conditions

The jet exit velocityU0 is set to 10m/s which results in a Reynolds number (based on
the outside diameter) of ReD0 = 3.45 104 (ReD0 = U0D0

ν
). The measurements were

performed along the AJ axis, between x
D0

= 2 and x
D0

= 9. The exit temperature
Θ0 was set to 11 ◦C above the ambient. To evaluate the balance between buoyancy
forces due to the air heating and inertial forces, e.g. Antonia and Mi [10], the ratio
Gr
R2
0
is estimated, where Gr ≡ gr3uΘ/ν2Θa is the Grashof number, Θa is the ambient

temperature, ru is the radius at which the mean velocity reduces by a factor of two,
and R0 ≡ Uru/ν is the local Reynolds number. The ratio Gr

Re2 is here of 0.002, which
is close to the value reported by [10, 11]. Therefore, the temperature is a passive
contaminant with no dynamical effect (buoyancy forces are much smaller than the
inertial forces) on the fluid motion.
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2.3 Measurements

Simultaneous measurements of velocity and temperature were performed. Using
X-probe wire operating at a constant temperature (CTA, Constant Temperature
Anemometry), we evaluated the axial and radial velocity components u and v, respec-
tively. The probe was made of 5.04µm diameter Wollaston wires (Pt − 10%Rd).
The CTA circuit operated at an overheat ratio of 1.4 (hot wires) and the active
length/diameter ratio was of about 200. It was shown that for this specific ratio [12],
the errors in U and u′ (the prime refers to as the root mean square R.M.S) were
respectively 1.3 and 1.4%. The X-probe calibration was carried out using the lookup
table method (LUT), introduced by Burattini and Antonia [13]. This method was
shown to be quite rigorous. We used 374 calibration points. Temperature fluctua-
tions θ were evaluated with a constant current anemometer (CCA), operating at low
overheat ratio (cold wire). The latter was made of 0.64µm diameter Wollaston wire
and the active length/diameter ratio was of about 880. Browne and Antonia [14]
showed that for active length/diameter ratios lower than 1500, errors due to the heat
conduction between prongs could affect the temperature momentum and its time
derivative calculation. An increase of the active length/diameter ratio results in a
reduced spatial resolution. Therefore, the same strategy in terms of length to diam-
eter ratio as adopted in Lemay and Benassa [11] was chosen. They recommended
this ratio to be between 700 and 1000 and it was reported that the errors in χ are
smaller than 5%. As suggested by Paranthoën and Lecordier [15], the cold wire was
totally etched, which allows for a better time resolution. The spatial arrangement of
the X-probe velocity sensors/wires was chosen as indicated by Vukoslavčević and
Wallace [16]. More specifically, the X-probe was positioned in the (x, y) plane and
the temperature sensor was placed upstream, and perpendicular to the (x, y) plane.
This configuration limits possible contamination of the coldwire due to the hot wires.
To correct the instantaneous velocity voltage signals for the influence of temperature
fluctuations, the following correction procedure was applied [17]:

E2 Θw − Θa

Θw − Θi
= E2

corr , (1)

where E and Ecorr are the instantaneous and corrected voltages, respectively. Θw

and Θi are the hot wire temperature of 265 ◦C and instantaneous temperatures—
assessed by the cold wire-, respectively. Θa was evaluated through a thermocouple
with a resolution of 0,5 ◦C. The impact on the accuracy of relation (1) is negligible-
less than 1%. During the signal conditioning, a Butterworth low pass-filter (cut-off
frequency −48 db/dec) was used to avoid aliasing of the frequencies higher than
half the sampling frequency, fs . A number of samples between 106 and 8 106 were
acquired at each spatial location, using a 12 bit A/D converter. Following [11],
some parameters should be assessed, as summarized in Table1 for the experimen-
tal conditions at locations x

D0
= 3 and 7. This allows us to evaluate the level of

error in estimating small-scale quantities. U and Θ are the local mean velocity and
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Table 1 Experimental conditions at the axial positions x
D0

= 3, 7. lw1 and lw2 refer to as the length
of hot and cold wires, respectively

x/D0 3 7

Θ (◦C) 31.04 28.56

Rλ 141 118

U (m/s) 4.72 2.36

η (mm) 0.097 0.134

ηθ (mm) 0.116 0.214

lw1/η 10.4 7.5

lw2/ηθ 4.78 2.59

fs (103HZ) 28.05 11.65

fK (103HZ) 7.75 2.81

fK θ (103HZ) 6.48 1.76

temperature, respectively. Rλ = u′λ/ν is the Reynolds number based on the Tay-

lor micro-scale, defined as λ =
√
u2/(∂u/∂x)2. The longitudinal derivatives are

determined via the Taylor hypothesis which allows us to assess the spacial increments
�x from the temporal measurements, such as �x = −U�t . Here, η = (ν3/ε)1/4 is
the Kolmogorov scale and ηθ = η/Pr4/3 is the corresponding temperature micro-
scale, where Pr = ν/α is the Prandtl number. fK = U/2πη is the Kolmogorov
frequency and fK θ = U/2πηθ is the Obukhov frequency. The ratios fs/ fk and
lw2/ηθ satisfy the Lemay and Benassa [11] recommendations.

3 Results and Discussion

3.1 Spectral Analysis

Figure2 shows the velocity and temperature power spectral density PSD—computed
through a Fast Fourier transform-, as a function of the dimensionless wave number,
kη = (

2π f/U
)
η. The error on the spectra calculation is about 8.8%, so that at

each wave number we define the error as erroru2 = 2/N where N refers to as the
number of independent data used to calculate each spectra (in Fig. 2 we present the
mean spectra). For low wave numbers, the energy distributions for the longitudinal
(u) and radial (v) velocity components are dissimilar, thus reflecting differences
in the variances of u and v, and therefore departures from global isotropy. In the
intermediate zone, at x

D0
= 3, the spike in the radial velocity spectrum reflects the

presence of coherent (large scale) structures generated by the central part of the AJ.
It is well-known that v is more sensitive to the coherent motion than u, e.g. [18, 19].
The spike in the spectrum of v is absent at x

D0
= 7, which reflects the transition to
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Fig. 2 Power spectral density of fluctuating velocity components (u, v) and temperature (θ). Left:
x
D0

= 3. Right: x
D0

= 7

the developed turbulence. At low wave number, most of the energy is contained in
the longitudinal velocity component. Similarly to CJ configurations, the energy is
transferred from the mean motion to the longitudinal velocity fluctuations u2, and
then to the radial velocity fluctuations v2, e.g. [20].

3.2 Similarity Along the AJ Centreline

Within the fully developed zone, AJ most likely behave as CJ, with similar decaying
exponents for basic turbulence characteristics (mean statistics and dissipation rates),
but with some differences that we highlight in the following analysis. We define
an equivalent jet with the same outlet velocity U0, but with an equivalent diameter

Deq =
√
D2

0 − D2
i based on the conservation of the mass flow rate. The mean

velocity and temperature fields decay in a similar fashion as already reported by e.g.
[11, 21, 22],

U

U0
= AU

(
x − x0
Deq

)−1

, (2)

and
Θ − Θa

Θ0 − Θa
= AΘ

(
x − x0
Deq

)−1

. (3)

The prefactors of these power-laws, AU and AΘ were evaluated through a fit of the
mean normalized velocity and temperature (see Fig. 3). Their values are 4.6 ± 0.2
and 4 ± 0.36, respectively. For CJ, it appears that 5.8 ≤ AU ≤ 6 [21, 23–25] and
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AΘ = 4.35 [21]. Pitts [22] established a compendium of AΘ values found in the
literature for a variety of measurements methods.

To evaluate the features of small scales, the axial evolution of the mean
energy dissipation rates ε and χ are calculated and represented in Fig. 3. Note that
mean values of velocity and temperature are also shown in Fig. 3. According to
[23, 26], local axisymmetry is a better assumption than local isotropy. Therefore, the
expression of εhom considering local homogeneity becomes

εhom = 3ν

((
∂u

∂x

)2

+ 2

(
∂v

∂x

)2
)

. (4)

Considering relations (2), (3) and given that v2/u2 scales whit x , this leads to nor-
malized mean dissipation rates following the power law x−4 [27–30], such as

εDeq

U 3
0

= Aε

(
x − x0
Deq

)−4

, (5)

and
χDeq

U0 (Θ0 − Θa)
2 = Aχ

(
x − x0
Deq

)−4

. (6)

The values Aε and Aχ are 32 ± 4.8 and 6 ± 0.55 for ReDeq = 1.47 104, respec-
tively. For CJ, the mean dissipation rate of the energy is found to be close to 42.5 for

(a) (b)

Fig. 3 a The streamwise decay of mean statistics. (. . . ): fit of relation (2). ( ): fit of relation (3).
Error bars refer to as AU and AΘ confidence intervals. b: The streamwise decay of mean dissipation
rates. (. . . ): fit of relation (5). ( ): fit of relation (6). Error bars refer to as Aε and Aχ confidence
intervals
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Table 2 Distances over which either AJ or CJ reach similarity

Similarity of AJ CJ

Mean statistics 4Deq 4D to 8D [4, 21, 31]

R.M.S 9.5Deq 20D to 40D [4, 20, 21, 24, 29]

Dissipative scales 14Deq 26D [29]

ReD = 11.3 104 and 48 for ReD = 12 104 [27, 28, 30]. For the scalar it is close
to 14.9 for ReD = 15 104 [29] (D refers to as the round jet diameter).

As far as the similarity is concerned, the mean field becomes self-similar at dis-
tances slightly smaller than x = 7Deq , as indicated in Fig. 3. The value of the virtual
origin, x0 = −3Deq , is provided by the zero-crossing ofU0/U . Note that the virtual
origin should be the same for other statistics [30]. From the first line in Table 2, it
appears that the real distance at which self-similarity is achieved, is the same as in
CJ. However, when expressing this distance in number of outer diameters, this is
far shorter than that necessary in CJ for the similarity to be reasonably applicable.
Moreover, self-similarity of mean quantities is not sufficient for the complete simi-
larity (i.e., similarity of all statistics) to be valid [21]. Second-order statistics of both
velocity and scalar, as well as small-scale quantities require larger distances to reach
similarity. In AJ, self-similarity emerges faster than in CJ. These observations show
the effect of initial conditions on self-similarity which is directly related to the flow
development. From the applications viewpoint, reaching self-similarity, and thus a
fully developed state, over small distances downstream the injection has a positive
impact in terms of mixing efficiency.

3.3 Radial Similarity

The radial profiles of mean kinetic energy q2 (q2 = u2 + 2v2) and R.M.S. distri-
butions are shown in Fig. 4 following the normalization using the centreline mean
velocity Uc, the velocity half radius R0.5−u , the centreline mean temperature Θc

(relative to ambient) and the mean temperature half radius R0.5−θ . From Fig. 4a, we
note that similarity is satisfied in the intermediate ( x

D0
= 1.5−3) and fully developed

zones ( x
D0

= 5−7). In addition, through those normalizing scales no disparity were
raised between the velocity and the scalar fields. However, the radial similarity of
R.M.S. quantities—Fig. 4a, b—and the mean energy—Fig. 4c—is only satisfied in
fully developed zones, sustaining the sensitivity lack of mean quantities in term of
similarity. The large scatter in temperature measurement far from the jet centreline
probably results from a contamination of temperature signal due to hot wires.

From Table2, the longitudinal decay of mean value and dissipation rate is more
pronounced for scalar than for the velocity. This result is consistent with the radial
transport mechanisms of momentum uv and scalar flux θv which is more enhanced
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(a) (b)

(c) (d)

Fig. 4 Similarity over the radial direction, for different quantities. a U and Θ b u′ and v′, c θ ′, d
q2 = u2 + 2v2. (�): at x/D0 = 7, (�): at x/D0 = 5, (�): at x/D0 = 3, (◦): at x/D0 = 1.5. Error
bars represent 95% confidence intervals

for the scalar, as shown in Fig. 5, evaluated at x
D0

= 7. Given that the transport of
scalar and momentum is mainly performed by the large scales, Chevray and Tutu
[32] argued that small scales are more efficient for the transport of passive scalar
than for the momentum. They also expected that the the transport due to pressure
forces is achieved at the expense of transport due to convection, thus resulting in a
net momentum transport reduction. Recently, Darisse et al. [33] presented budgets
of turbulent scalar fluxes uiθ . A noticeable pressure acting far from the jet centerline
is highlighted (for scalar as well as momentum), with much radial extend for scalar.

A possible scenario to explain the observed enhanced development of the flow is
intimately related to the intermediate zone which is populated by coherent structures.
It has been shown for shear flows that the vorticity created after mean field instability
initiates other instabilities which are responsible for the energy cascade to smaller
scales [6]. For grid turbulence, it has been suggested by [5] that the self-similar state is
due to the singular development of vortical structures randomly distributed across the
flow. For wake flow [34], one can observe temporal periodicity of coherent structures
which affect the turbulent scales thought phase accelerated energy transfer cascades.
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(a) (b)

Fig. 5 a Radial evolution of autocorrelation coefficients. b Scatter plot of the fit

The differences observed between the decay rates of the measured quantities and
those of round jet highlight the non-universality of different flows. As mentioned
by George and Arndt [6], self-similarity depends on initial conditions. Therefore,
in annular jet flows, one can state that due to initial conditions, a multiplicity of
scales—large scales and specifically small scales—are generated on relatively short
distances.

4 Conclusions

Kinetic energy and scalar variance behaviours were assessed in AJ with large diam-
eter ratio. We have taken great care of measurement implementations and estimation
of small-scale quantities. The decay of mean and small-scale statistics has been
evaluated, and they scale as x−1 and x−4 respectively in the fully developed region.
This is in full agreement with the CJ. However, the power-law prefactors are quite
distinct from those reported for CJ, as they reflect the link between the initial condi-
tions and the way the flow develops step-by-step. The inverse of these prefactors are
larger than for CJ, which reflects a stronger decay of mean values and dissipation
rates in AJ. This behaviour is mainly related to the strong turbulent activity in the
intermediate zone. Thus, this specific geometry generates coherent structures, which:

• influence effectively both the kinetic energy and scalar cascades in the intermediate
zone. This behaviour has been investigated for the case of thewake behind different
types of obstacles [35, 36];

• lead to an establishment of a self-similar zone over a short distance beyond the
injection. This feature emphasizes the particular relevance of AJ for mixing pro-
cess, particularly given the current issues focused on reducing the geometry of
combustion chamber.
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Parametric Instability and Turbulent
Cascades in Space Plasmas

Leonardo Primavera, Francesco Malara, Sergio Servidio
and Giuseppina Nigro

Abstract Spacecraft observations show the presence, in the polar Solar Wind (SW)
plasma, of outward propagating Alfvénic fluctuations with a very broadband spec-
trum. This is true only up to a certain frequency in the spectrum, after which a
consistent amount of energy is present also in the spectra of inward propagating
Alfvén and density fluctuations. A mechanism able to explain the production of
inward propagating modes and density fluctuations is the parametric instability, in
which Alfvén waves can decay and produce back-scattered waves and density pertur-
bations. In this work, we show some recent results obtained with a (2 + 1/2)D-MHD
pseudo-spectral numerical code in which an attempt is made to reproduce an initial
condition similar to that observed in the real SW. The evolution of the instability
generates a nonlinear cascade that redistributes the energy towards the small scales
in all directions. A striking feature of this evolution is the presence of a few localized,
energy containing, coherent pressure-balanced structures.
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1 Introduction

Spacecraft observations showed that the Solar Wind (SW) is a highly turbulent
medium, by revealing in the polar fast streams the presence of a broadband spectrum
of outward propagating Alfvénic fluctuations, extending over several decades of fre-
quencies and wave vectors. These oscillations appear to be mostly “arc-polarized”,
which means that the total intensity of magnetic fluctuations remains spatially con-
stant while propagating into the heliosphere. However, this occurs only up to a certain
frequency in the spectrum, after which the observations show an increasing presence
of both inward propagating and density fluctuations. Such observations are appar-
ently in contrast with the theoretical argument that prescribes arc-polarized Alfvén
waves to be exact solutions of the Magnetohydrodynamic (MHD) equations even in
the nonlinear and compressible case. For this reason, these fluctuations, being incom-
pressible, should propagate undistorted along a uniform background magnetic field
without undergoing a nonlinear energy cascade and with no production of backward
propagating modes and density fluctuations.

A mechanism able to explain this apparent contradiction is the so called “para-
metric instability”. In a compressible plasma, even an infinitesimal perturbation in
density or pressure can trigger the instability, in which a circularly polarized Alfvén
wave (mother-wave) decays and produces back-scattered (daughter) waves with the
two polarizations, along with density perturbations. This can then produce a tur-
bulent energy transfer and a nonlinear cascade of all the quantities involved. This
instability has been studied extensively in a variety of situations in past years (see,
for instance, [1, 4] for a study of the monochromatic case in 2D and 3D, [5, 6] for a
non-monochromatic 1D case, [2] for a 2D case in an expanding box model).

However, in the majority of those studies, the initial condition was chosen either
as a single, monochromatic Alfvén wave, or as a broadband spectrum of fluctua-
tions, following only approximately a power-law along a single propagation direc-
tion. Moreover, since the instability can lead to large density fluctuations involving
production of strong shocks, the codes are often developed in the framework of
finite volumes methods. This kind of approach involves the presence in the solution
of spurious numerical effects (especially in terms of strong numerical dissipation)
which are hard to control and may strongly influence the turbulent development of
the instability. The aim of this contribution is to present, for the first time, at the best
of our knowledge, a study of the parametric instability in which the initial condi-
tion is made of a fully two-dimensional, arc-polarized, Alfvénic perturbation with
a Kolmogorov-like power-law spectrum, much closer to the actual SW conditions
than those in previous studies.
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2 Numerical Code

We carried out several numerical simulations by using a pseudo-spectral, (2 + 1/2)D
numerical code. The code solves the following set of equations for a compressible,
polytropic MHD plasma:

∂ρ

∂t
+ (v · ∇)ρ = −ρ∇ · v (1)

∂v
∂t

+ (v · ∇)v = −βργ−2∇ρ + 1

ρ
(∇ × B) × B +

+ ν

ρ

{
∇2nv + 1

3

[∇2(n−1)∇(∇ · v)]
}

(2)

∂B
∂t

= ∇ × (v × B) + η∇2nB (3)

where ρ is the mass density, v and B the velocity and magnetic fields, β = c2s /c
2
A is

the plasma beta and cs and cA are the sound and Alfvén speeds, respectively. The
coefficients ν and η are the kinetic and magnetic hyperviscosity coefficients, which
reduce to the inverse of the ordinary kinetic and magnetic Reynolds numbers for
n = 1. The equations are dimensionless. The magnetic field is normalized to an
arbitrarymagnetic fieldB0, the density to a background density ρ0 and, consequently,
the velocity field is measured in units of the Alfvén speed: cA = B0/

√
4πρ0.

The integration domain is a box of dimensions 2π × 2π in the x − y plane. We
suppose the plasma is homogeneous, therefore we use periodic boundary conditions
in both the x and y directions. The code works in (2 + 1/2)-dimensions, that is all
the vectors retain all the three components, although the quantities depend on the x
and y coordinates only.

The numerical code is parallelized and we use in the simulations hyper-viscosity
and hyper-resistivity coefficients with n = 2. The results presented here are prelimi-
nary and obtained with a grid resolution of 5122 points, to catch the basic dynamical
evolution of the turbulence induced by the parametric instability. Further simulations
with higher resolutions are planned and will be the subject of a forthcoming paper.
The code uses the parallel FFTW library [3] to compute the derivatives in the x and
y directions and a second order Runge-Kutta time scheme for the time advancement.
Finally, the divergenceless condition for the magnetic field is ensured by projecting,
at each time step, the quantities in the spectral space on a subspace in which the
solution for a given k-vector is locally orthogonal to the wave-vector itself.

The initial condition setup consists of a background magnetic field with super-
imposed magnetic fluctuations. The global field must have a constant total inten-
sity, to ensure that the fluctuations are arc-polarized. In order to have real 2D,
divergenceless, magnetic fluctuations δBx (x, y) and δBy(x, y) with a power-law
spectrum, as observed in SW, we built up the initial conditions as the deriva-
tives of a vector potential field in the spectral space, whose components follow a
power-law spectrum with random phases. The third component Bz of the magnetic
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field is built as Bz =
√
C2 − B2

x − B2
y , where C is a suitable constant such that

C ≥ max(
√
B2
x + B2

y ). Note that, the resulting mean magnetic field will have com-

ponents along both x and z directions. The velocity field of the Alfvénic fluctuations
has a negative correlation with the magnetic field: δv = −δB/

√
ρ0, where ρ0 is the

background density. Finally, we add a noise on the density to trigger the parametric
instability: ρ = ρ0 + δρ, where δρ is built up in the spectral space with a power-law
spectrum and random phases.

3 Numerical Results

We carried out numerical simulations for different values of the plasma β. In the
monochromatic case and low-beta approximation [7], it is known that the growth
rate of the instability decreases with increasing values of β. Other important param-
eters are: the amplitude and (in the monochromatic case) the wavelength of the
initial Alfvénic perturbation that triggers the instability. In this work we can only
quickly explore the dependence on β. Further investigations of the relevant space of
parameters will be the subject of a forthcoming paper.

The plasma β in the SW is not constant, but it changes with the distance from the
Sun and it ranges between about 0.5 and 1.5. For this reason, we run two different
simulations, one with β = 0.5 and the other with β = 1.5. Please, note that since we
use an explicit time scheme in the code, larger values of β mean higher values for
the sound speed, which in turn implies smaller time steps in the simulation.

A convenient description of anAlfvénwave propagating along a specific direction
can be given in terms of the so called Elsässer variables Z± defined as:

Z± = δv ± δB/
√

ρ (4)

Notice that in the initial conditions we use a negative correlation between velocity
and magnetic field fluctuations, that is the mother-wave corresponds to aZ− Elsässer
variable, whilst Z+ = 0.

3.1 Results for β = 0.5

In Fig. 1, we show the temporal evolution of the following parameters:

r(t) =
√

<

(
δρ

ρ0

)2

>; m(t) =
√

<

(
δ|b|
|b0|

)2

>; e±(t) = 1

2
<

(
δZ±)2

>

(5)
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Fig. 1 Time evolution of the parameters r(t), m(t), e±(t) as given by Eq.5 for the β = 0.5 case

which represent the root mean square of the density fluctuations, the magnetic field
intensity fluctuations (both normalized to the average value) and energies of the
Elsässer variables Z±, respectively, averaged on the whole simulation domain, as
a function of time. The plot shows that, after an initial adjustment of the solution,
the noise superposed on the background density triggers the parametric instability
and one observes, during times t = 30 ÷ 200 an exponential increase for the density
fluctuations (r parameter), magnetic field intensity fluctuations (m parameter) and
energy of the Elsässer variable Z+ (e+ parameter). The growth rate of the instability
is γ ∼ 0.072 for r and m parameters, the double in the case of e+, being a quadratic
quantity. Correspondingly, the energy of the mother-wave Z− slightly decreases in
time. After t ∼ 250 the instability saturates.

The saturation levels for all the parameters are considerably small, which means
that the amount of energy transferred from the mother Z− wave to the density and
backscattered Alfvénic fluctuations is actually only a few percent. However, we will
see shortly that large amplitude density and Z+ fluctuations are indeed present in
the computational domain, though in very localized, energy containing, coherent
structures.

In Fig. 2, we represent a contour plot of the density fluctuations in the simulation
domain. It is visible that at the beginning of the simulation, the noise on the density
is equally distributed over the whole computational domain. After the instability
triggers (t ∼ 50), fluctuations are observed mainly in the y direction, meaning that
an anisotropic spectrum is initially formed mainly along this direction, which is the
direction perpendicular to the main magnetic field (that has x-z components only).
However, this situation changes at subsequent times (t ∼ 200), where the fluctuations
seem to focusmainly in very specific points of the domain, in particular in a horizontal
narrow band near the axis y = 0. In the final fully-nonlinear stage of the evolution,
the fluctuations start to spread everywhere in the computational domain, due to the
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Fig. 2 Density fluctuations at different times for the β = 0.5 case

nonlinear interactions. By looking at the color scale of the contour plots we actually
notice that at t = 200 the density fluctuations are considerably high (the values
are between δρ/ρ0 ∼ −0.25 ÷ 0.15), but mainly concentrated in structures at small
scales. A very similar behaviour is observed on the contour plots of the Elsässer
variable Z+ (the backscattered wave, not shown here).

To understand the nature of the density fluctuations concentrated near y = 0, we
plot the profiles of the density and magnetic field intensity for two cuts made along
the x direction at y = 0.5, the first, and along the y direction at x = 1.3, the second.
The plots are shown in Fig. 3. We see that in both plots the density fluctuations are
strictly anti-correlated with the magnetic field intensity fluctuations. In the frame-
work of MHD waves, this anti-correlation of the two quantities corresponds to slow
magnetosonic waves with wavevectors nearly perpendicular to the magnetic field.
Such waves, which have a group velocity essentially directed along the magnetic
field (x-z direction, in our case), would be driven by pressure variations generated
by the superposition ofZ+ andZ− modes. Moreover, the plot shows also that density
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Fig. 3 Cuts of δρ and δ|B| in the y and x directions at t = 200 for the β = 0.5 case

Fig. 4 Integrated spectra of density fluctuations at different times for the β = 0.5 case

fluctuations are actually present in every part of the domain, although most of their
energy is focused near the y = 0 axis.

In Fig. 4, we plot the time evolution of the spectra of the density fluctuations,
integrated in shells in the Fourier kx − ky plane, as a function of |k|. At the beginning
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(t = 0) only the power-law due to the noise on the density is present. At subsequent
times (t = 50 and t = 100) the nonlinear interactions start to transfer energy towards
smaller and smaller scales, although the energy in the spectra seems to increase only
on specific ranges of wave-numbers, probably due to the initial anisotropic behaviour
of the energy transfers. At later times, in the fully nonlinear phase of the evolution,
the energy is spread more isotropically in the Fourier space and the final form of the
spectrum approaches more and more a power-law with spectral indices not very far
from a Kolmogorov k−5/3 law (plotted along for comparison). Of course, the spectra
are quite noisy, therefore it does not make any sense to measure directly the slopes
of the spectra.

3.2 Results for β = 1.5

We ran a simulation with the identical initial condition as in the previous case, but
with a higher value for the β parameter, that is now equal to 1.5.

In Fig. 5 we show the behaviour of the quantities defined in Eq.5 for this value
of β. It is evident that the instability evolves on time scales faster than before. In
particular, the growth rate of the density fluctuations (and, correspondingly, ofm and
e+, as well) γ ∼ 0.101 is larger for higher values of β and the instability saturates
at earlier times t ∼ 100 and on slightly larger saturation values.

By plotting the contour plots of the density fluctuations (not shown here) at the
beginning of the instability (t = 50), at the saturation (t = 100), and in the fully non-
linear case (t = 150, 250), we find an analogous behaviour as in the low β case,
with a prevalence of small scale fluctuations along the y direction at the beginning of
the instability growth, after which the spectrum tends to become more isotropic but,

Fig. 5 Time evolution of the parameters r(t), m(t), e±(t) as given by Eq.5 for the β = 1.5 case
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Fig. 6 Cuts of δρ and δ|B| in the y and x directions at t = 100 for the β = 1.5 case

at the same time, localized structures appear close to the axis y = 0. At later times,
in the fully non-linear case, those structures tend to spread in the whole simulation
domain.

Again, in order to understand the nature of the density fluctuations, we plot some
cuts along the x and y directions in proximity of the localized density structures
(Fig. 6). As in the low-β case, again the fluctuations of density and magnetic field
intensity are strictly anti-correlated each to the other. Moreover, it is remarkable that,
in spite of the fact that density fluctuations do not reach very high values, shock
fronts are clearly present, which indicate the presence of strongly local nonlinear
interactions.

4 Conclusions

In this work we study the evolution of the parametric instability by starting from
an initial condition which tries to mimic the situation of the actual Solar Wind. The
main result of our investigation is that the instability (that can take place only in
presence of compressibility) not only survives at high plasma β values, but it seems
to be even more efficient than at low β-s. The fluctuations produced by the instability
tend to localize in specific parts of the domain forming pressure-balanced structures
with properties similar to the slow MHD waves in propagation perpendicular to the

nmachico@uw.edu



168 L. Primavera et al.

magnetic field. The spectra of the quantities evolve towards a power-law distribution
of energy, although a clear identification of the spectral slope is difficult.
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Large-Scale Structures in a Turbulent
Fluid with Solid Particles and with Gas
Bubbles

Arakel Petrosyan

Abstract The properties of helical turbulence in heterogeneous media are studied.
It is shown that the amplification of large-scale eddy perturbations by initially homo-
geneous isotropic spiral turbulence is possible in an incompressible fluid with solid
particles. The motion of solid particles provides non-zero divergence on a pulsating
scale and thus provides non-zero values of Reynolds stresses in averaged equa-
tions. Eddy instability of helical turbulence against large-scale perturbations in an
incompressible fluid with oscillating gas bubbles is found. It is shown that bubble
oscillations provide an asymmetry of the Reynolds stresses in the averaged equations
and the appearance of generation terms.

1 Introduction

Recently, a lot of attention has been given to the problem of structure appearance
in nonequilibrium media. Of particular interest are the large-scale eddies, arising in
a turbulent fluid, coherent structures. Such structures are observed experimentally.
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Coherent structures are also observed in natural conditions: Rossby eddies in the
Earth and Jupiter atmospheres, tropical cyclones. In the study of the turbulence phe-
nomenon an important role is played by the model of homogeneous isotropic and
stationary turbulence. Thus, the question whether such turbulence can enhance large-
scale perturbations arises. It is shown in magnetohydrodynamics that initially homo-
geneous isotropic and reflectional symmetrical turbulence cannot enhance large-scale
magnetic fields. However, if the reflectional symmetry of turbulence is disturbed
such a medium can enhance large-scale magnetic field. This phenomenon is called
magnetic dynamo. The simplest example of reflectional symmetry disturbance is a
velocity field where the value of the average helicity is nonzero. Such a turbulence
velocity field is characterized by the fact that right-handed and left-handed eddies
are observed with a different probability, i.e. there are more eddies of the one sign
than the other sign.

2 Helical Turbulence with Solid Particles

Properties of helical homogeneous turbulence are also considered as a possiblemech-
anism of large-scale vortical flows amplification [1]. In this work we study the prop-
erties of helical turbulence in an incompressible fluid filled with solid particles.
Confining ourselves to cases where the solid particle sizes are many times larger
than the molecular-kinetic ones and the scales of considered perturbations are such
that solid particles form a continuous medium, we use the equations of two-phase
hydrodynamics. In deriving the averaged equations we make substantial use of the
fact that the relative volume of particles is small, which allows us to neglect the col-
lisions of the particles with each other. The motion of a viscous incompressible fluid
with solid particles is described by the following set of equations by Nigmatulin [2]:

∂n

∂t
+ div (nVS) = 0 (1)

div (V) = −4

3
πa3div (n (VS − V)) (2)

∂VS

∂t
+ β (VS − V) + (VS · ∇)VS + 1

ρS
∇P = 0 (3)

∂V
∂t

+ γ n (VS − V) + (V · ∇)V + 1

ρ
∇P = νΔV (4)

Here VS and V are hydrodynamic velocities of liquid and solid phase respectively,
ρS and ρ are densities of phases, n is concentration of solid particles with radius a, ν
is kinematic viscosity, P is pressure in the medium. In the model (1)–(4) solid phase
particles are assumed to be identical. Coefficients

γ = 4

3
πa3β

ρS

ρ
, β = 9

2

ν

a2
ρ

ρS
(5)
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describe the Stokes friction between components of each phase.
Let us represent variables in the initial system as following:

V = 〈V〉 + V′

VS = 〈VS〉 + V′
S

n = 〈n〉 + n′

P = 〈P〉 + P ′,

where 〈〉 denotes the ensemble averaged turbulent pulsations and prime denotes
turbulent components. Equations of mean motion

∂〈n〉
∂t

+ div(〈n〉〈Vs〉) + div(n′V′
s) = 0 (6)

div(〈V〉) = 4

3
πa3

∂〈n〉
∂t

+ 4

3
πa3div(〈V〉)〈n〉 + 4

3
πa3div(〈V′n′〉) (7)

∂〈Vs〉
∂t

+ β(〈Vs〉 − 〈V〉) + (〈Vs〉 · ∇)〈Vs〉 + 〈(V′
s · ∇)V′

s〉 + 1

ρ0
∇〈P〉 = 0 (8)

∂〈V〉
∂t

+ γ 〈n〉(〈Vs〉 − 〈V〉) + γ 〈n′(V′ − V′
s)〉 +

+(〈V〉 · ∇)〈V〉 + 〈(V′ · ∇)V′〉 + 1

ρ
∇〈P〉 = νΔ〈V〉 (9)

contain unknown Reynolds stresses and are supplemented by corresponding equa-
tions of pulsation components:

∂n′

∂t
+ div(n′〈Vs〉 + 〈n〉V′

s) + div(n′V′
s − 〈n′V′

s〉) = 0 (10)

div(V′) = 4

3
πa3

∂n′

∂t
+ 4

3
πa3div(V′n′ − 〈V′n′〉) +

+4

3
πa3div(〈V〉n′ + V′〈n〉) (11)

∂V′
s

∂t
+ β(V′

s − V′) + (〈Vs〉 · ∇)V′
s + (V′

s · ∇)〈Vs〉 +

+ {
(V′

s · ∇)V′
s − 〈(V′

s · ∇)V′
s〉

} + 1

ρs
∇P ′ = 0 (12)

∂V′

∂t
+ γ 〈n〉(V′

s − V′) + γ n′(〈Vs〉 − 〈V〉) + (〈V〉 · ∇)V′ + (V′∇)〈V〉 +
+ {

(V′ · ∇)V′ − 〈(V′ · ∇)V′〉} + {
γ n′(V′ − V′

s) − γ 〈n′(V′ − V′
s)〉

} +
+ 1

ρ
∇P ′ = νΔV′ (13)

Equations (10)–(13) are used further to obtain closed equations for mean motion.
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Using the second order correlation approximation and the two-scale hypothesis,
we obtain complete Reynolds set of equations in a linear approximation in average
velocity:

∂〈n〉
∂t

+ n0div (〈Vs〉) = 0 (14)

div (〈V〉) = 4

3
πa3

∂

∂t
〈n〉 (15)

∂〈Vs〉
∂t

+ β (〈Vs〉 − 〈V〉) + 1

ρs
∇〈P〉 = 0 (16)

∂〈V〉
∂t

− γ n0(〈V〉 − 〈Vs〉) + αrot (〈V〉) + 1

ρ
∇P = νΔ〈V〉 (17)

We have obtained a system of equations describing the average perturbations of
helical turbulence. These equations contain terms that can lead to instability. It is
easy to see that for potential motions these new terms disappear from the equations
and thus the potential motion decays.

Being interested in the evolution of vortex perturbations, we pass from (14)–(17)
to the corresponding equations for vorticity Ω = rot (〈V〉), Ω S = rot (〈VS〉)

∂Ωs

∂t
+ β (Ωs − Ω) = 0 (18)

∂Ω

∂t
+ γ n0 (Ωs − Ω) + αrot (〈V〉) = νΔΩ (19)

The obtained equations contain a term that describes the generation of vortices as a
result of instability. The dispersion equation for small perturbations

− 1

β
(−iω)2 − ω

(
γ n0 + νk2 ± αk

β

)
+ (

νk2 ± αk
) = 0 (20)

has a solution describing an instability with the following increment:

− iω = −1

2

(
γ n0 + νk2 − αk + β

) ±
√(

γ n0 + νk2 − αk + β
)2 − 4β

(
νk2 − αk

)

(21)
Let us consider a limit of single-phase medium in (20). To do this we set the

particle radius to zero. Therefore, coefficients α, γ and 1
β
also approach zero. In this

limit we get
− iω = −νk2 (22)

which corresponds to perturbations decay in incompressible viscous fluid.
It is shown that in complete set of equations a generation term arises due to

nonzero divergence as a result of fluid flow around the solid particles. In essence,
such a two-phase medium acts like compressible one. The analysis shows that helical
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turbulence in an incompressible fluid with solid particles is unstable with respect to
vortex perturbations.

3 Helical Turbulence with Gas Bubbles

A similar eddy structures generation mechanism is investigated for the case of a
liquid with distributed gas bubbles. We study the physical processes in a fluid with
distributed bubbles. We neglect the collapse of the bubbles, assuming a constant
number of bubbles in the fluid that perform radial oscillations is maintained. To study
the turbulentmotions in such amixture,weuse the following systemof hydrodynamic
equations for a mixture of fluid with bubbles:

∂ρ

∂t
+ ∂

∂xi
(ρVi ) = 0 (23)

∂

∂t
Vi + (Vk∇k) Vi = −∇ p

ρ
+ ν

ρ
Δ2Vi (24)

complemented with Rayleigh equation for a solitary bubble:

RR̈ + 3

2
Ṙ2 = 1

ρ0
(pr − p) (25)

In Eqs. (23)–(25)ρ is gas-liquidmixture density, p , Vi are fluid pressure and velocity,
R is bubble radius, ρ0 is fluid density, pr is gas pressure in a bubble.

Equation (25) is equivalent to the following equation for bubble volume U =
4
3πR3

αU− 1
3 Ü − α

6
U− 4

3 U̇ 2 + 3

2
Ṙ2 = pr − p (26)

where α = ρ0/3
1
3 (4π)

2
3 .

For our purposes it is more convenient to consider the deviation of pressure from
the equilibrium value and corresponding deviations of small bubble pulsations:

p = p0 + p1, U = U0 +U 1

Under the condition p1

p0
< 1, U 1

U0
< 1 of adiabatic equation of state for a bubble

pr = p0

(
V0

V

)γ

we will further use an equation for bubble oscillations, obtained by Zabolotskaya [3]
(primes omitted)
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Ü + w2
0U − αU 2 − β

(
2ÜU + U̇ 2

) + μU 2 + ν
(
ÜU 2 + U̇ 2U

) = −εp (27)

w0 = 3γ p0
ρ0R2

0

, ε = 4πR0

ρ0
, f = w0

Q
, α = (γ + 1)w2

0

2U0
,

β = 1

6
U0, ν = 2

9U 2
0

, μ = (γ + 2) (γ + 1)w2
0

6U 2
0

To close the set of Eqs. (23)–(25) we use an expression for mixture density

ρ = ρ0

1 − χp + nU
, (28)

where n is bubble concentration and χ = − 1
U

∂U
∂p characterizes compressibility from

changes in bubbles volume.
Let us simplify the set of Eqs. (23)–(28) further. We consider sufficiently slow

motions that are not resonant with bubble oscillations therefore, to simplify further
calculations, we neglect the nonlinear terms in the bubble oscillation equation and
assume that the determining nonlinearity is the hydrodynamic nonlinearity. This
essentially means neglecting sound motions in the main phase of the fluid, that
is, neglecting the intrinsic compressibility of fluid. We also neglect nonlinearity in
Eq. (28), describing the gas-liquid mixture density, which imposes restrictions on
bubble concentration.

Thus in subsequent analysis of perturbations evolution in a turbulent medium we
use the following set of equations:

ρ = ρ0 (1 − nU + χp) (29)
∂ρ

∂t
+ ∂

∂xi
(ρ0Vi ) = 0 (30)

∂

∂t
Vi + (Vk∇k) Vi = −∇ p

ρ0
+ ν

ρ0
ΔVi (31)

Ü + w2
0U = −εp (32)

The simplified equations of a gas-liquid medium written in the form (29)–(32) is
especially interesting for our study, since it is possible to consider a random vortex
velocity field with as a basic unperturbed state.

Let us employ Eqs. (29)–(32) to study the perturbations evolution against a small-
scale turbulence background. In order to do this, we represent the problem variables
in the following form:

Vi = V̄i + V ′
i (33)

ρi = ρ̄i + ρ ′
i (34)

pi = p̄i + p′
i (35)
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Ui = Ūi +U ′
i (36)

where overline denotes Reynolds averaging and primed variables denote pulsing
components with zero mean. Substituting (33)–(36) in (29)–(32) and taking an aver-
age the following set of equations describing mean motions is obtained:

ρ̄ = ρ0
(
1 − nŪ + χ p̄

)
(37)

∂ρ̄

∂t
+ ∂

∂xi

(
ρ0V̄i

) = 0 (38)

∂

∂t
V̄i + (

V ′
k∇k

)
V ′
i = −∇ p

ρ0
+ ν

ρ0
ΔV̄i (39)

¨̄U + w2
0Ū = −ε p̄ (40)

Subtracting (37)–(40) from Eqs. (29)–(32), averaging and employing (33)–(36) we
get the following set of equations, describing pulsation components:

ρ ′ = ρ0
(
1 − nU ′ + χp′) (41)

∂ρ ′

∂t
+ ∂

∂xi

(
ρ0V

′
i

) = 0 (42)

∂

∂t
V̄i + (

V ′
k∇k

)
V ′
i − (

V ′
k∇k

)
V ′
i +

+ (
V ′
k∇k

)
V̄ ′
i + (

V̄ ′
k∇k

)
V ′
i = −∇ p′

ρ0
+ ν

ρ0
ΔV ′ (43)

Ü ′ + w2
0U

′ = −εp′ (44)

We study the mean perturbations evolution against a small-scale helical turbulence.
To do this let us represent problem variables in the following form: V ′

i = V t
i + V 1

i ,
p′ = pt + p1, ρ ′ = ρ t + ρ1, U ′ = Ut +U 1. Using the second-order correlation
approximation and the two-scale hypothesis, we obtain an equation system that
describes the evolution of mean motions against a background of small-scale helical
turbulence in a fluid with pulsating gas bubbles in a linear approximation:

∂ V̄i

∂t
= α

(
rotV̄

)
i − ∇i p̄

ρ0
+ ν

ρ0
ΔV̄i (45)

∂ρ

∂t
+ ∂

∂xi

(
V̄iρ0

) = 0 (46)

ρ̄ = ρ0
(
1 − nŪ + χ p̄

)
(47)

d2Ū

dt2
+ w2

0Ū = −ε p̄ (48)
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Note that a new term vanishes for potential perturbations, therefore potential motion
decays in such system. For vortical motions, the vorticity equation separates from
(45)–(48) and becomes

∂

∂t
Ω̄ + αrotΩ̄ = ν ′ΔΩ (49)

where ν ′ is summed kinematic and turbulent viscosity.
Equation (49) is known in α2-dynamo theory of magnetic field. We note that in

the absence of bubbles the coefficient α vanishes, which corresponds to the damping
of the eddy perturbations in incompressible fluid. We also note that in the absence
of helicity in the correlator of small scale velocity field, large scale structures also
damp.

Let us seek a solution of (49) in the form Ω = Ωkeiwt−iKr. In the usual way we
get the dispersion relation

(
w − iν ′K 2

)2 = −α2K 2 (50)

and instability increment

γ = iw, γ = −ν ′K 2 + αK (51)

reaches the maximum

γm = α2

4ν ′ , Km = |α|
2ν ′ (52)

The characteristic size of the forming structure is Km .

4 Conclusion

The properties of helical turbulence in heterogeneous media are studied. It is shown
that the amplification of large-scale eddy perturbations by initially homogeneous
isotropic spiral turbulence is possible in an incompressible fluid with solid particles.
The motion of solid particles provides non-zero divergence on a pulsating scale
and thus provides non-zero values of Reynolds stresses in averaged equations. Eddy
instability of helical turbulence against large-scale perturbations in an incompressible
fluidwith oscillating gas bubbles is found. It is shown that bubble oscillations provide
an asymmetry of the Reynolds stresses in the averaged equations and the appearance
of generation terms. Note that that the resulting structures have a helical nature, i.e.
〈V · rotV〉 �= 0.
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Cloud Turbulence and Droplets

Izumi Saito, Toshiyuki Gotoh and Takeshi Watanabe

Abstract Evolution of droplets and turbulence in a small box which is ascending
inside the maritime cumulus cloud has seamlessly been simulated for about 10min
from the view point of the microscopic dynamics. It is found that the kinetic energy
spectrum obeys the Kolmogorov spectrum k−5/3 at low to moderate wavenumbers,
while the spectra of the temperature and the water vapor mixing ratio are modified,
close to k−1/3 at low wavenumbers and roll off more slowly than the exponential in
the diffusive range. This modification of the spectra arises from the condensation-
evaporation and the liquid water mass loading to the flow. It is also found that the
spectra related to the cloud droplets consist of two contributions, one is from the
spatially correlated part and the other is from the uncorrelated part which originates
from the discreteness of droplets. The former dominates the spectrum at low to
moderate wavenumbers and the latter at high wavenumbers. We argue the effects of
the two contributions on the turbulence spectra.
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1 Introduction

Turbulence and clouds are most uncertain factors in weather forecasting and pre-
diction of the future climate. In most numerical simulations of the atmosphere, the
clouds are treated as continuum accompanied withmodels for themicrophysical pro-
cesses like nucleation, condensation growth and collision-coalescence which occur
at scales much smaller than the computational grid size. Turbulence is also simulated
by Large Eddy Simulation (LES) in which the fluid motion below the grid scale is
represented by the subgrid scale model. Although there have been many efforts to
improve the models, still the accurate prediction of the atmospheric motion is diffi-
cult because of limited knowledge of the cloud microphysical processes and because
the turbulence is not well understood [5, 12, 18]. Recent progress in the high perfor-
mance computers allows us to directly simulate dynamics of cloud droplets convected
by turbulent flow from the view point of first principle, an approach to numerically
follow the evolution of all the degrees of freedom as faithfully to their fundamental
physics as possible. There have been many studies in this direction of research [2,
11, 16, 17]. Central issues are the growth of cloud droplets, droplet spectrum (size
distribution), and various effects such as turbulence and hydrodynamic interaction
on the droplet collision rate [1, 3, 4, 8, 9, 13, 14]. But less attention has been paid
on the effects of the cloud droplets on the turbulence and/or their interaction with
the turbulent flow. Recently we have seamlessly simulated the evolution of the cloud
droplets from about 10 to 500 micron meters over 10min which required about 2.4
million time steps [10]. The long time simulation have found the modification of
the spectra of the turbulence, the temperature and the water vapor mixing ratio. This
modification arises from the interaction between the cloud droplets and the turbulent
field. Droplets in the present study are smaller than the Kolmogorov scale but they
affect the evolution of the turbulent flow though the water mass loading ratio, water
vapor and temperature through the condensation process at all scales. In this paper
we examine the effects of the droplets on the turbulent spectra.

2 Fundamental Equations

Since the system under consideration is the same as that used in Ref. [10], we
describe the essential parts necessary for the arguments. We consider a small air
parcel ascending inside the core region of maritime cumulus cloud. The parcel is a
cubic box with lengths of Lbox per side, and is assumed to be much smaller than the
size of the entire cloud so that statistical properties of fluctuating quantities inside
the box can be regarded as homogeneous and periodic boundary conditions in three
directions are imposed on the flow field. The updraft velocity of the parcel is self-
consistently determined by the mean buoyancy force inside the parcel, and a local
coordinate moving in tandem with the box is introduced. The fluid inside the box is
assumed to be incompressible under the Boussinesq approximation. The temperature
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T and the water vapor mixing ratio Qv are expressed as the sum of the mean and
fluctuation as T = T + θ, Qv = Qv + q respectively, where the over bar denotes
the volume overage over the box. The fluctuating turbulent velocity u = (u1, u2, u3),
temperature θ , and water vapor mixing ratio q are assumed to obey

∂u
∂t

+ u · ∇u = − 1

ρa
∇ p + νa∇2u + (B − B)e3 + f , ∇ · u = 0, (1)

∂θ

∂t
+ u · ∇θ = κT∇2θ + Lv

cp

(
Cd − Cd

) − Γ (t)u3, (2)

∂q

∂t
+ u · ∇q = κv∇2q − (

Cd − Cd
)
, (3)

in the local coordinate system of the box, respectively, where p is the pressure, and f
is the external force applied at lowwavenumbers kLbox ≤ 4. The kinematic viscosity
of dry air νa , as well as the diffusivity of temperature and water vapor κT and κv, are
the same as those in [10]. The buoyancy force B is given by

B(x, t) = g

{
T (x, t) − Te(H(t))

Te(H(t))
+ α

[
Qv(x, t) − Qve(H(t))

] − ql(x, t)

}

, (4)

where ql is the liquid water mixing ratio, α = Rd/Rv = 0.61, and Rd and Rv are
the gas constants for dry air and water vapor, respectively. Te and Qve are the mean
temperature and water vapor mixing ratio as function of altitude which are taken
from the observation data at Hawaii [15]. The term with Γ (t) in (2) denotes the
cooling effect imposed by the ascending motion.

Droplets affect the evolution of fluid through the term Cd in (2) and (3) (repre-
senting latent heat release and mass exchange through condensation, respectively),
and the term ql in (4) (representing drag force due to the weight of the condensed
water). These terms are assumed to be given by

Cd(x, t) = 4πρlKs

ρa(Δx)3

NΔ∑

j=1

R j (t)S
(
X j (t), t

)
, (5)

ql(x, t) = 4πρl

3ρa(Δx)3

NΔ∑

j=1

R j (t)
3, (6)

respectively, where R j (t) and X j (t) are the radius and the position for the j th
droplet, respectively, NΔ(x, t) is the number of droplets in the grid cell (Δx)3, S is
the supersaturation, and Ks is a temperature-dependent diffusion coefficient that is
assumed to be constant because its dependence on temperature is very weak [4]. The
droplet undergoes the Reynolds number dependent drag and the gravity force with
modificationdue to the timedependentGalilean transformation, and its radius evolves
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Table 1 Numerical andmean turbulence parameters. Rλ is the Taylormicroscale Reynolds number,
E is the kinetic energy, ε is the mean energy dissipation rate per unit mass, L is the integral scale, λ
is the Taylor microscale, η is the Kolmogorov length, kmaxη is the cut off wavenumber normalized
by the Kolmogorov length, Δt is the time increment

Run No. Rλ E
(cm2s−2)

ε

(cm2s−3)
L (cm) λ (cm) η (mm) kmaxη Δt (ms) CPU

time
hours

Run 1 59 11.2 1.75 3.30 2.18 1.06 6.31 0.5 50

Run 2 104 80.6 26.8 8.25 2.13 1.06 3.08 0.5 50

Run 3 131 197 101 8.16 1.72 0.763 2.21 0.4 63

Run 4 167 501 400 8.13 1.38 0.541 1.57 0.25 100

according to the supersaturation. Also the droplets collide and coalesce according to
the Hall table which describes the hydrodynamic interaction between droplets [6].

The equations of turbulent flow are computed by using the pseudo spectral method
and the time integration is made by the second order Runge Kutta method. The fluid
velocity, the temperature and the water vapor mixing ratio at the droplet position are
computed by the linear interpolation and the condensation rate and the liquid water
mixing ratio are redistributed on the grid by the particle in cell (PIC) method with the
sameweight as the linear interpolation. The fourRunsweremade. Typical parameters
are the box size is Lbox = 51.2 (cm), the numbers of the grid points and the droplets
at the initial time are N = 5123 and Np = 16 millions, respectively. The code is
written by using MPI and OpenMP and the typical number of the computational
nodes is 1024 (8192 cores). The computation was made on K at RIKEN, FX100 at
Nagoya University, and FX100 at National Institute for Fusion Science at Toki site.
For the details of the computation, refer to [10] (Table1).

3 Results

The spectra of the kinetic energy and the water vapor mixing ratio are shown in Fig. 1
[10]. The kinetic energy spectrum evolves quickly and has already attained a steady
state at 10 s, where it remains unchanged except in the far dissipation range. The
spectral slope at lowwavenumbers (2 ≤ kLbox ≤ 20) is close to−5/3,whichmatches
the Kolmogorov spectrum in the inertial range and is consistent with a previous
turbulence DNS. However, the spectral tail in the far dissipation range gradually
increases at latter times. The spectrumof thewater vapormixing ratio evolves into the
usual spectral form like k−5/3 at lowwavenumbers and exponential in the far diffusive
range by 10s, but develops in a different way for the latter period of evolution. The
increase of amplitudes begins at high wavenumbers and gradually propagates toward
lowwavenumber band, and ceases to growat the endof computation. The propagation
of the excitation in the negative direction in the wavenumber space is opposed to the
idea of forward cascade in Kolmogorov–Obukhov–Corrsin’s theory. The slope of the
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(a) (b)

Fig. 1 Time evolution of turbulence spectra for Run 2. a: E(k, t), b: Eq (k, t). t = 10 s (black),
120s (red), 240s (blue), 360s (green), 480s (magenta), 600s (orange). Dashed lines show the slope
−5/3, −1/3 and −2

curve Eq(k, t) for 3 < kLbox < 10 is close to −1/3 and −2 for 40 < kLbox < 100,
at 600s, respectively.

In order to explore the physical explanation of the spectral modification, we first
consider the correlation function of the droplet number density n [10]. The two point
correlation function with separation r is given by

〈ñ(x + r, t)ñ(x, t)〉 = 〈n(x + r, t)n(x, t)〉 − n2 = n2(t)w(r) + n(t)δ(r), (7)

where ñ = n − n, the first term on the right-hand side is related to the probability of
finding a droplet within a small volume dV at r conditioned on one droplet within
dV at the origin, and the second term is related to the probability that two droplets
will reside within the same volume [7]. The first term (correlated term) describes the
spatial coherency of two droplets at nonzero separation, and w(r) → 0 as r → ∞,
and is related to the radial distribution function w(r) = g(r) − 1 for isotropic case.
The second term arises from the discreteness of the droplets and corresponds to
spatially uncorrelated distribution. The spectrum of the number density which is
defined by

〈
ñ2

〉 = ∫
En(k)dk is given by the sum of two terms as

En(k, t) = Ec
n(k, t) + Euc

n (k, t), Euc
n (k, t) = 4πn(t)k2/(2π)3. (8)

The second term Euc
n (k, t) is the equipartition spectrum. This equipartition spectrum

is numerically filtered near the wavenumber cut off at kmax. For example, the con-
densation rate computed at the droplet position is distributed on the surrounding grid
points with the linear weight in the PIC method, so that the droplet position spa-
tial accuracy is lost for scales smaller than the grid spacing Δx = 2π/(KmaxLbox).
Figure2a shows 4πk2/L3

box (black) and the ensemble-average of En(k, 0)/n(0)
(cyan) computed from the continuum number density after distributing the droplets
on the grid points using the PICmethod, where ensembles are calculated by changing
the random droplet positions. The ratio of the black to cyan curve provides the filter
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(a) (b)

Fig. 2 Spectra related to the droplets and the filter function. a: 4πk2/L3
box (black), the ensemble

average of En(k, 0)/n(t) (cyan), and Ffilter(k) (red), which is the ratio of the cyan to black curve.
b: Normalized spectrum ECd (k, t)/ACd (t)

function Ffilter(k) due to the PIC method. Ffilter(k) is close to unity for kLbox < 70
and decreases for high wavenumbers kLbox > 100. This filter applies to all spectra
related to the droplets, ECd (k, t) and Eql (k, t).

Similarly, the spectrum of the fluctuating condensation term which is defined

by
〈
C̃2
d

〉
= ∫

ECd (k)dk and C̃ = Cd − Cd also has two contributions ECd (k, t) =
Ec
Cd

(k, t) + Euc
Cd

(k, t) and the second term is also of the form of k2. Figure2b shows
the time evolution of the normalized spectrum ECd (k, t)/ACd (t), where ACd(t) =
(
4πρlKs

/
ρa

)2 × n(t)
〈[
R j (t)S

(
X j (t), t

)]2〉
[10]. Initially the spectrum is of the

form of the initial condition like EDd (k, 0) ∝ k4 exp(−2(k/k0)2) for low k and k2 for
high k. The spectrum evolves to be like k for 3 < kLbox < 10, k2 for 30 < kLbox <

100 and k0 near the wavenumber cut off.
With this knowledge of the condensation spectrum, we proceed to analyze the

spectrum of the water vapor mixing ratio. The equation for Eq(k, t) is given by

∂Eq(k, t)

∂t
+ 2κvk

2Eq(k, t) = Tq(k, t) + Fq(k, t), (9)

Fq(k, t) = −
∑

k<|k|<k+Δk

[〈
C̃d(k, t)q(−k, t)

〉
+

〈
q(k, t)C̃d(−k, t)

〉]
, (10)

where Tq(k, t) represents the scalar variance transfer function due to the convective
term. The function Fq(k, t) provides the input rate by the condensation and is esti-
mated as Fq(k, t) = 4πk2

∫ t 〈GL(k, t, s)Cd(k, s)Cd(−k, t)
〉
ds ≈ τq(k)ECd (k, t) on

the dimensional ground whereGL(k, t, s) is the response function of the water vapor
mixing ratio and τq(k) is the characteristic time of the response function at the
wavenumber k. Then the time integration of (9) yields
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Fig. 3 Time evolution of the kinetic energy spectrum. a: E(k, t)without ql term for Rλ = 101, ε =
26.8 (cm2s−3). b: E(k, t) with ql term for Rλ = 59, ε = 1.75 (cm2s−3) (Run 1). Curves are plotted
at t = 10 + 50ns, n = 0, 1, · · · 10

Eq(k, t) ≈ [τq(k)]2ECd (k, t) (11)

again by the dimensional argument. The spectral slope of Eq(k) in Fig. 1b is argued
as follows. For 5 < kLbox < 20, we observe E(k, t) ∝ k−5/3 in Fig. 1a meaning that
τq(k) ∝ ε−1/3k−2/3, so that we obtain Eq(k) ∝ k−1/3 which is close to the slope of
Eq(k, t) curve at the final time. For 50 < kLbox < 150, we observe that E(k, t)
rolls off exponentially in Fig. 1a and Sc = 0.72 we substitute τq(k) ≈ (κvk2)−1

and ECd (k, t) ≈ k2 into (11) to obtain Eq(k) ∝ k−2 which is close to the Eq(k, t)
curve. For 150 < kLbox, since ECd (k, t) ≈ k0 due to the filtering effect, we predict
Eq(k, t) ≈ k−4 which is consistent with the faster decay of Eq(k, t) observed near
the wavenumber cut off.

The above consideration implies that the spectral modification by the droplets
is determined by the relative amplitudes of the correlated and uncorrelated spectra.
In order to see this point, we consider the contributions due to the ql term of the
buoyancy term. For this purpose, we computed two cases. The first computation is
to do the same simulation without ql term and the second one is to simulate with ql
term but with lower turbulent intensity at Rλ = 59 and ε = 1.75 (cm2s−3) (Run 1).
Figure3a shows the time evolution of E(k, t) without ql term. There is no rise of
the spectrum in the far dissipation range, as expected, meaning that the rise of the
kinetic energy spectrum tail is due to the contributions of the droplets. On the other
hand, when the turbulent intensity is weak, it is seen from Fig. 3b that the effects of
ql term becomes stronger, the length and the excitation level of the spectral tail in
the dissipation range increases in time and the slope of the curve is close to −2. This
slope can be explained in the same way as in the case of the water vapor mixing ratio.
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4 Summary

We have successfully simulated the evolution of the cloud droplets and turbulence in
the cumulus cloud. The long time simulation reveals themodification of the turbulent
spectra due to the cloud droplets. The condensation process is responsible for the
modification of the scalar variance spectra of the temperature andwater vapormixing
ratio at all wavenumbers. It is found that the spectra related to the cloud droplets
consists of two contributions, the spatially correlated part and the uncorrelated part.
The latter spectrum is of the formof the lowpass filtered equipartition. It is not unclear
to what extent these scalar, especially, the spectrum of the water vapor mixing ratio
is modified at very large Reynolds numbers. The further studies at larger Reynolds
number are certainly necessary.
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Bubble-Induced Turbulence

Frédéric Risso

Abstract A homogenous swarm of bubbles rising through a liquid generates
anisotropic homogeneous random velocity fluctuations. The statistical properties of
bubble-induced fluctuations differ from the classical shear-induced turbulence. The
probability density functions are non Gaussian and show a succession of exponen-
tial evolutions. The power spectral densities exhibit a k−3 subrange for wavelengths
around the bubble size. The understanding of these properties requires to consider
that bubble-induced agitation involves two contributions of a different nature. The
first one is not related to any flow instability and results from the anisotropic flow
disturbances generated near the bubbles, principally in the vertical direction. The
second one is the almost isotropic turbulence induced by the instability of the flow
through a population of bubbles, which turns out to be the main cause of horizontal
fluctuations. Even if the two contributions are coupled, only the second one deserves
to be called bubble-induced turbulence.

F. Risso (B)
Institut de Mécanique des Fluides de Toulouse, IMFT, Université de Toulouse, CNRS,
Toulouse, France
e-mail: frisso@imft.fr

© Springer Nature Switzerland AG 2019
M. Gorokhovski and F. S. Godeferd (eds.), Turbulent Cascades II,
ERCOFTAC Series 26, https://doi.org/10.1007/978-3-030-12547-9_20

189

nmachico@uw.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12547-9_20&domain=pdf
mailto:frisso@imft.fr
https://doi.org/10.1007/978-3-030-12547-9_20


190 F. Risso

1 Agitation in a Homogeneous Bubble Column

Bubbles rising through a liquid otherwise at rest generate random fluctuations.When
the bubbles are uniformly distributed over space, the agitation of the liquid is homo-
geneous. Here, we consider situations where the Reynolds number Re = 〈V 〉d/ν

(based on bubble average velocity 〈V 〉, bubble diameter d and kinematic viscosity
of the liquid) is larger than 200. Since the pioneering work of Lance and Bataille [2],
many authors have investigated homogeneous bubble columns (left side of Fig. 1), in
which the average liquid velocity is everywhere zero. These works have been exten-
sively reviewed in a recent state-of-the-art paper [8] and we recall here the salient
features of bubble-induced agitation.

The variance of the fluctuations 〈u2〉 is roughly proportional to the product of the
gaz volume fraction α and the square of the average bubble velocity. However, the
fluctuations are anisotropic since the variance of the vertical velocity 〈u2z 〉 is larger
than that of the horizontal velocity 〈u2x 〉. The probability density functions of both the
horizontal and the vertical velocity fluctuations (PDFs) are non Gaussian. Moreover,
the vertical PDFs are asymmetric with a long exponential tail for positive (upward)
fluctuations, which becomes more and more important as α increases (right side of
Fig. 1).

The spectrum of the velocity fluctuations shows a subrange where the power den-
sity evolves as the power −3 of the wavenumber k. As shown in Fig. 2, the k−3

Fig. 1 Homogeneous bubble column. To the right: picture. To the left: probability density function
of the vertical liquid velocity fluctuations for various gas volume fractions α from [4]
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Fig. 2 Power spectra of
liquid vertical velocity
fluctuations measured in a
bubble column by [4]
(d = 2.5mm, α = 1.7%,
Re = 760). The wavelengths
limiting the k−3 subrange are
lc = 2mm and Lc = 7.7mm
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subrange is observed for wavelengths, λ = 2π/k, around the bubble diameter. Sur-
prisingly, when normalised by the variance of the fluctuations, the spectra measured
for various values of α collapse onto a single curve. This means that the integral
length scale Λ of the velocity fluctuations is independent of the gas volume fraction.
The value of Λ is related to the length of the wake that develops behind each bub-
ble. The wake of a bubble that belongs to a swarm of rising bubbles is considerably
shorter than the wake of an isolated rising bubble because of the interactions with
neighbouring wakes. It decreases exponentially with the distance to the bubble on a
length scale Lw ≈ 5d, which is observed to be independent to the gas volume fraction
provided α � 0.5%.

2 Distinction Between Turbulent Fluctuations and Average
Bubble Disturbances

The temporal velocity fluctuations which are measured in a given point located
within a swarm of rising bubbles combine two contributions of a different nature.
The first contribution corresponds to the average disturbance generated in the vicinity
of each bubble. Even if the flow around each bubble would be steady in a frame that
follows the bubble, temporal fluctuations would be observed in the laboratory frame
as the bubble passes close to the measurement point. Since the bubbles are randomly
distributed over space, random temporal fluctuations would be measured. It is clear
that these fluctuations are not related to any kind of flow instability and must not
be confused with turbulence. The second contribution is the real turbulence that
develops provided the Reynolds number is large enough.

It is easy to make the distinction between these two kinds of fluctuations in the
idealized situation where the bubbles are not moving relatively to each other [5].
In this case, we can consider the liquid velocity in the frame where all the bubbles
are at rest. Let us denote spatial averaging by angle brackets and time averaging by
an overbar. After having removed the uniform average velocity, the liquid velocity
u(x, t) can be decomposed as
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Fig. 3 Vertical velocity in a vertical plane computed by large-eddy simulation from [3]. Decom-
position of velocity fluctuations by Eq.1: a total fluctuation uz(x, t); b spatial fluctuation uz(x); c
time fluctuation u′

z(x, t)

u(x, t) = u(x) + u′(x, t) . (1)

The spatial fluctuation u(x) only depends on the spatial coordinate x and described
the contribution of the individual bubble disturbances. The time fluctuation u′(x, t)
depends on both the time t and the location x and accounts for the turbulence. The
variance of the total fluctuation u(x, t) is the sum of the variances of these two
contributions:

〈u2〉 = 〈u2〉 + 〈u′2 〉. (2)

Such a decomposition has been applied to results of an experimental investigation
of the flow through a random array of fixed spheres [1] and to results of large-eddy
simulations (LES) of the flow through a fixed swarm of bubbles [3]. Figure3 presents
the fields of total, spatial and time vertical velocity fluctuations obtained by LES. The
spatial fluctuations clearly exhibits the bubble wakes whereas the time fluctuations
are almost the same everywhere and therefore not strongly correlated to the bubble
locations. From these investigations of flows through random array of obstacles,
the following conclusions are obtained. The fluctuations due to individual bubble
disturbances are strongly anisotropic and constitute the dominant contributions to
the total fluctuations in the vertical direction. The turbulent fluctuations are almost
isotropic, predominant in the horizontal direction, and their PDFs are exponential.
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Fig. 4 Probability density
function of vertical liquid
velocity fluctuations:
Comparison between
experimental results
measured in a bubble column
by [4] (α = 1.7%,
Re = 760) and model by [7]
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Regarding the spectrum, the bubble disturbances are dominant at larger scales while
the turbulence is preponderant at smaller scales. However, both contributions show
a k−3 spectral subrange.

Having regard to the results obtained in idealized flows, a model for the fluctua-
tions in a real bubble swarm was proposed by [7]; it is shortly summarized below.

The bubble disturbances are described by considering that the flow around a
given bubble is the sum of the potential flow around the bubble and an exponential
decaying wake, which is characterized by a length scale Lw. The locations of a
large number of bubbles are randomly chosen independently of each other. The
disturbances generated by all these bubbles at a given point are linearly superimposed.
A sample of velocity fluctuation is thus obtained. This operation is repeated a great
number of times in order to obtain a statistically significant ensemble of samples,
from which a PDF is computed. Figure4 compares the model PDF of the vertical
fluctuations due to bubble disturbances (red curve) to an experimental PDF (grey
curve) measured in a homogeneous bubble column. Note that the value of Lw has
been adjusted to fit the experimental tail of positive fluctuations. We see that if the
model is able to reproduce well the tail of positive fluctuations, which is dominated
by the wakes, it fails to reproduce the negative fluctuations.

Assuming that turbulence is isotropic, the three components of the turbulent fluc-
tuations are model by the same exponential PDF:

ft (u
′) =

√
2

2σt
exp

(
−

√
2 | u′ |
σt

)
, (3)

where the value of σt is chosen to fit the central part of the experimental PDF of the
horizontal fluctuations (not shown here). The blue curve in Fig. 4 shows the model
PDF of the vertical fluctuations due to bubble-induced turbulence.
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The model for the total fluctuations is obtained by assuming that the turbulent
fluctuations are independent of the bubble locations, which implies that fluctua-
tions induced by bubble disturbances and turbulence are statistically independent.
A sample of the total fluctuations is thus obtained as the sum of a sample of each
contribution. The model PDF for the total vertical fluctuations is represented by a
black curve in Fig. 4. It matches well the experimental results.

This model has been satisfactorily compared to experimental results obtained for
various gas volume fractions and several bubble diameters. In agreement with results
obtained from investigations of flows through arrays of fixed obstacles, this confirms
that the turbulent contribution to bubble-induced agitation in a real bubble column
is almost isotropic and well described by an exponential PDF.

3 Discussion of the Spectrum of the Bubble-Induced
Turbulence

The bubble-induced turbulence has two important features that may help to shed light
on its spectral behaviour: (1) It exhibits a k−3 power law within a range of scales
around the bubble size where the motions of the bubble supply energy to the liquid;
(2) The wavenumber spectrum is invariant with α when normalized by the variance
〈u′2 〉 and the integral length scale Λ of the fluctuations.

Let us start analysing property (1) by considering the energy balance in the spectral
domain. In a statistically steady and homogeneous state, the power spectral density
E of the turbulent fluctuations u′ is related to the energy production Π and to the
energy transfer T between the wavenumbers by

2νk2E = T + Π . (4)

Lance and Bataille [2] proposed that the turbulent fluctuations were localized within
the bubble wakes where there were both produced and dissipated. Assuming that
the production only depends on the dissipation rate ε and on the wavenumber k,
dimensional considerations leads to Π ∝ εk−1. Inserting this expression in Eq.4
and neglecting T , they obtained a spectrum in k−3:

E ∝ εk−3

2ν
. (5)

Owing to the results of LES in which the scales smaller than the wakes are not
resolved [3] and the fact that a k−3 subrange has been observed in experiments for
scales larger than d [4], the assumption that turbulence is localized within the wakes
is invalided. However, the assumption that Π and T depend only upon ε and k is a
less restrictive assumption that still leads to Eq.5.

Then, property (2) implies the following relation for the k−3 subrange:
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Fig. 5 Evolution of the
Eulerian integral length scale
as a function of the Reynolds
number in an experimental
random array of spheres by
[1] (α = 2%)
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〈u′2 〉Λ ∝ (Λk)−3 . (6)

Equating Eqs. 5 and 6 yields

ε ∝ ν
〈u′2 〉
Λ2

, (7)

where Λ appears as sort of Taylor scale for the k−3 subrange. Taking into account
that ε = αg〈V 〉 and 〈u′2 〉 ∝ α〈V 〉2 finally leads to the following scaling for Λ:

Λ ∝
√

ν〈V 〉
g

∝ d√
Cd Re

. (8)

The interest of this relation is that it can be tested in experiments or simulations to
assess the validity of the assumptions leading to Eq.5. For the experiments of [4],
taking the values of Re andCd corresponding to an isolated bubble, Eq. 8 leads to the
same value of Λ for the three investigated bubble diameters, which is in agreement
with the observations. In Fig. 5, the various scalings for Λ have been compared to
the results obtained by [1] in an random array of fixed spheres for various Re by
estimating Cd by the Schiller and Naumann relation for an isolated solid sphere.
It turns out that Eq. 8 gives the correct evolution of Λ. Comparisons with other
investigations covering a broader range of parameters are nevertheless required to
reach a definitive conclusion regarding the validity of Eqs. 5 and 8.

4 Conclusion

Bubble-induced agitation combines two contributions: the fluctuations generated by
the disturbances localized around each bubble and real bubble-induced turbulence.
The major statistical properties of both contributions have been determined by many
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authors and are now well known. On the one hand, the role of the localized bub-
ble disturbances is now well understood since their PDFs have been satisfactorily
described by considering the summation of individual disturbances [7] and their
spectral behaviour reproduced by considering a succession of random bursts [6]. On
the other hand, the exponential PDFs and the k−3 spectral subrange of the bubble-
induced turbulence are still not understood. They are probably the consequences of
the instability of the flow through a random array of obstacles.
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Non Spherical and Inertial Particles
in Couette Turbulent Large Scale
Structures

Guiquan Wang, Micheline Abbas, Annaïg Pedrono and Eric Climent

Abstract We are studying dispersion of finite-size particles in a turbulent plane
Couette flow by numerical simulations. The effect of particle non-sphericity was
discussed (particles are neutrally buoyant and shape varies from oblate to prolate,
aspect ratio is ranging from 0.5 to 2). Particle dispersion is analyzed also when
inertia is considered for different particle densities for spherical particles (while
keeping comparable Stokes number). This work yields evidences that the particle
distribution in turbulent flow coherent structures is in general correlated to the cycle
of regeneration of turbulence in Couette flow (the strongest correlation being for
massless bubbles), and that the particle residence time in large scale vortices is equal
to the characteristic time scale of the flow regeneration cycle.
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1 Introduction

Shear driven turbulent flows near walls are composed of coherent flow structures
which result in enhancing heat and mass transfer [1]. Kaftori et al. [2] found that
neutrally-buoyant particles can form particle streaks near the wall where the vorti-
cal flow structures create suitable conditions for particle preferential accumulation.
Among the coherent structures, sweep and ejection events (regions of negative shear
stress pushing the fluid toward or away from the wall denoted as Q2 and Q4 respec-
tively in quadrant representation) are driving pointwise inertial particles toward the
wall or the bulk flow region respectively [3]. In a previous work [4], we have con-
sidered modulation of turbulent plane Couette flow by particles which size was
comparable to the smallest flow structures (flow inertia is finite at the particle scale)
and which particle-to-fluid density ratio was varied from 0 to 5 (without consider-
ing settling under gravity). In that paper, we showed that the flow features were not
significantly modified when the particle volumetric concentration was less or equal
to 10%. In the present communication, we address the effect of the deviation from
sphericity on the particle transport in turbulent plane Couette flow configuration. We
analyze the particle spatial dispersion, their residence time in flow structures and
their transport from the streaks to the large scale vortical flow structures.

2 Two-Phase Flow Simulations

The plane Couette flow is driven by two walls moving with opposite velocities
of the same magnitude. We chose the dimensions of the numerical domain to be
adapted to the minimal flow unit [4]. Table1 gives a summary of all numerical
parameters. The length and velocity are scaled by wall units y+ ≡ yuτ /ν, and u+ ≡
u/uτ where uτ = √

τw/ρ f , τw being the wall shear stress. All the cases of Table 1
are adapted to the range of validity of the Force Coupling Method. This method is
suitable to couple the flowmomentum equations with the particle dynamics andmore
specifically particle response to flow fluctuations has been validated in [4]. Results
with neutrally buoyant non-spherical particles are compared to that obtained for
various particle-to-fluid density ratios. The size ratio between the Couette gap and the
radius of smallest spherical particles rp used for this study is Ly/rp = 40.Theparticle
Reynolds number Rep ≡ �(V 1/3

r rp)2/ν is based on local shear rate� = |du/dy| and
the effective radius evaluated from the particle volume re f f ≡ (Vr )

1/3rp. Vr is the
ratio of the spheroid volume to the reference sphere volume (see Table 1). The Stokes
number St ≡ (2ρp/9ρ f )Rep is based both on an increase of inertia due to particle
size or to density ratio ρr ≡ ρp/ρ f . The Stokes number is defined in accordance
with the relaxation time of spheroidal particles (summarized in [5]). For example
for Ar = 2 (resp Ar = 0.5), the Stokes number is 1.52 (resp 2.42) larger than the
reference particle Stokes number when calculated from [5] while the increase is 1.59
(resp 2.51) times in the current work.
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Table 1 Configuration of the numerical simulations. The Reynolds number of the singe-phase flow
is Reb ≡ Uwh/ν = 500 where Uw = 0.5 is half of the relative wall velocity and h = Ly/2 is half
of the Couette gap. rp = Ly/40 is the radius of the reference sphere and Ar is the aspect ratio of
spheroids. The Stokes number is low near the Couette center (because the shear rate is weak) and
maximum near the walls. The statistics are formed over ∼500 time units (h/Uw) at steady state
Domain size: Lx × Ly × Lz = 0.88π × 1.0 × 0.6π

Case Φ(%) Ar ρr Vr L+
y Reτ Rep(max) St (max) line type

Nx × Ny × Nz = 30 × 86 × 32

Single-
phase

– – – – 81 40.2 – – +

Shape e f f ect Nx × Ny × Nz = 182 × 66 × 128

C500-5-
1-1(l)

5 1 1 8 80.6 40.3 12.5 2.78

Nx × Ny × Nz = 280 × 100 × 256

C500-5-
1-1(s)

5 1 1 1 80.6 40.3 3.75 0.83

C500-5-
05-1

5 0.5 1 4 80.1 40.0 6.9 1.53

C500-5-
2-1

5 2 1 2 81.4 40.2 3.5 0.78

I nertia e f f ect Nx × Ny × Nz = 382 × 134 × 256

C500-10-
1-0

10 1 1.25 10−3 1 84.7 42.4 3.75 1.1 10−3

C500-10-
1-1

10 1 1 1 84.1 42.1 3.75 0.83

C500-10-
1-2

10 1 2 1 85.1 42.5 3.75 1.67

C500-10-
1-5

10 1 5 1 87.6 43.9 3.75 4.15

3 Results

3.1 Particle Dispersion

Figure1a, b show a projection in the y − z plane, of the positions of oblate and
prolate spheroids, overlaid by the flow velocity isocontours. The spheroids, like
spheres, tend to be rather located in the center of the vortices, whereas the strong
ejection regions are almost free from particles. The concentration profiles in the wall-
normal direction are shown in Fig. 1c. It can be noted that at moderate inertia the
particle distribution is not influenced by particle inertia or shape (the Stokes numbers
of tests C500 − 5 − 05 − 1 and C500 − 10 − 1 − 2 are close). In Fig. 1d, we plot
the orientation angle of the symmetry axis. For oblate spheroids, both θ and ϕ are
relatively high, meaning that oblate spheroids move more likely with the symmetry
axis parallel to the wall-normal direction especially in the near wall region. This
indicates that oblate particles are tumbling more frequently than spinning motion.

nmachico@uw.edu



200 G. Wang et al.

Fig. 1 a and b show the particle distribution and orientation viewed from streamwise direction of
C500-5-05-1 (oblate) and C500-5-2-1 (prolate particles), respectively. The figures are chosen when
the intensity of large scale streaks is the strongest. The isocontours represent the instantaneous
velocity magnitude in y − z slice. c Particle concentration profiles for different particle shapes and
density ratios. d shows wall-normal profiles of the particle orientation angles θ and ϕ (projections
of the p vector). The angle between the symmetry axis (p or −p) with the positive axis (+x or +z)
is used. ∗ and ◦ stand for oblate and prolate particles respectively

However, prolate spheroids are more likely orientated with their major axis parallel
to the flow direction especially close to the wall and then tumble (ϕ is large and θ is
small on average).

3.2 Characterization of Particle Accumulation in Large
Scale Vortices

Inertial particles spend slightly less time than tracers in vortical regions in 3D
turbulent flows, for Stokes numbers ranging between 0 and 3 [6]. The most energetic
structures of a turbulent plane Couette flow in the limit of low turbulence, consist
in pairs of contra-rotating Large Scale Vortices (LSVs) which size is comparable
to the Couette gap and large scale streaks [7]. The Large Scale Vortices (LSVs)
carry significant fraction of turbulent kinetic energy [8]. In [4], we observed that
light particles are accumulating in the LSVs while heavier particles are moving
outwards. The centrifugal motion of particles from the vortical coherent structures
drives particle spatial distribution, yielding preferential accumulation or not [9].
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Fig. 2 a Time series of the wall-normal distance of a particle at Reynolds number 500 for different
aspect ratios and particle densities: ρr = 1.25 10−3; ρr = 5 and Ar = 0.5;

Ar = 2. b and c are temporal auto-correlation functions of the wall-normal particle position
fluctuation. The line style of b and c is shown in Table1. Set I in these figures contains the statistics
of particles trapped in one large scale vortex and set II contains particles transferred from one LSV
to the other. Particles are attributed to set I, set II or neither of the two sets, depending on the value
of
tmin at which the minimum of Ryy corresponding to each particle occurs: if
tminUw/h < 60,
particle is attributed to set I; if 60 < 
tminUw/h < 100, particle is counted in set II. Typically,
10–20% of the total number particles is attributed to each set

Particle residence time in a vortex has been measured based on temporal evolution of
the wall-normal distance. In Fig. 2a, the temporal evolutions of wall-normal distance
of oblate and prolate spheroids are shown. The spheroids response is similar to
neutrally-buoyant spherical particles (periodic oscillations between the two walls).
Two distinct trajectories can be observed: a rotation in a single LSV from i to i i
(dashed line of Fig. 2a), and a rotation in a LSV followed by its transfer to the other
counter-rotating vortex from i i i to iv.

Quantitativemeasure of the residence time inLSVcanbe calculated from temporal
auto-correlation function of the particle distance from the wall (which on average
corresponds to h because particles move equally through all the domain). The auto-
correlation functions (Fig. 2b, c) characterize the fluctuating motion of particles. It
is negative when the particle passes from one half of the Couette gap to the other. It
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is zero when the particle escape from the LSVs. Figure 2b, c correspond to two sets
of statistics: particles captured in a unique LSV and particles moving from one LSV
to another in the second set.

The average residence time of particles in one vortex (set I) is ∼100 Uw/h and
∼150Uw/h for particles that are moving from one LSV to another LSV (set II). The
smaller and lighter spherical particles have shorter periods whereas they have longer
periods when they move from one LSV to the other. The typical time of particle
residence in one vortex is approximately equal to the period of the regeneration
cycle (see Hamilton et al. [10]). This means that there is a strong correlation between
particle dispersion of finite-size particles and intermediate stages of the regeneration
cycle in turbulent pCf.

3.3 Particle Spatial Distribution in Turbulent Flow Structures

With a lower level of energy than the LSVs, the x-independent streaks contain the
mode corresponding to most of turbulent kinetic energy. The x-independent streaks
predominantly consist in Q2 and Q4 regions (ejection and sweep respectively). The
energy of this mode decreases during its breakdown to x-dependent streaks (wavy
streaks). We show here that the accumulation of particles in the sweep and ejection
regions is correlated, in time, to the evolution of the streaks and therefore to the
regeneration cycle. For the temporal evolution of the streakymotion, it is represented
by the modal analysis of the flow fluctuating energy. The Fourier decomposition of
the energy over streamwise and spanwise directions, as introduced by Hamilton
et al. [10], is written as follows:

M(kx = mα, kz = nβ) ≡ {
Y2∫

Y1

[û′
i û

′
i (mα, y, nβ)]dy}1/2 (1)

where Y1 and Y2 stand for the integration over the distance from the wall, (α, β)

are fundamental wavenumbers in streamwise and spanwise directions defined as
(2π/Lx , 2π/Lz), where m and n are integers. Any flow structure can be represented
by one mode (mα, nβ). As an example, mode (0, nβ) with n �= 0 corresponds to
x-independent flow structure while mode (mα, nβ) with m �= 0 correspond to x-
dependent structure. The time series of the x-independent structures (mode (0, β))
is plot in Fig. 3a–f, for two-phase flows with different particle shapes and densities.
However, Fig. 3 shows time series of the percentage of particles located near the
walls at 10 < y+ < 40 inside the streaky regions Q2 and Q4 (this is where sweeps
and ejections are strong in the buffer layer). We observed that half of particles are
located in the sweep and ejection regions. The temporal fluctuations of particle con-
centration are in-phase with the fluctuation of energy of x-independent streaks in
these regions. This observation is more obvious at low Stokes numbers (C500-5-2-1
and C500-10-1-0). Similarly, we observed that the percentage of particles located in
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Fig. 3 Time series of mode (0, nβ) corresponding to turbulent kinetic energy contained in the
x-independent streaks (blue lines), and of the local particle percentage (ratio of particles in Q2
and Q4 to the total number of particles) in both ejection and sweep event regions (red dash lines).
a, c, e emphasize the effect of particle non-sphericity—cases from top to bottom: C500-5-1-1,
C500-5-05-1 and C500-5-2-1. b, d, f emphasize the effect of particle density—from top to bottom:
C500-10-1-0, C500-10-1-2 and C500-10-1-5

Q1 and Q3 events is strongly related to the flow circulation, which is out-of-phase
from the temporal evolution of x-independent streak energy (figure not shown).

4 Conclusion

Wehave shown that, in turbulent planeCouette flow, themotion of finite-size particles
is strongly related to the fluid motion regardless their shape or density, up to Stokes
numbers (St ≈ 5). The residence time of a single particle in a large scale vortex
is equal to the characteristic time scale of the turbulence regeneration cycle. At
equivalent volume fraction, the particle distribution of spheroids in the flow is not
significantly altered by their shape. Particles are on average more present inside the
large scale streamwise vortices, compared to the x-independent streaks. However
instantaneous particle distribution depends on the sequence of sub-processes along
the turbulence regeneration cycle. The ejection regions are seeded by more particles
during the streak formation stage (when the x-independent structures are energetic)
and they loose particles during the streak breakdown stage (when the energy of x-
independent structures decreases). During streak formation (resp. breakdown), the
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flow circulation decreases (resp. increases), and the Q1 region mainly located inside
large scale vortices looses (resp. gains) particles, leaving toward (resp. coming from)
large scale streaks.
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Preferential Concentration of Finite Solid
Particles in a Swirling von Kármán Flow
of Water

Martin Obligado, Romain Volk, Nicolas Mordant and Mickael Bourgoin

Abstract We present a study of preferential concentration with Voronoï diagrams
of finite size solid particles in a von Kármán flow. This flow is an interesting case
of strongly inhomogeneous turbulence with high Reλ. We investigate preferential
concentration of PMMAparticles with density ρp = 1400 kg/m3 and diameter 2.8 <

dp/η < 6.3 for 340 < Reλ < 810. We conclusively find that particles form clusters
and voids. The geometry of these structures is therefore studied, and results compared
with previous works in other flows.

1 Introduction

Turbulent flows laden with inertial particles are widely encountered in nature (par-
ticles dispersion in the atmosphere, rain formation, marine snow sedimentation …)
and in industry (fuel or coal combustion, fluidized beds reactors, separation tech-
niques …). In all these configurations, inertial particles interacting with turbulence
form high and low concentration regions leading to non-trivial spatial organization of
particles: this so-called preferential concentration. This phenomenon involves many
ingredients such as particle inertia, turbulence characteristics, gravitational settling,
disperse phase volume fraction, andmany others. The specific role of each parameter
remains to be clarified (a review on this topic can be found on [7]). It is in this context
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that the study of preferential concentration of particles in different types of flows is
important, as it allows to isolate the role of each parameter.

Most numerical studies of preferential concentration have considered the case of
high density ratios of particles using purely stokesian point particle models in direct
numerical simulations of turbulence. In such conditions particles inertia is primarily
quantified by the Stokes number, St = τp/τη (with τp the particles relaxation time
and τη the turbulent dissipation scale). Experimental counter-part studies have inves-
tigated for instance the preferential concentration of small (sub-kolmogorov) water
droplets in grid-generated turbulence in wind-tunnels (see for instance [11]). These
studies show qualitative agreements between experiments and numerics, for instance
with amaximumof clustering aroundStokes numbers of order unity.However a quan-
titative systematic comparison remains to be performed accounting in particular for
the role of gravity (not always included in numerical studies) and for trends with
Reynolds number (which were found to be quite dramatic in experiments [11]), in
order to clarify the exact mechanism at play and leading to preferential concentration
(for instance in terms of centrifugation [15] or sweep-stick [4]).

The case of moderate density ratios remains less investigated, particularly in
experiments. Fiabane and collaborators characterized the clustering properties of
finite size neutrally buoyant particles and glass particles in water and homogeneous
isotropic turbulence [2] at Reynolds number up to Rλ ≈ 400 (based on Taylor micro-
scale). Their study shows in particular that in this case the Stokes is not any longer
a relevant indicator of clustering.

Here we present a study of preferential concentration with Voronoï diagrams
of solid particles at moderate density ration in a von Kármán flow of water at
a Reynolds number up to Rλ ≈ 810. We investigate preferential concentration of
PMMA particles with density ρp = 1400 kg/m3 and diameter 2.8 < dp/η < 6.3 for
340 < Reλ < 810. Therefore, with high Reλ and heavy particles in the a range of
diameters close to the limit classically considered for point particle dynamics, i.e.
around dp/η ∼ 5η [2].

2 Experimental Setup

The flow is a turbulent von Kármán swirling flow, described in references [12, 13].
Water fills a cylindrical container of internal diameter D = 15 cm and a length of
25 cm. It is driven by two disks of diameter 14 cm, fitted with blades. Three different
rotation rates were studied: 2.8, 5.6 and 8.3 Hz (Fig. 1a). The distance between the
disks is 20 cm while the rotation frequency is imposed by two calibrated constant
current engines. The angular velocity is measured with two dynamoswith a precision
in the order of 2% and is adjusted in a way that the disks have the same velocity but
opposite direction (Fig. 1b). This setup allows us to obtain developed turbulence with
Reλ up to∼800 in a compact region of space. This type of flow has been extensively
used for studying the properties of turbulence, Lagrangian ([5, 8, 14]) or Eulerian
([16]).
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Fig. 1 a Schema of the experimental setup. b Inhomogeneous flow generated in the container.
c Schema of the imaging system

Table 1 Turbulence parameters of the flow for the three velocities studied. The values are obtained
using the results in [13]

Ω (Hz) ux (m/s) uz (m/s) η (µm) τη (ms) ε (W kg−1) Reλ

2.8 0.38 0.19 28.5 3.55 3.1 340

5.6 0.76 0.41 21.2 7.11 7.2 570

8.3 1.14 0.62 16.4 20.7 20.7 810

ThevonKármánflowgenerated has a large scale non-homogeneous, non-isotropic
3D mean structure (Fig. 1b). As the disks counter-rotate, the mean flow has a strong
azimuthal velocity component (in the order ofπDΩ close to the disks) andvanishes in
the middle plane of the cylinder. Furthermore, the impeller disks work as centrifugal
pumps ejecting the flow in the radial direction near the disks, creating a poloidal
re-circulation with a stagnation point at the center of the cylinder.

The turbulence generated is locally homogeneous in the center of the cylinder
but conserves the anisotropy for big and small scales ([14]). In the limit Reλ � 1
the usual local isotropy hypothesis is generally assumed for the small scales of the
flow (although the validity of this assumption has been recently questioned [10]). For
the measurements reported here, the Taylor-based Reynolds number reaches values
up to 810 and the dissipation rate ε values up to 25W/kg (Table 1). We study PMMA
particles with density ratio 1.4 and two different radii: 80 and 100 µm (Table 2).
The water temperature was maintained constant during all measurements at T = 30
◦C. As the flow is anisotropic, the Reynolds number based in the Taylor scale is

estimated as Reλ =
√

15u4
εν

, where u =
√

2u2x+u2z
3 , is obtained using the rms value of

velocity fluctuations.
The cylindrical container is equipped with three windows that allow a proper

visualization of the flow. The flow passes through a laser sheet (inclined 45◦, as
shown in Fig. 1c), where a high-speed camera Phantom-Miro M310 was placed in
the horizontal direction. The laser produces a continuous beam with a wavelength
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Table 2 Particles considered and their Stokes number for each velocity

Particle dp (µm) StΩ1 StΩ2 StΩ3

1 80 0.83 1.50 2.50

2 100 1.30 2.30 4.0

of 532nm working at 5.2 W. The camera is connected to a Scheimpflug system in
order to have a proper focus of the measurement section.

10 films are recorded for each configuration (i.e. for each given particle class
and rotation rate of the impellers) with a sample rate of 3200 fps at a resolution of
1280 × 800 at 12 bits (which considering camera’s available internal memory gives
8309 images per film, being ∼2.60 s). Therefore, ∼26 s were recorded for granting
proper statistical accuracy. The real size of the window measured in the real world
is ∼4 × 2 cm2. A calibration mask was used for performing pixel to real world
transformation.

3 Results

Once the films are recorded, particles centers can be identified with sub-pixel ac-
curacy, by using standard tracking techniques. Then, Voronoï tessellations can be
obtained, following [6]. Figure2 shows the probability density functions (PDF) of

Fig. 2 a PDF of normalized Voronoï areas V for experiments at different Reynolds number and
Stokes number. The black dashed line represents a random Poisson process (RPP) distribution.
b PDF, centered and reduced, of log(V ). The black dashed line represents a Gaussian distribution
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the normalised Voronoï area V = A/ Ā (with A the area of a Voronoï cell and Ā their
average) and of log(V ) centered and reduced.

It can be clearly seen that the measured distributions are not that of a uniform
random process (Fig. 2a). Large Voronoï areas are significantly over-represented
compared to the RPP case, indicating the existence of large depleted regions. Sim-
ilarly, normalized areas between a few tenth (depending on the particle class) and
about V ∼ 0.5 are over-represented in the experiment compared to a RPP, indicat-
ing the preferential concentration phenomenon. Besides, the most probable value
for the normalized Voronoï area is smaller for the particles than for a RPP, which
indicates the predominance of over-concentrated areas. Much smaller areas are on
the contrary under-represented. However, the log-log representation misleadingly
exacerbates this under-representation. As shown in the inset in Fig. 2a, showing the
cumulative PDF, normalized areas above 0.15–0.3 are already cumulatively more
represented with the inertial particles compared to a RPP.

Big Voronoï areas (or depleted regions) are robust when changing particle and
flow parameters, while small areas (or concentrated regions) are affected by these
changes. This has been already observed in the previous study by Monchaux and
collaborators [6] at moderate Reynolds number. In that work it was also observed
that theVoronoï area PDFs for inertial particles in turbulencewerewell approximated
by a lognormal distribution. This is confirmed as a robust characteristic also preserved
in the higher Reynolds number regime explored in the present study, as it can be seen
in Fig. 2b: the PDF of log(V ) is approximately Gaussian, at least within the range
±3σlog(V ). Deviation from lognormality is only observed for small values of log(V )

which are slightly over-estimated. Therefore, the overall statistical distribution of
Voronoï areas is almost characterized entirely by one single parameter, which we
choose to be the standard deviation σV and whose dependency with experimental
parameters can be used to quantify the evolution of particles clustering.

Figure3a shows the standard deviation of normalized Voronoï areas σV as a
function of Stokes number. It can be observed that it is clearly larger than σV = 0.53,
that corresponds to a RPP. This is a strong evidence of the formation of clusters
and voids in our system, while the amount of clustering tends to grow when St
is increased with possibly a saturation or even a reduction for the largest explored
Stokes number. This may suggest a maximum of clustering for St ∼ 3–4, as also
observed by Monchaux et al., although the available data here does not allow to be
conclusive on this point.

3.1 Clusters

In the present section, we will focus on the identification and characterisation of
clusters and voids formed by the particles.One important aspect concerns the analysis
of the geometry of the clusters. Do they have a fractal structure? Do they have a
characteristic size? As voids present similar properties, we will only present results
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C V

(a)
(b)

Fig. 3 a Standard deviation of normalized Voronoï areas σV as a function of the Stokes number.
The point for St = 0 has been artificially added while the black dashed line represents the value
σV = 0.53, that correspond to a RPP phenomenon. b Schema of clusters and voids detection

from the clusters study (a similar analysis for the voids on this experiment can be
found in [9]).

To define a cluster and a void, we follow the idea proposed by Monchaux et al.
[6, 7]. Clusters and voids are easily identified by choosing an appropriate threshold
for particles local concentration (defined as the inverse of Voronoï cell area) as can
be seen in Fig. 3b (where the distribution for higher St of Fig. 2 is shown). The two
intersections of the experimental PDF with the RPP closer to the maximum of the
distribution are used as thresholds. The values that satisfy V < VC are defined as
clusters while the values where V > VV as voids. The values in between are not
considered clusters nor voids. The referred work shows the validity of VC and VV

as such thresholds. These two parameters are robust when varying St and Reλ, as
it can be observed in Fig. 2a. The resulting process for obtaining clusters and voids
from the centers in real world is shown in Fig. 4.

Once clusters have been identified, their geometry can be analysed. Figure5a
shows the clusters area PDFs, normalised by the mean area value. Surprisingly, all
curves collapse and show a clear peak at Amax

V
<AC>

∼ 0.15. This is a strong experimental
evidence of a system with a typical cluster area. We also observe a power law be-
haviour of area PDF for large events, with an exponent of the order of −5/3, slightly
less steep than the −2 exponent reported by Monchaux et al., but in good agreement
with [11] and the predictions from [3]. Figure5b shows how the mean value of clus-
ters area varies with St . This value tends to grow with St , and it seems to reach an
asymptotic value of the order of 3.5 mm2 (corresponding to ∼ 100η2) for St ∼ 4,
although more values would be required to confirm this asymptotic trend.

Aliseda and collaborators [1], working with grid turbulence in a wind tunnel
with Reλ = 75, using qualitative inspection found that poly-dispersed water droplets
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Fig. 4 Schema of clusters and voids detection. Starting from particle’s centers in real space (a),
the Voronoï diagrams are obtained (b). With the method explained above, clusters and voids are
identified (c). In a final step, centers of mass of clusters and voids are calculated (d)

form clusters with a typical area of 10η. In order to compare results, Fig. 6a shows√
<AC>/η as a function of Reλ and St . Figure6b shows the same relationship but

considering the most probable cluster area Amax
C instead of the average area <AC>

(i.e. the peak of the PDFs of areas in Fig. 5a). The fact that the PDF of clusters area
collapses, means that the mean area and the most probable area are simply related by
a proportionality relation: Amax

C = C<AC> with C = 0.15. Therefore, both curves
in Fig. 6 show a similar trend.

Interestingly, the characteristic areas reported here are always bigger than the
results reported in [1], the minimum value reaches

√
Amax
C /η = 20, while the max-

imum goes up to 50η (Fig. 6c). Such typical dimensions of clusters are larger than
previously reported values in experiments with small droplets at larger density ratios
(such as [11]) at similar St and Reynolds numbers. The trends are however quali-
tatively consistent. In particular, Sumbekova et al. reported a strong dependency of
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Fig. 5 a Clusters area PDFs, normalized by the mean area value. bMean value of clusters area as
a function of Stokes number

cluster size with Reynolds number, in agreement with the present observations. Note
that in our experiment it is difficult though to clearly disentangle Stokes andReynolds
number dependencies (what would require to systematically vary the actual particle
diameters).

Finally, Fig. 6d shows cluster perimeters as a function of the square root of its
area. The figure shows many different tendencies but the fractional behavior of the
exponent evidences the fractal nature of clusters with the presence of several differ-
ent populations. Moreover, the almost continuum range for this exponent (ranging
from ∼1.4 to ∼3.5) and the differences with previous works evidence the extreme
complexity of these structures, and the necessity of further studies for better under-
standing this phenomenon.

4 Conclusions

Preferential concentration of inertial particles with Γ = 1.4 in the range 2.8 <

dp/η < 6.3 for 340 < Reλ < 810 and 0.8 < St < 4 has been studied. This is an
interesting case as it represents particles in the limit between point and finite size
particles.

Clear evidence of clustering was observed. The Voronoï analysis in this case
allowed us to easily identify clusters and voids and analyse their structure. Clusters
PDFs collapse when they are normalised with their mean value and show amaximum
for AC/<AC> ∼ 0.15. The typical size of clusters, given for instance by the most
probable area of clusters, is found to increase from about 20η up to 50η when the
stokes number increases from 1 to 4. The fractal nature of these structures have been
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(a) (b)

(c) (d)

Fig. 6 a Square root of the mean value of clusters area, normalized with the Kolmogorov length
scale η as a function of Stokes number. b Same figure as before but for the peak of cluster area
distribution. c Value of the peak of cluster area distribution as a function of Reλ. The green point
corresponds to themeasurements byAliseda an collaborators [1].dClusters perimeters as a function
of the squared root of its area

verified, with a complex behaviour that involves many different populations. The
cluster properties seems to be qualitatively consistent with the results from [11],
studying sub-kolmogorov water droplets in active-grid generated turbulence in a
wind tunnel.

Future studies shall aim at systematically varying St and Reλ independently, to
clearly disentangle the specific role of both parameters in clustering properties of
inertial particles at moderate density ratio. Comparison with point particle models,
including the added mass term, would also be of primary interest to further explore
the relevance of those parameters as indicators of clustering.
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Relative Dispersion in Direct Cascades
of Generalized Two-Dimensional
Turbulence

Alexis Foussard, Stefano Berti, Xavier Perrot and Guillaume Lapeyre

Abstract The statistical features of turbulent flows depend on the locality properties
of energy transfers among scales. The latter, in turn, may have consequences for the
relative dispersion of passive particles.We consider a class of two-dimensional flows
of geophysical interest, namely α-turbulence models, possessing different locality
properties. We numerically study relative dispersion in such flows using both fixed-
time and fixed-scale indicators. The results are compared with predictions based
on phenomenological arguments to explore the relation between the locality of the
turbulent cascade and that of relative dispersion. We find that dispersion behaviors
agree with expectations from local theories, for small enough values of the parameter
α (dynamics close to surface quasi geostrophy) and for sufficiently small initial pair
separations. Non-local dispersion is instead observed for the largest α considered
(quasi-geostrophic model).
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1 Introduction

Particle pair dispersion in turbulent flows is a subject of interest for both funda-
mental studies and applications, e.g. in atmospheric and oceanic sciences. Due to the
generally complex relations between particle spreading behaviors and turbulence cas-
cade processes, statistical properties of relative dispersion can be difficult to predict.
In two-dimensional (2D) turbulence, enstrophy is transferred towards small scales
through a (marginally) nonlocal turbulent cascade for which straining processes at
small scales are driven by large-scale eddies [1, 2]. On the contrary, kinetic energy is
transferred towards large scales through a local turbulent cascade [1, 2]. The dynam-
ics of pair separation distances are essentially controlled by the strain rate field. It
is then reasonable to expect that dispersion properties will be mainly determined by
the large-scale strain in the direct enstrophy cascade range of scales, while they will
be affected by velocity gradients at scales comparable to the separation distance in
the inverse cascade range. For more general turbulent flows, using self-similarity
arguments, a relation between the slope of the kinetic energy spectrum and the laws
of relative dispersion was proposed [3, 4] separating two different regimes. A first
“local” one corresponds to dispersion at a particular lengthscale l only depending on
flow features at that lengthscale. This is the case for kinetic energy spectra shallower
than k−3 (k being the horizontal wavenumber). In this regime pair separation grows
as a power-law in time. In a second “nonlocal” regime, corresponding to kinetic
energy spectra steeper than k−3, the dispersion law depends on the largest scales of
the flow, and separation exponentially grows in time [4].

Several studies investigated the correspondence between relative dispersion laws
and energy spectra through the analysis of pair separations data from oceanic
[5, 6] and atmospheric [3, 7, 8] field observations, laboratory experiments [9, 10] and
numerical simulations [11–13], but the results are still not completely conclusive.
Many of these studies reported difficulties to observe a clear relation between the
kinetic energy spectral slope and relative dispersion. A commonly stressed reason is
the dependence of scaling laws on the initial particle pair separation [11–13].

In this paper we study a class of 2D flows, α-turbulence models [14], all exhibit-
ing double cascades of an active tracer. Kinetic energy spectral slopes depend on the
parameter α; energy fluxes are supposed to be ruled by local and nonlocal scale inter-
actions for small and large α, respectively [14]. Our goal is to numerically explore
the relation between cascade locality and dispersion behaviors. Two geophysically
interesting models belong to this class: the barotropic quasi-geostrophic (QG) and
the surface quasi-geostrophic (SQG) model [15]. Both are relevant, in particular, for
oceanic dynamics, as the SQG model resembles what occurs at the ocean surface
while the QG model resembles what occurs in the interior [16].
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2 Theoretical Expectations for Relative Dispersion

We recall here the main properties of relative dispersion in turbulent flows (see, e.g.,
[17] for a review). Let us consider N particles whose positions at time t , denoted xi (t)
with i = 1, . . . , N , evolve according to ẋi = u(xi (t), t) where u is a given velocity
field. Relative dispersion is defined as

〈y2(t)〉 = 〈|xi (t) − x j (t)|2〉 (1)

where y(t) = xi (t) − x j (t) is the separation vector between particles i and j and
〈 〉 is the average over all particle pairs satisfying |xi (0) − x j (0)| = y0. From this,
relative diffusivity can be computed as

Krel(t) = 1

2

d〈y2(t)〉
dt

= 〈δv(t) · y(t)〉 (2)

with the relative velocity defined by δv(t) = dxi/dt − dx j/dt = v(xi (t), t) −
v(x j (t), t). Assuming that relative velocity is independent of the particle pair sepa-
ration, i.e. 〈 δv(t) · y0 〉 = 0, and posing δv0 = δv(t = 0), at small enough times one
has [18, 19]:

〈y2(t)〉 ≈ y20 + 〈δv0 · δv0〉 t2. (3)

In the long time limit, one expects that particles are separated by a distance larger
than the largest eddies. Relative diffusivity then converges to twice the (constant)
absolute diffusivity, due to uncorrelated particle velocities.

At intermediate times for which particle separations are in the inertial range of
the turbulent cascade, following [3], it is possible to derive the behavior of relative
diffusivity from a dimensional argument. One can apply a local cascade hypothesis
using (kE(k))1/2/k as a diffusivity scale, where E(k) is the kinetic energy spectrum.
By self-similarity and for a spectrum E(k) ∝ k−β , one expects that

1

2

d〈y2〉
dt

∝ 〈y2〉 β+1
4 ; (4)

relative dispersion then scales as

〈y2〉 ∝ t4/(3−β). (5)

ForKolmogorov scaling (β = 5/3) one obtainsRichardson’s law 〈y2〉 ∝ t3. Previous
studies observed finite scale effects in the scaling relations due to the initial separation
value (see e.g. [11, 13]). In the sequel we will assess the relevance of such effects in
our numerical study of α-turbulence.

A different situation occurs for nonlocal cascades and sufficiently steep (β ≥ 3)
spectra. In this case the flow is smooth and relative dispersion grows exponentially
in time as
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〈y2〉 ∝ eat , (6)

where a is related to the maximum Lagrangian Lyapunov exponent of the flow or,
equivalently, to the square root of enstrophy. Accordingly, one obtains

1

2

d〈y2〉
dt

∝ 〈y2〉 (7)

for relative diffusivity. The exponential growth of 〈y2〉 is essentially driven by the
largest eddies and it does not depend on the slope of the spectrum. From a Lagrangian
point of view this corresponds to a regime of “nonlocal dispersion”.

Equations (4) and (7) suggest that flows with nonlocal (local) spectral transfers
would imply nonlocal (local) dispersion. However, such correspondence could cease
to hold if either the spectral transfers receive both local and nonlocal contributions,
or the energy spectra are steeper than predicted by the theory.

3 Relative Dispersion in α Turbulence

3.1 Generalized 2D Turbulence

By analogy with usual 2D turbulence, we consider the dynamics of a conserved
active tracer q:

∂q

∂t
+ u · ∇q = 0, (8)

where u = (−∂yψ, ∂xψ) is an incompressible flow defined by a streamfunction ψ .
The relation between q and ψ is expressed in Fourier space as

q̂ = −kα
̂ψ, (9)

with α a fixed parameter [14]. The case α = 2 corresponds to the QG model where
q is relative vorticity. For α = 1 one has the SQG model with q being temperature.

Such models possess generalized energies and enstrophies that are quadratic
invariants. Our interest will be focused on the cascade to small scales of the gener-
alized enstrophy (expressing the variance of the scalar field q). Heuristic arguments
based on the locality of the strain rate indicate that the (shell-averaged) kinetic energy
spectrum is

E(k) ∝ k−(4α+1)/3 (10)

for α < 2 [14]. For these models the spectral exponent then is β = (4α + 1)/3. As
the scaling law is obtained taking only into account local quantities (at scale k), this
regime is associated with local transfers. For α ≥ 2 one has, instead, a regime that
is associated with nonlocal generalized enstrophy transfers [14], with spectrum
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E(k) ∝ k1−2α. (11)

One important consequence of Eq. (10) is that the strain rate between 1/k and
2/k behaves as k2(2−α)/3 for α < 2. For these values of α, the dispersion of par-
ticles separated by a given distance should then be “local”, namely controlled by
eddies of comparable size. On the contrary for α ≥ 2, dispersion will be “nonlocal”,
i.e. governed by the largest scale eddies. However it has to be reminded that the
presence of nonlinear vortices generally tends to steepen the spectra, so that such
phenomenological scalings are only an indication on what could be observed.

To explore how local is relative dispersion in α-turbulence, we perform simu-
lations with different values of α (= 1, 1.25, 1.5, 1.75, 2). Equations (8–9) are
integrated in a doubly-periodic square box of side 2π in free decay using a pseudo-
spectral code at a spatial resolution of 10242; an exponential filter provides numerical
dissipation at small scales [20]. In order to ease the comparison of runs at different α,
we choose to fix the initial generalized energy to a common value in all cases, which
gives initial streamfunctions only differing by a constant prefactor. The particle tra-
jectories are integrated using a standard Lagrangian approach with the velocity at
particle positions obtained by bicubic interpolation.

After a transient, the statistical properties of the flow evolve more slowly with the
continuous decay of the total energy and the system attains a quasi-steady turbulent
regime. Figure1 presents the active tracer fields for α = 1, 1.5, 2 in this regime. For
α = 1 we observe intensified coherent structures from the largest to the smallest
scales (Fig. 1a). This is clearly also the case for α = 1.5. For greater values of α

small-scale eddies tend to be replaced by long, thin and quasi-passive filaments (see
Fig. 1c for α = 2) as also observed in forced simulations [14].

Figure2 shows the kinetic energy spectra for different α averaged over several
realizations in the quasi-steady regime. From k = 20 to k = 200, to a good extent, we
observe a constant spectral slope in each simulation. For values of α < 2, the actual
slopes are close to the predictions based on local transfer arguments. For α = 2 the
observed spectrum is steeper than k−3, probably due to numerical dissipation effects
[2]. The positivity of the tracer variance flux for 8 < k < 300 for all α (not shown)
confirms the existence of a direct cascade of q from large to small scales [20].

3.2 Relative Dispersion Statistics

Relative dispersion statistics were computed from up to 2 × 106 particle pairs evolv-
ing in each turbulent flow, starting from a uniform particle distribution. Themain fea-
tures of the turbulent dynamics persisted almost unaltered during the particle tracking
experiments. Relative dispersion depends on the initial pair separation y(t = 0) = y0
(see also [11–13, 19]), where here and in the following t = 0 denotes the instant of
particle release. We then choose y0 such that, for all α, k0 = 2π/y0 is larger than
the wavenumber at which the energy spectrum rapidly drops to zero (kv ≈ 350),
and typically k0 = 512. We also performed a computation with k0 = 1024 but for
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(a) active tracer q for α = 1 (SQG)
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(b) active tracer q for α = 1.5
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(c) active tracer q for α = 2 (QG)
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Fig. 1 Active tracer q in the quasi-steady turbulent regime for a α = 1, b α = 1.5 and c α = 2,
normalized by < q2 >1/2. The space domain is [−π, π ]2

Fig. 2 Kinetic energy
spectra normalized by total
energy in the quasi-steady
turbulent regime
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Fig. 3 Relative dispersion (after subtraction of the initial value) as a function of time tm for fixed
k0 = 2π/y0 and α = 1, 2 (a). Relative dispersion versus tm for different initial separations (i.e. k0)
for α = 1 (b) and α = 2 (c). Here a and b are constant prefactors (see Eqs. (3) and (6))

shorter particle tracking. Simulations revealed that particle pairs lose “memory” of
their initial separation, i.e. the early behavior (Eq. (3)), in a common manner during
a time interval τm that was estimated from the separation autocorrelation function.
Note that such memory effects tend to delay the onset of scaling relations. In the
following we will then rescale time as tm = t/τm to facilitate comparisons.

Let us start discussing the results returned by time-dependent statistics. Here
we mainly focus on the two limiting cases α = 1 and α = 2. In agreement with
other studies [13, 19], Fig. 3a clearly indicates that the early regime (3) is observed
up to a time tm ≈ 1, after which the dispersion scale is in the inertial range. At later
times, relative dispersion grows in time more slowly than predicted (Eqs. (5–6)).
Figure3b and c display 〈y2〉/y20 as a function of time for different k0, for α = 1 and
α = 2, respectively. We see that the asymptotic dispersion regime is better realized
when increasing k0. For α = 1, relative dispersion tends to approach the theoretical
expectation 〈y2〉 ∼ t3. For α = 2, Fig. 3c suggests that, after the ballistic growth
up to tm ≈ 1, relative dispersion could grow exponentially, but only for smaller and
smaller y0 and tm ≤ 2. Such difficulties to detect clear scalings were noted by other
authors [3, 9, 12, 13]. Here two reasons can be invoked. Relative dispersion is a
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Fig. 4 a Diffusivity d〈y2〉/dt as a function of y = 〈y2〉1/2. b FSLE (rescaled by Okubo-Weiss
parameter, as in [22]) computed from original pairs and with scale separation factor r = 1.2.
Regimes λ ∝ δ−2/3 (Richardson dispersion) and λ ∝ δ−1 are indicated for comparison. In each
case, the initial separation corresponds to k0 = 512

fixed-time average and this can lead to spurious behaviors due to averaging together,
at fixed time, potentially very different pair separations [21]. Furthermore, due to the
weakly non-stationary character of the flow, relative enstrophy slowly decreases in
time, causing a temporal variation of the exponential growth rate of 〈y2〉 for α = 2.

Figure4a reports relative diffusivity d〈y2〉/dt as a function of y = 〈y2〉1/2. Only
data for which the particle pairs have forgotten their initial separation (i.e. t > τm) are
plotted. Power-law regimes are somehowmore evident using this indicator. However,
for α = 2, the expected y2 scaling is difficult to observe, even for small y0 [20].
A better way to disentangle contributions from different flow scales and to diagnose
local/nonlocal dispersion is to resort to genuine fixed-scale indicators. To this end
one can, e.g., measure the time τ(δ) needed for separation to grow from scale δ

to scale rδ (with r > 1). The Finite Size Lyapunov Exponent (FSLE) [21] is then
defined as

λ(δ) = log(r)

〈τ(δ)〉 (12)

where the brackets indicate an average over all particle pairs. If the kinetic energy
spectrum scales as k−β the FSLE is expected to be given by

λ(δ) ∝ δ(β−3)/2 (13)

for β < 3 (i.e. α < 2). For spectra steeper than k−3 (α ≥ 2), λ(δ) should reach a
constant value, implying that dispersion is controlled by nonlocal processes. The
behavior of the FSLE is shown in Fig. 4b. For 0.03 < δ < 0.3, approximately corre-
sponding to 20 < k < 200 (for which constant spectral slopes were detected, Fig. 2)
weobserve a power lawλ(δ) ∝ δ−γ with an exponentγ that decreases, asβ increases,
in fair agreement with the theory. The case α = 2 displays a considerably weaker
scale dependence, with almost constant FSLE up to scales δ ≈ 0.5, pointing to an
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essentially nonlocal dispersion regime. Finally, independently of the value of α, for
δ > 1 λ(δ) decreases faster with δ but note that the behavior at scales δ > π may be
affected by the periodicity of the velocity field. The computation of relative displace-
ment probability distributions further confirms the dispersion regimes identified by
the FSLE [20].

4 Conclusions

We examined a class of 2D turbulent flows (α-turbulence models), encompassing the
QG and SQG models as limiting cases. All these models exhibit a direct cascade of
tracer variance to small scales. As expected, the numerically computed kinetic energy
spectral slopes are close to phenomenological predictions for 1 ≤ α < 2 while the
spectrum was found to be quite steep in our simulations for α = 2 (probably due to
numerical dissipation effects).

We then analysed relative dispersion by means of both time-dependent and scale-
dependent statistics to see to what extent the laws predicted by local self-similarity
arguments are verified. As in previous studies, we found that the determination of
relative dispersion temporal scaling behaviors is challenging, due to the strong depen-
dence on initial pair separations. In particular, for α = 2, exponential growth was
possibly observed only for a limited range of time, even for initial separations much
smaller than the inertial range scales. On the other hand, fixed-scale statistical indi-
cators were able to reveal it. For 1 ≤ α < 2, relative dispersion was found to grow in
agreement with the power-law predictions from local cascade theories. The agree-
ment improves as α approaches 1 and for small initial pair separation.

Acknowledgements This work was supported by TOSCA/CNES as a contribution to the SWOT
project. Figures are adapted from [20] (reproduced with permission).
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Thermally Responsive Particles
in Rayleigh-Bénard Convection

Kim M. J. Alards, Rudie P. J. Kunnen, Herman J. H. Clercx and
Federico Toschi

Abstract The effect of thermal inertia on the dynamics of particles with a thermal
expansion coefficient larger than that of the fluid is investigated in Rayleigh-Bénard
convection (RBC) using direct numerical simulations. A simple point-particles
approach is used, where thermal expansion of both particles and fluid is included.
These thermally responsive particles move towards the hot (bottom) or cold (top)
plates, where they become lighter or heavier than the fluid to eventually escape this
region of the flow. When the thermal response time of particles is large, this pro-
cess is slow and particles spend more time at the walls than in the bulk. It is indeed
shown that in this regime the number of particles at the plates is enhanced, com-
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pared to the uniform distribution found for tracer particles in RBC. A more complex
point-particle approach, including non-linear effects on the drag forces, shows that
non-linear thermal effects influence both the temperature and velocity statistics of
the thermally responsive particles and cannot be ignored.

1 Introduction

Non-isothermal particle-laden flows knowmany applications in nature, e.g. pollution
by aerosols in the atmosphere [1], and in industry, e.g. food processing. To understand
the dynamics of these particles in non-isothermal turbulence, it is important to under-
stand the interaction between particles and fluid, such as the heat transfer. When the
heat transfer between particles and fluid is not instantaneous, thermal inertia of parti-
cles has to be taken into account. The time-scale of thermal inertia is characterized by
the thermal response time, that depends on the specific heat of the particle material
and the surrounding fluid. When the size of particles is temperature-dependent, such
as, for example, in the case of bubbles [4, 7], this thermal inertia can significantly
change the motion of particles. In this study, the temperature dependency of particle
and fluid properties is included as a linear volumetric expansion of particles and
fluid with temperature. Like this, we can model dispersed systems with two different
materials based on their thermal expansion coefficients; from fluid-fluid systems to
the motion of gel-like particles in a turbulent flow.

The behavior of such thermally responsive particles is studied in a turbulent
Rayleigh–Bénard convection flow; a confined fluid heated from below and cooled
from above. We use a simple point-particle approach to study the dynamics of the
inertial particles and compare it to the behavior of passive tracers that perfectly fol-
low the flow. In particular, we model particles with a thermal expansion coefficient
larger than that of the fluid, such that particles become lighter than the fluid, close to
the hot plate, and heavier than the fluid, close to the cold plate. This is expected to
induce an upwards motion on the particles at the bottom plate and vice-versa at the
top plate. We investigate the effect of this dynamics on the distribution of particles
within the RBC cell.

While the point-particle approach can be extended, e.g. to include the effect of
non-linear flow and temperature gradients around the particles [2, 3], it is not clear
how this will effect the velocity and temperature statistics of the thermally responsive
particles. Here we discuss the influence of the non-linear drag terms to understand
the importance of including such effects in the point-particle model.

2 Numerical Method

The RBC flow is described by the incompressible Navier–Stokes equations in the
Boussinesq approximation:
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∇ · u f = 0, (1)

∂u f

∂t
+ (u f · ∇)u f = −∇p +

√
Pr

Ra
∇2u f + T f ẑ, (2)

∂T f

∂t
+ (u f · ∇)T f = 1√

Pr Ra
∇2T f , (3)

where u f and T f are the fluid velocity and temperature, respectively. The control
parameters for the RBC flow are the Rayleigh number, Ra = gα f ΔT H 3/(νκ) and
the Prandtl number, Pr = ν/κ , where ν is the kinematic viscosity, κ is the thermal
diffusivity, α f is the thermal expansion coefficient of the fluid and g is the gravi-
tational acceleration. Equations are non-dimensionalized using the cell height, H ,
for length, the temperature difference between the plates, ΔT , for temperature and
tc = H/U for time, based on the free-fall velocity U = √

gα f ΔT H . In the hori-
zontal directions periodic boundary conditions (BCs) are applied, while at z = 0 and
z = 1 no-slip BCs are applied and the temperature is fixed as T f (z = 0) = 1 and
T f (z = 1) = 0. The domain is discretized into 128 × 128 × 128 grid points with at
least ten grid points in the viscous and thermal boundary layers (BLs). A finite differ-
ence scheme is applied to discretize Eqs. (2)–(3) and time integration is performed
using a third order Runge–Kutta scheme (a detailed description of this method is
given in [9, 10]). The RBC flow studied here is characterized by Ra = 2 · 107 and
Pr = 6.7.

In this RBC flow 1.6 · 105 tracer particles are evolved and a tri-linear interpolation
scheme is used to interpolate the fluid velocity and temperature at the position of the
passive tracers. On top of the tracer particles, 1.6 · 105 thermally inertial particles
are inserted, that are modeled using the approach proposed by Maxey and Riley [5]
for the mechanical inertia and by Michaelides and Feng [6] for the thermal inertia,
where for themomentwe leave out the non-linear contributions in the drag terms. The
equations for the velocity of particles, up, and the temperature of particles, Tp, are

(
1 + 1

2β

)
dup

dt
= 1

τp

(
u f − up

) + 1

2β

Du f

Dt
−

(
1 − 1

β

)
gẑ (4)

dTp

dt
= 1

τT

(
T f − Tp

)
, (5)

where β is the ratio between the density of particles and the density of the fluid,
β = ρp/ρ f , and τp = 2βr2p/(9ν) and τT = βγ r2p/(3κ) are the viscous and thermal
response times, respectively, with rp the particle radius and γ = cp/c f the ratio
between the specific heat of the particle material and the specific heat of the fluid.
The terms on the right-hand-side (rhs) of Eq. (4) represent Stokes drag, added mass
and gravity, respectively.

We take into account that both particles and fluid can expand or shrink as a result
of temperature fluctuations, by including linear thermal expansion of both particles
and fluid. This means that the radius of particles is a function of T ′

p = Tp − 〈Tp〉,
with 〈...〉 the average over time and space, as
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rp = r0

(
1 + 1

3
αpT

′
p

)
, (6)

where a Taylor expansion is used in the limit of small temperature fluctuations,
neglecting higher order terms, αp is the thermal expansion coefficient of particles
and r0 is the radius of particles at the average temperature. Now also the density of
particles depends on temperature fluctuation and the density ratio β becomes,

β = 1 − αpT ′
p

1 − α f T ′
f

, (7)

where T ′
f = T f − 〈T f 〉 and we assumed that both ρp = ρ f = 1 at the average tem-

perature. Note that the viscous and thermal response times, that both depend on β and
rp, now depend on temperature fluctuations as well. In this studywe fix the properties
of the thermally inertial particles at the average temperature as τp = 0.038, τT = 1
and r0 = 0.01. The ratio between the thermal expansion coefficient of the particles
and that of the fluid is set to K = αp/α f = 2.

3 Results

Thermally inertial particles are transported to the horizontal plates in the RBC cell,
due to the large scale circulation of rising hot fluid and descending cold fluid and
due to their mechanical inertia. Particles deposited at the plates are expected to move
back towards the bulk after some characteristic time due to thermal expansion, where
the thermal expansion coefficient of particles is larger than that of the fluid. First, we
visualize the particles at the hot bottom plate for both tracers and thermally inertial
particles in Fig. 1.While tracers have a temperature equal to that of the fluid (Fig. 1a),

Fig. 1 The temperature field of the fluid in a horizontal slab at z = 0.009H in Rayleigh–Bénard
convection (with H the height of the cell), together with a tracer particles and b thermally iner-
tial particles. All particles with z < 0.012H are shown and particles are colored with their (non-
dimensional) temperature, Tp . Length scales are non-dimensionalized by the cell height H
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Fig. 2 The vertical distribution of tracer particles (black) and thermally responsive particles (red)
in Rayleigh-Bénard convection. n p represents the number density of particles, averaged over the
horizontal directions and over time and z is non-dimensionalized with the cell height H . The
vertical line corresponds to the thermal boundary layer length, δT ≈ 0.022H . Error bars fall within
the symbols

the temperature of thermally inertial particles differs from the fluid temperature, as
visible in Fig. 1b. In this figure particles are clearly colder than the surrounding fluid.
Warmer particles, that are lighter than the fluid, immediately escape the hot bottom
plate, while colder heavier particles stay in this region of the flow for a longer time.
This also explains why the number of particles at the plate has increased in Fig. 1b
when including thermal inertia with τT = 1, compared to tracer particles in Fig. 1a.

Thermal expansion of thermally inertial particles is expected to lead to a non-
uniformdistribution of particles in the vertical direction of theRBCcell. An enhanced
number of particles inside the thermal BL (for large enough thermal response time)
is expected, and indeed confirmed in Fig. 2, where the vertical distribution of tracer
particles and thermally response particles is shown. This vertical distribution is quan-
tified by counting particles in horizontal slabs of thicknessΔz = 0.004H and average
this number over time and in the horizontal directions. Furthermore, only the bot-
tom half of the domain is shown, which is sufficient due to symmetry. Apart from
an enhanced number of thermally responsive particles at the plate, a depletion is
observed at a distance of approximately the thermal boundary layer length, δT , from
the plate, related to the larger upwards velocity gained by particles at the hot plate.

So, a simple version of the point-particle approach, where only Stokes drag, added
mass and gravity are included (Eq. (4)), captures the effect of thermal expansion
qualitatively; particles move towards the plates, expand or shrink due to the heat
exchange with the surrounding fluid and then escape the BL region to move back
towards the bulk.

However, since we are studying particles with a particle Reynolds number of
Rep = 2rp|u f − up|/ν ≈ 10, effects of a non-linear velocity and temperature gra-
dient can become important. This effect is included in the point-particle model by
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Fig. 3 a PDFs of the contribution of the Stokes drag in the vertical direction, Fz,Stokes/mp , withmp
the mass of a particle, for three different types of thermally responsive particles in Rayleigh-Bénard
convection; case 1 (linear Stokes drag and linear thermal drag, red), case 2 (non-linear Stokes drag
and linear thermal drag, blue) and case 3 (non-linear Stokes and non-linear thermal drag, green).
Fz,Stokes is non-dimensionalized by U2/H . b PDFs of the vertical velocity for the three cases of
thermally inertial particles, together with tracer particles (black). c PDFs of the contribution of the
thermal drag, FT,Stokes , for the three different cases of thermally inertial particles, where FT,Stokes
is non-dimensionlized by ΔTU/H . d PDFs of the particle temperature, Tp , for the three different
cases of thermally inertial particles, together with tracer particles (black), where the temperature is
non-dimensionalized by the temperature difference ΔT

replacing the first terms on the rhs of Eq. (4) and Eq. (5), representing the drag forces,
by1/τp(u f − up)(1 + 0.15Re0.687p ) and1/τT (T f − Tp)(1 + 0.3Re1/2p Pr1/3), respec-
tively [2, 8]. Here we try to understand the influence of non-linear drag, in both the
mechanical and thermal inertia of particles, by comparing statistics of three types of
thermally inertial particles; one without non-linear effects, one with only non-linear
mechanical Stokes drag and one with both non-linear mechanical and non-linear
thermal drag. We will refer to these three types of particles as case 1, case 2 and
case 3.

First, we focus on the contribution of the non-linear Stokes drag in Eq. (4), com-
puting PDFs of the Stokes drag in Fig. 3. The PDFs for case 1 and case 2 are very
similar and indeed for the low viscous response time used here, τp = 0.038, non-
linear effects in the mechanical inertia are expected to have very little effect. When
including also non-linear effects in the thermal drag, the contribution of mechanical
Stokes drag has decreased in the tails of the PDFs. This means that the fluctuations
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in the velocity difference between particles and fluid have decreased, as indeed con-
firmed by the velocity statistics shown in Fig. 3b. Since the temperature of particles
only influences the motion through the buoyancy term in Eq. (4) this indicates that
the contribution of this buoyancy terms has decreased as well.

A decrease of the buoyancy term can be a result of lower temperature differences
between particle and fluid. We can quantify this effect by computing the statistics
of the contribution of the thermal drag term in Eq. (5). In Fig. 3c it is shown that
the thermal drag is enhanced when non-linear effects are included. The effect on the
temperature statistics is shown in Fig. 3d, where non-linear thermal drag is shown to
push the temperature of thermally responsive particles closer to that of tracers and
therefore to that of the fluid. The increase in the contribution of the thermal drag is
thus a result of the non-linear term and can be seen as an effective decrease in the
thermal response time, considering that the thermal drag force is inverse proportional
to τT (Eq. 5). Consequently, particles need less time to adjust their temperature to
that of the surrounding fluid, explaining why the temperature of particles is closer
to that of the fluid when non-linear thermal drag is included. Due to the thermal
expansion, which is coupling the motion of particles to the temperature fluctuations,
also the velocity statistics is closer to that of tracer in this case.

Including non-linear drag, affects the temperature statistics and is therefore also
expected to affect the vertical distribution of particles within the RBC cell. This
distribution is shown in Fig. 4, for all three cases of thermally responsive particles
and tracer particles. Again the behavior is closer to that of tracers when including
non-linear thermal drag. However, also when using this extended version of the
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Fig. 4 The vertical distribution of tracer particles (black) and three different types of thermally
responsive particles in Rayleigh-Bénard convection; case 1 (linear Stokes drag and linear thermal
drag, red), case 2 (non-linear Stokes drag and linear thermal drag, blue) and case 3 (non-linear
Stokes and non-linear thermal drag, green). n p represents the number density of particles, averaged
over the horizontal directions and over time and z is non-dimensionalized with the cell height H .
The vertical line corresponds to the thermal boundary layer length, δT ≈ 0.022H . Error bars fall
within the symbols
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point-particle approach, the effect of thermal expansion is again observed as an
enhancement in the number of particles at the plates and a depletion at a distance of
about δT from the plate.

4 Conclusions

The influence of thermal inertia on the dynamics of thermally responsive particles,
with a thermal expansion coefficient larger than that of the surrounding fluid, is
investigated. It was shown that these thermally responsive particles are deposited at
the plates and cluster there, before moving back towards the bulk when becoming
lighter (at the bottom plate) or heavier (at the top plate) than the surrounding fluid. On
average this results in a non-uniform distribution of particles in the vertical direction
of the RBC cell, with an enhanced number of particles at the plates.

Although the simple point-particlemodel captures the dynamics of these thermally
expanding particleswith a particleReynolds number of about Rep ∼ 10 qualitatively,
non-linear thermal drag is shown to be of importance. In particular, including the
non-linear temperature field around the particle, results in particle temperatures being
closer tot hat of the fluid due to a lower effective thermal response time. Due to the
temperature dependent density ratio in the buoyancy term, not only the tempera-
ture statistics is influenced by these non-linear thermal effects but also the velocity
statistics are pushed towards that of tracers when including non-linear thermal drag.
When investigating the behavior of these thermally inertial particles and the effect
of thermal inertia on this dynamics in more detail, it is recommended to use a more
complex version of the point-particle approach, including non-linear effects of the
temperature field in the thermal drag.
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The Energy Cascade of Surface Wave
Turbulence: Toward Identifying
the Active Wave Coupling

Antoine Campagne, Roumaissa Hassaini, Ivan Redor, Joel Sommeria
and Nicolas Mordant

Abstract We investigate experimentally turbulence of surface gravity waves in the
Coriolis facility in Grenoble by using both high sensitivity local probes and a time
and space resolved stereoscopic reconstruction of thewater surface.We show that the
water deformation is made of the superposition of weakly nonlinear waves following
the linear dispersion relation and of bound waves resulting from non resonant triadic
interaction. Although the theory predicts a 4-wave resonant coupling supporting
the presence of an inverse cascade of wave action, we do not observe such inverse
cascade. We investigate 4-wave coupling by computing the tricoherence i.e. 4-wave
correlations. We observed very weak values of the tricoherence at the frequencies
excited on the linear dispersion relation that are consistent with the hypothesis of
weak coupling underlying the weak turbulence theory.

1 Introduction

Wave Turbulence is a general framework that aims at describing the statistical prop-
erties of a large ensemble of waves. Although no general theory exists, the Weak
Turbulence Theory (WTT) focusses on the case of vanishing non linearity in very
large systems [1–3]. It predicts an energy cascade in scale space between the large
scale of forcing down to small scales at which dissipation dominates. Due to weak
nonlinearity energy transfer occurs among resonant waves. Oceanic waves is the

A. Campagne · R. Hassaini · I. Redor · J. Sommeria · N. Mordant (B)
LEGI, Grenoble, France
e-mail: nicolas.mordant@univ-grenoble-alpes.fr

A. Campagne
e-mail: antoine.campagne@univ-grenoble-alpes.fr

R. Hassaini
e-mail: roumaissa.hassaini@univ-grenoble-alpes.fr

I. Redor
e-mail: ivan.redor@univ-grenoble-alpes.fr

J. Sommeria
e-mail: joel.sommeria@legi.cnrs.fr

© Springer Nature Switzerland AG 2019
M. Gorokhovski and F. S. Godeferd (eds.), Turbulent Cascades II,
ERCOFTAC Series 26, https://doi.org/10.1007/978-3-030-12547-9_25

239

nmachico@uw.edu

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-12547-9_25&domain=pdf
mailto:nicolas.mordant@univ-grenoble-alpes.fr
mailto:antoine.campagne@univ-grenoble-alpes.fr
mailto:roumaissa.hassaini@univ-grenoble-alpes.fr
mailto:ivan.redor@univ-grenoble-alpes.fr
mailto:joel.sommeria@legi.cnrs.fr
https://doi.org/10.1007/978-3-030-12547-9_25


240 A. Campagne et al.

natural field of application of the theory following the work of Hasselman [4] that
assumes transfer among 4 resonant waves. A major result of theWTT is that analytic
solutions of the wave Fourier spectrum can be exhibited in many cases, the so-called
Kolmogorov-Zakharov spectra. For gravity surface waves the prediction of the wave
elevation spectrum is [2]:

Eη(k) ∝ g1/2P1/3k−5/2 (1)

or Eη(ω) ∝ gP1/3ω−4 (2)

where g is the gravity acceleration, P is the energy flux, k is the wave number and ω

the angular frequency. Although some fieldmeasurements of the spectra appear com-
patible with this prediction, laboratory experiments fail to reproduce this prediction.
The observed spectral exponents of the frequency spectrum are significantly steeper
than the −4 theoretical value [5–7]. Our goal is to investigate further the statistical
properties of the wave field recorded experimentally to obtain some insight on the
reasons for the discrepancy between theory, observations and laboratory data. For
surface gravity wave, due to the 4-wave coupling, the theory predicts also an inverse
cascade of wave action [2] that maybe responsible for the long wave generation by
the wind.

2 Experimental Setup

Waves are generated by two wedge wavemakers in a circular tank of 13m diameter
and 0.9m depth (the Coriolis facility located in Grenoble, France). Wave elevation
is recorded by a set of 10 capacitive wave gauges that provide a local measurement
and a stereoscopic system that provides a space and time resolved measurement of
the wave elevation over a surface 2 × 2.6 m2 (Fig. 1).

Three datasets are acquired with distinct generation and called weak, strong and
short (see Table1). The waves are generated by oscillating the wavemakers with a
randommodulation of amplitude±0.15Hz around a central frequency f p with a ver-
tical amplitude of 2 cm. The weak dataset corresponds to the lowest peak frequency
and a moderate wave steepness εp = 0.11. In the strong dataset the wavemakers are
operated at a slightly higher frequency at which they are more efficient and thus the
steepness is larger εp = 0.16. The short datasets corresponds to smaller wavemakers
that are operated at a higher frequency (1.5 Hz) so that to generate shorter waves and
investigate the possible generation of an inverse cascade. The stepness is very large
in this case.
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Fig. 1 Schematics of the
setup in the Coriolis facility.
The tank is 13m in diameter
and the water is 0.9m deep.
The position of the two
wavemakers is shown as
black ovals and that of the 10
capacitive probes is shown as
red dots. The field of view of
the stereoscopic
reconstruction is the green
rectangle at the center

Table 1 Parameters of the three datasets. f p is the frequency of the peak of the spectrum. kp is
the wavenumber corresponding to f p following the linear dispersion relation. ση is the elevation
variance. εp is the wave steepness computed as εp = 2kpση (see [7])

Dataset f p (Hz) kp (m−1) ση (m) εp

Weak 0.65 1.83 0.0294 0.11

Strong 0.76 2.4 0.0339 0.16

Short 1.5 9.05 0.0131 0.24

3 Fourier Spectra

Frequency Fourier spectra are shown in Fig. 2 for all three datasets. A turbulent spec-
trum is generated at frequencies higher that the peak frequency. At change of slope is
observed at 14Hz that corresponds to the gravity-capillary crossover. At frequencies
lower than the peak frequency, the wave spectrum is two orders of magnitude lower
than at the peak frequency meaning that no inverse cascade is observed even for the
short dataset. This observation raises the question of the relevance of the 4-wave
coupling in our experiment.

Figure3 displays the full frequency-wavenumber spectrum Eη(ω, k) correspond-
ing to the weak case. A strong concentration of the energy is observed on the linear
dispersion relation (LDR, red curve) that follows:

ωLDR =
√
gk + γ k3

ρ
, (3)

where ωLDR is the angular frequency, k is the wavenumber, g is the gravity acceler-
ation, γ is the surface tension and ρ is the density of water. This shows that most of
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Fig. 2 Frequency spectrum
Eη( f ) of the surface
elevation for the three
datasets
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Fig. 3 k − ω spectrum
Eη(ω, k) for ε = 0.11
(“weak” case). The spectrum
has been normalized by its
value at the forcing and is
displayed in log10 scale. The
red line is the linear
dispersion relation (3) and
the dashed lines corresponds
to bound waves (4) (see text)

the energy is made of freely propagating waves. Nevertheless a significant amount
of the energy lies out of the linear dispersion relation. In particular several lines can
be distinguished that are highlighted by the black dashed lines. These lines where
constructed by translating the dispersion relation by multiples of the forcing peak so
that the equations of the dashed lines are

ω(±n) = ωLDR(k ∓ nkp) ± nωp , (4)

with n being an integer either positive or negative. For instance for n = ±1, energy
can be transferred on the first dashed line (on the left or right of the LDR) by triadic
interactions between a free wave that lies on the peak of the spectrum at position
(ωp, kp) and another wave on the LDR (ωLDR(k), k). Energy is thus transferred to
position (ωLDR(k) ± ωp, k ± kp). For |n| > 1, the same process implies successive
harmonics of the forcing peak. These waves are not free to propagate and are known
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Fig. 4 Distribution of thewave elevation for theweak (left) and strong (right) case. The black dashed
line is a Gaussian distribution and the red dashed line is the Tayfun distribution that corresponds to
the parameter of each case

as bound waves. A first effect of the bound waves is that the statistics of the wave
elevation are not Gaussian. Indeed as seen in Fig. 4, the distribution of the wave
elevation is positively skewed and follows the Tayfun distribution which is known
to incorporate second order effects [8]. The asymmetry is more pronounced for the
strong dataset for which the slope is higher than for the weak case.

4 Occurrence of 4-Wave Correlations

In the WTT for gravity waves, 3-wave coupling is not resonant as the bound wave
is not a true free wave and thus it is not expected to contribute directly to the energy
cascade [4]. Indeed for deep water the resonance equations

ωLDR1 + ωLDR2 = ωLDR3, k1 + k2 = k3 (5)

do not have non trivial solutions in the gravity range due to the curvature of the LDR.
Thus the resonant transfers of the WTT occur through 4-wave resonant coupling.

ωLDR1 + ωLDR2 = ωLDR3 + ωLDR4, k1 + k2 = k3 + k4 (6)

In order to fully express this 4-wave coupling in the theory, the 3-wave non reso-
nant contributions are summed through a canonical change of variables [9]. In this
framework, part of the 4-wave coupling is actually due to the interplay of two non
resonant triads. Unfortunately the change of variable is quite involved and is very
hard to implement on experimental data. Nevertheless one can probe the occurrence
of the 4-wave coupling through calculation of 4-wave tricoherence defined as
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Fig. 5 Maps of the tricoherence computed on the local probe data following (7) for 3 given values
ω1/2π = 1, 2 and 5Hz from top to bottom. The left column corresponds to the weak dataset and
the right column to the strong one. Colors correspond to log10 C . See text for details

C(ω1, ω2, ω3, ω4) = 〈η̃(ω1)η̃
	(ω2)η̃(ω3)η̃

	(ω4)〉√〈|η̃(ω1)η̃(ω3)|2〉〈|η̃(ω2)η̃(ω4)|2〉
(7)

with ω1 + ω3 = ω2 + ω4 .

nmachico@uw.edu



The Energy Cascade of Surface Wave Turbulence … 245

η̃(ω) is the Fourier transform in time of the elevation field at a given point over a
temporal window of finite duration (chosen to 8.5 s). 〈 〉 is an average over successive
temporal windows and over the local probes. The four frequencies are imposed to
be resonant so that the tricoherence C(ω1, ω2, ω3, ω4) is actually depending only on
three of the frequencies. The denominator is chosen to impose |C | ≤ 1 and that C
is nondimensional. Examples of the values of the tricoherence are shown in Fig. 5
for the case weak and strong. The tricoherence being a 3D object we impose given
values of ω1 (here ω1/2π is 1, 2 or 5 Hz) chosen in the gravity range of frequencies.
The statistical convergence level is estimated to be 3 10−3 which corresponds to dark
blue colors. The red cross corresponding to values of tricoherence equal to one are
due to trivial combinations of the frequencies such as ω1 = ω2 and ω3 = ω4. Out of
this special cases converged values of tricoherence can be observed.

Note that small scale singular events can be also observed (see example in Fig. 6).
These events can be related to small whitecapping events of the waves due to the
fact that nonlinearity is not vanishingly small. These events are quite rare and occur
at relatively small scale as compared to the large scales associated to gravity waves
that are discussed in the following. Thus, we detect them by thresholding the vertical
velocity and do not take them into account in the computation of the tricoherence.

For ω1/2π = 1 Hz, the coherence is very weak (about 10−2 for the weak case)
and seems to be almost zero (at our level of convergence) when eitherω2 orω4 is less
than ω1. This appears consistent with the lack of observation of an inverse cascade.
The coherence is increasing with ω2 and ω4. For ω1/2π = 5 Hz it can even reach
strong values close to 10−1 when ω2/2π ≈ ω4/2π ≈ 7 Hz. The frequencies get
close to the gravity-capillary crossover (14 Hz) at which a specific 3-wave resonant
process has been observed that involves one gravity wave and two capillary waves
[10]. Such very strong values of the tricoherence may be related to this process
rather than to resonance between four gravity waves. For ω1/2π = 1 Hz and 1 Hz <

ω2/2π,ω4/2π < 4 Hz the observed non zero coherence maybe a trace of genuine

Fig. 6 Example of a
singularity in the elevation
due to a whitecapping at
small scale. Top is the
elevation and bottom is the
vertical velocity
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4-wave coupling that may be responsible for the direct transfert of energy along the
dispersion relation as observed in Fig. 3 at frequencies up to 4 Hz.

5 Concluding Remarks

The analysis of the tricoherence suggests that a 4-wave resonant process maybe
indeed operating at low frequencies between the forcing peak and 4Hz and be
responsible for the energy flux that provides energy along the dispersion relation
as observed on the (k, ω) spectrum. At the lowest frequency the lack of coherence
is consistent with the lack of inverse cascade. At the highest frequencies the very
large values of the tricoherence are most likely due to a distinct 3-wave resonant
process reported previously by Aubourg and Mordant [10] near the gravity-capillary
crossover. As this process should be always operating, the condition for a clearer
evidence of the 4-wave resonant process among gravity waves would require the use
of a much larger wave facility.
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Interactions Between Turbulence
and Interfaces with Surface Tension

R. Chiodi, Jeremy McCaslin and O. Desjardins

Abstract Turbulence is a complex, multi-scale fluid process that can be strongly
modified by the presence of multiple phases. In this work, we will discuss various
aspects of the interaction between turbulence and interfaces with surface tension, as
commonly encountered in liquid-gas flows. This study is based on a series of direct
numerical simulations of homogeneous and isotropic turbulence in the presence of
an initially flat interface that separates two fluids of equal densities and viscosities.
This highly simplified flow configuration is selected as it isolates a critical aspect of
turbulent liquid-gas flows and allows for deeper analysis. A second order numerical
discretization that conserves mass, momentum, and kinetic energy is employed for
all simulations. The scales of interface corrugation are presented, identifying the
presence of a critical cutoff length scale below which surface tension suppresses
interface deformation.
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1 Introduction

Turbulent liquid-gas flows are ubiquitous in nature and engineered systems. These
flows are highly complex, characterized by many different length and time scales
resulting from the turbulence itself and the presence of multiple phases. Given their
ubiquity, it is critical to be able to simulate multiphase flows, allowing a detailed and
quantitative look into their physics. Even using current state of the art techniques,
however, simulating complete systems remains out of reach, requiring an intractable
amount of computational resources.

To remedy this, sub-grid scale (SGS) models are required to include the effect of
the small scales without the need to resolve them. In single phase flows, large-eddy
simulation (LES) has achieved this, enabling simulation of a plethora of complicated
flows. These LES models are possible due to well developed theory for single phase
turbulence. Theknowledgeof the turbulent cascade and isotropic inertial range allows
accurate modeling of SGS turbulent effects while remaining general enough to be
valid for many turbulent flows, leading to their significant impact.

The surface tension force and discontinuity of fluid properties in liquid-gas flows
require new developments in multiphase turbulence theory before similarly effective
SGS models can be created. In 2003, Fulgosi et al. [1] used direct numerical simu-
lations (DNS) to study the effect of an air-water interface on a turbulent shear layer.
For this, they mainly focused on comparing the dissipation and anisotropy of gas
phase turbulence at the liquid-gas interface to that of a wall-bounded shear flow. In
2006, Reboux et al. [2] revisited the configuration of Fulgosi et al. [1], performing
LES with the variational multi-scale approach (VMS) and comparing the results to
both DNS and a modified Smagorinsky model LES. The VMS LES is seen to per-
form significantly better than the modified Smagorinsky model but, as noted by the
authors, is highly dependent on the user-selected filter scale.

Both of these studies attempt to incorporate all of the complexities of liquid-gas
flows at once, making it difficult to determine the effect of each individual com-
ponent. Additionally, due to the numerical method used to represent the liquid-gas
interface, their simulations were limited to low Weber number cases with limited
interface deformation. This significantly limits its impact through excluding cases
with complex topology changes. Trontin et al. [3] instead focused squarely on the
effect of surface tension on decaying turbulence, representing the interface using a
level-set method [4, 5] to allow large-scale interface deformation. Their configura-
tion consisted of a sheet of one phase placed in a domain of another phase, with each
phase having an identical density and viscosity. With the velocity field initialized
as homogeneous isotropic turbulence (HIT), this then isolated the effect of surface
tension on turbulence. The simulation configuration, however, contained a poten-
tially important free parameter, the thickness of the initial sheet, that can affect the
likelihood of forming droplets and the eventual droplet size distribution.

This work focuses on how surface tension affects decaying HIT using a single
interface in order to avoid introducing a free parameter. First, Sect. 2 will detail the
case configuration and range of parameters simulated. Section 3 then describes the
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governing equations and numerical methods used to perform the DNS. In Sect. 4, ini-
tial results on themodification of interface topology by surface tension are presented.
Lastly, conclusions drawn from the results are discussed in Sect. 5.

2 Case Configuration

All DNS performed as part of this work will use a cubic domain with side lengths
of 2π resolved with 512 uniformly spaced cells in each direction. At the start of a
simulation, an HIT velocity field from a separate simulation will be initialized on this
mesh, along with an interface dividing the domain equally into two 2π × π × 2π
sections. The two phases creating the interface are given identical densities and
kinematic viscosities, isolating the effect of surface tension. In order to maintain the
homogeneous and isotropic nature of the turbulence, periodic boundary conditions
are used for the velocity. Penetration of one phase into the other through the top or
bottom boundary condition is prevented with a Dirichlet boundary condition on the
liquid volume fraction, forcing the boundary to remain its initial phase. At no point
during the simulation does the initial interface undergo large enough deformation to
approach the top or bottom boundary.

The field of HIT used as the initial velocity in the simulation is generated using
linear forcing [6, 7] on an identical mesh. The DNS used to generate the HIT is
run until statistically stationarity, where the velocity field is then saved to be used
as the initial condition. On this mesh, the maximum resolvable Reynolds number,
Reλ = urmsλg/ν, is 160, where urms is the root-mean-square velocity, λg is the Taylor
microscale, and ν is the kinematic viscosity. For thisReynolds number, a small inertial
range exists, as shown by the −5/3 slope in the normalized E11 energy spectrum
plotted in Fig. 1.

To study the effect of surface tension, we will vary the turbulent Weber number,
Weλ = ρu2rmsλg/σ , with ρ being the fluid density and σ the surface tension coeffi-
cient. This Weber number will be calculated using the initial HIT properties. With

Fig. 1 Normalized E11
energy spectrum for the
initial HIT field ( )
along with a reference
−5/3 slope ( )
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Table 1 Table of different test cases and the case number used to reference them

Case 0 1 2 3 4

Weλ ∞ 21.06 8.47 1.36 0.22

the same initial HIT field being used for each simulation, Weλ is directly controlled
by σ . A total of five different Weber numbers will be simulated and are listed in
Table 1 along with a reference case number.

3 Governing Equations and Numerical Methods

All simulations are performed using NGA [8, 9]. NGA solves the incompressible
Navier-Stokes equation,

∂u
∂t

+ u · ∇u = − 1

ρ
∇ p + ν∇ · (∇u + ∇uT) + σκδΓ (φ)n

ρ
(1)

on a staggered mesh using a second order finite-volume spatial discretization and a
second order semi-implicit Crank-Nicolson time advancement. Uniform density and
viscosity has been assumed due to the unity density and viscosity ratios between the
two phases. The last term on the right, σκδΓ (φ)n/ρ, represents the surface tension
force, where n is the interface normal, κ the interface curvature, and δΓ (φ) is a Dirac
delta function localizing the surface tension force to the interface. In its discrete form,
this term is represented as a jump in pressure, p, as

[p]Γ = σκ. (2)

The phase volume fractions are advected using an unsplit, discretely conservative,
geometric algorithm based on the Volume of Fluid (VOF) method [10]. The interface
is represented in each cell by a plane using PLIC. The plane is defined by a normal
vector from the ELVIRA algorithm [11] and a normal distance to it, computed using
an analytic relation [12] to conserve the phase volume fraction in each cell. The jump
in pressure due to surface tension, Eq. 2, is imposed in the pressure Poisson equation
using the ghost fluid method (GFM) [13], with the interface curvature calculated
using a least-squares fit to a reconstructed distance level-set field [14]. This provides
a discretely conservative and spatially second order tracking of the interface.
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4 Results

The primary focus of this work is the transformation of turbulent kinetic energy into
surface energy. Figure 2 shows the turbulent kinetic energy, dissipated energy, and
surface energy after the initial startup period for theWeλ = 8.47 simulation. It can be
seen that even at this moderately highWeber number, surface tension extracts a non-
negligible amount of energy from the turbulence during the creation of additional
surface area.

To better understand the scales at which surface tension extracts this energy, the
effect of surface tension on interface topology must be studied. It is expected that
surface tensionwill oppose highwavenumber corrugations of the interface thatwould
result in high curvatures. The interface shapes at t/τinit = 0.5 for Cases 1–4 shown in
Fig. 3 support this. As the Weber number decreases, i.e. σ increases, small interface
features are prevented. At the lowestWeber number,Weλ = 0.22, the surface tension
becomes dominant enough to prevent any overturning of the interface.

Quantitatively, the length scales of surface corrugation can be studied using a
spectrum of the liquid volume fraction variance, α′(x) = α(x) − 〈α(x)〉x,z , where
α is the liquid volume fraction, ′ represents a fluctuating quantity, and 〈 〉x,z the
averaging in the x and z directions (tangential to the initial interface plane). This
liquid volume fraction variance spectrum is calculated at the domain mid-plane and
is shown in Fig. 4.

To observe the effect of surface tension, first we will consider the variance for a
passive scalar, such as thematerial interface inCase 0. For a passive scalar in isotropic
turbulence, a range of κ−1 scaling is expected, followed by a κ−5/3 scaling [15].
This κ−1 scaling appears in Fig. 4 as the horizontal line due to the multiplication

10−3

10−2

10−1

100

101

0.1 0.2 0.3 0.4 0.5

En
er
gy
/T
K
E i

ni
t

t/ init

Fig. 2 Turbulent kinetic energy ( ), dissipated energy ( ), and surface
energy ( ) as a function of time for the Weλ = 8.47 simulation. All ener-
gies are normalized by the initial turbulent kinetic energy at t/τinit = 0 and the total
( ) is plotted for reference
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Fig. 3 Interface shape at t/τinit = 0.5 with velocity magnitude color map (lighter colors are greater
values). Case 1 (a); Case 2 (b); Case 3 (c); Case 4 (d)

Fig. 4 Liquid volume
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of the variance by κ . At a certain wavenumber, κσ , the variance spectrum begins
scaling with κ−2, providing an indication that surface tension is prohibiting high
wavenumber corrugations. With increasing Weber number, surface tension prevents
larger wavelength corrugations, indicated by κσ moving to smaller wavenumbers.
As a separate note, the change in scaling for Case 0 (Weλ = ∞) is unphysical and
represents the presence of a “numerical surface tension” that is a consequence of the
interface reconstruction. Since all other cases display a κσ at a lower wavenumber
than Case 0, it can be assumed that the “numerical surface tension” does not play a
significant role in the other cases and is superseded by the true surface tension force.

5 Conclusions

A suite of DNS have been performed for a canonical flow configuration created
to study the interplay between decaying HIT and surface tension. While keeping
the Reynolds number constant, five separate Weber numbers have been simulated.
Through this, the suppression of small interface corrugations due to surface tension
has been seen visually in Fig. 3 and quantitatively in the liquid volume fraction
variance spectrum. From this, a critical scale below which the surface tension force
will prevent turbulence corrugations can be extracted. This is an important first step
in understanding the transformation of kinetic energy inHIT to stored surface energy.
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A Dual-Scale Approach for Modeling
Turbulent Liquid/Gas Phase Interfaces

Dominic Kedelty, James Uglietta and Marcus Herrmann

Abstract Advances to a dual-scale modeling approach [1] are presented to describe
turbulent phase interface dynamics in a large-eddy-simulation-type spatial filtering
context. Spatial filtering of the governing equations introduces several sub-filter
terms that require modeling. Instead of developing individual closure-models for the
terms associated with the interface, the dual-scale approach uses an exact closure by
explicitly filtering a fully resolved realization of the phase interface. This resolved
realization is maintained on a high-resolution over-set mesh. The advection equation
for the phase interface on this DNS scale requires a model for the fully resolved
interface advection velocity. This velocity is the sum of the filter scale LES velocity,
available from the LES flow solver, and the sub-filter velocity fluctuation. The sub-
filter velocity fluctuation is due to sub-filter turbulent eddies, reconstructed using a
local fractal interpolation technique [2]. Results of the dual-scalemodel are compared
to recent DNS of unit density and viscosity contrast interfaces in homogeneous
isotropic turbulence without surface tension [3].
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1 Introduction

Atomization in turbulent environments involves a vast range of length and time scales.
Predictive simulations aiming to resolve all relevant scales thus require enormous
computational resources, taxing even the most powerful computers available today
[4]. Since primary atomization is governed by the dynamics of the interface, a need
therefore exists for appropriate interface models that make the computational cost of
predicting the atomization outcome more tractable.

A wide range of phenomenological models aiming to represent statistically the
essential features of atomization have been proposed in the past. Although these
aim to introduce the dominant mechanisms for breakup, they often use round blobs
injected from the nozzle exit and hence neglect all details of the interface dynamics.

Other modeling approaches to atomization include stochastic models [5, 6] repre-
senting the interface by constituent stochastic particles and themean interface density
transport equationmodel for Reynolds-AveragedNavier-Stokes (RANS) approaches
[7, 8]. The former treats the interface dynamics in a stochastic sense but requires
the a priori knowledge of the breakup mechanism, whereas the latter is affected by
the drawbacks of the RANS approach: the transport of the mean interface density
is modeled by a diffusion-like hypothesis, thereby neglecting the spatial grouping
effects of liquid elements [4].

In the context of Large Eddy Simulations (LES), [9–12] have proposed models
to close the unclosed terms arising from the introduction of spatial filtering into the
governing equations. However, these models typically neglect the contribution of the
sub-filter surface tension term and are based on a cascade process hypothesis that
may be questionable in the context of surface tension-driven atomization.

In [13, 14], a dual-scale approach for LES of interface dynamics was proposed
and a model for the sub-filter surface tension induced motion of phase interfaces
was developed. The purpose of this contribution is to develop a model for the sub-
filter phase interface motion induced by sub-filter turbulent velocity fluctuations.
Combining such a model with the surface tension model proposed in [13, 14] will
result in a LES model applicable to atomizing flows.

2 Governing Equations

The equations governing the fully resolved motion of an unsteady, incompressible,
immiscible, two-fluid system in the absence of surface tension are the Navier-Stokes
equations,

∂ρu
∂t

+ ∇ · (ρu ⊗ u) = −∇ p + ∇ · (
μ

(∇u + ∇Tu
))

, (1)

where u is the velocity, ρ the density, p the pressure, and μ the dynamic viscosity.
Here, we neglect surface tension to solely focus on the turbulence induced dynamics
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of phase interfaces. Furthermore, the continuity equation results in a divergence-free
constraint on the velocity field

∇ · u = 0 . (2)

Assuming ρ and μ are constant within each fluid, density and viscosity can be
calculated from

ρ = ψρl + (1 − ψ)ρg, μ = ψμl + (1 − ψ)μg , (3)

where indices l and g denote values in liquid and gas, respectively, and ψ is a
volume-of-fluid scalar that is ψ = 0 in the gas and ψ = 1 in the liquid with

∂ψ

∂t
= −u · ∇ψ = −∇ · (uψ) + ψ∇ · u . (4)

Here, the last term on the right-hand side is zero for incompressible flows.

2.1 Filtered Governing Equations

Introducing spatial filtering into Eqs. (1) and (2) and assuming that the filter com-
mutes with both the time and spatial derivatives, the filtered governing equations can
be derived [10],

∂ρ u
∂t

+ ∇ · (ρū ⊗ u) = −∇ p̄ + ∇ · (μ(∇u + ∇Tu)) + τ 1 + ∇ · (τ 2 + τ 3) , (5)

∇ · ū = 0 , (6)

where ¯ indicates spatial filtering, and

τ 1 = ∂ρ u
∂t

− ∂ρu
∂t

(7)

τ 2 = ρ u ⊗ u − ρu ⊗ u (8)

τ 3 = μ(∇u + ∇Tu) − μ(∇u + ∇Tu) , (9)

where τ 1, τ 2, and τ 3 are associated, respectively, with acceleration, advection, and
viscous effects [10]. Using Eq. (3), the filtered density and viscosity in Eq. (5) are

ρ = ρlψ + ρg(1 − ψ), μ = μlψ + μg(1 − ψ) , (10)

where

ψ =
∫

G (x)ψdx , (11)

and G is a normalized spatial filter function.
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3 The Dual-Scale Model for Sub-filter Interface Dynamics

Instead of relying on a cascade process for the interface by which dynamics on the
sub-filter scale can be inferred from the dynamics on the resolved scale, the dual-
scale approach proposed in [14] aims to maintain a fully resolved realization of the
interface geometry at all times, expressed, for example, in terms of a volume-of-fluid
scalar ψ . Then ψ can be calculated exactly by explicit filtering using Eq. (11).

Although this is an exact closure, the problem of modeling is of course simply
shifted to the problem of maintaining a fully resolved realization of the interface
geometry, i.e., describing the fully resolved motion of the interface, Eq. (4). Since
the fully resolved velocity is the sum of the filtered velocity and the sub-grid velocity,
u = u + usg , this results in

∂ψ

∂t
= −∇ · ((

u + usg
)
ψ

) + ψ∇ · (
u + usg

)
, (12)

where the only term requiring modeling is usg .
In [14], a model for usg is proposed consisting of three contributions,

usg = u′ + δu + uσ , (13)

where u′ is due to sub-filter turbulent eddies, δu is attributed to the interface velocity
increment due to relative sub-filter motion between the two immiscible fluids, and
uσ is due to sub-filter velocities induced by sub-filter surface tension forces. The
focus of the current contribution is on the first term; a modeling outline of the second
term is discussed in [1, 14], and the last term is modeled in [13].

3.1 Sub-filter Turbulent Fluctuation Velocity Models

We propose to reconstruct the sub-filter turbulent fluctuation velocity u′ using fractal
interpolation [2]. To demonstrate fractal interpolation in one dimension, consider 3
adjacent LES scale nodes x0, x1, and x2 with velocities u0, u1, and u2. Following
[2, 15] the fractal interpolation operator WF I can be written as

W F I (x) = u0 + u1 − u0
x1 − x0

(x − x0) + d1

(
u(2x − x0) − u0 − u2 − u0

x2 − x0
(2x − x0)

)
if x ∈ [x0, x1] (14)

W F I (x) = u1 + u2 − u1
x2 − x1

(x − x1) + d2

(
u(2x − x0) − u0 − u2 − u0

x2 − x0
(2x − x0)

)
if x ∈ [x1, x2] (15)

Here |d1| < 1 and |d2| < 1 are stretching factors makingWF I a contractive mapping
[2]. Successively applying the fractal interpolation operator WF I starting with the
LES filter velocities, generates the fully resolved turbulent fluctuation velocity.
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Two different approaches are pursued to extend the above formulation to three
dimensions. In the first, fractal interpolation is first performed in one spatial direction
only, followed by separate 1D fractal interpolations in the other two directions [2].
The second approach replaces the 1D linear interpolation operators in Eqs. (14) and
(15) with 3D trilinear interpolation operators and performs the fractal interpolation
directly in three dimensions [16].

Furthermore, two different approaches are used to determine the values of the
stretching factors d1 and d2. The first follows the so-called ZE1 model [2], using
d1 = −d2 = ±2−1/3 with the sign chosen randomly with equal probability. This
choice of di generates a velocity signal that satisfies the−5/3 kinetic energy spectrum
of turbulence.

The second approach chooses di with random sign and absolute value determined
from a log-Poisson distribution [15, 16],

P

(
|di | =

(
1

2

)γ

βn

)
= e−λ λn

n! , n = 0, 1, . . . with λ = 1 − 3γ

1 − β3
ln 2 (16)

and γ = 1/9 and β = (2/3)1/3 [16].
Finally, two different approaches are analyzed concerning the spatial location of

the LES velocities u0, u1, and u2. If the LES flow solver utilizes a staggered mesh
layout, face normal velocities are not co-located and hence the fractal interpolation
has to be performed for different locations depending on the spatial component of
the velocity vector. However, if one first interpolates the staggered face velocities
to cell corners (nodes), then the velocity components are co-located and fractal
interpolation for all components can be performed at the same location. However,
this interpolation step is in essence an additional spatial filter of the LES velocity
before fractal interpolation is performed.

4 Numerical Methods

Equation (12) is solved using an unsplit geometric transport scheme for volume-
of-fluid scalars that ensures both discrete volume conservation of each fluid and
boundedness of ψ [17]. Geometric reconstruction of the interface is done using
PLIC employing analytical formulas [18] with ELVIRA estimated normals [19].

To efficiently solve Eq. (12) for the fully resolved interface, theRLSGmethod [20]
is employed. By design, it solves Eq. (12) on a separate, highly resolved Cartesian
overset grid of mesh spacing hG , independent of the underlying LES flow solver grid
ofmesh spacing h. In the dual scale LES approach, hG needs to be chosen sufficiently
small to maintain a fully resolved realization of the phase interface.

The unsplit, geometric advection scheme of [17] requires face-centered veloci-
ties that are discretely divergence-free to ensure both conservation and boundedness.
While discretely divergence free filtered velocities u are available on the flow solver
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mesh due to the application of a projection step of the velocities in a standard frac-
tional step method, such velocities u are not directly available on the fine overset
mesh. Since u = u + u′, both u and u′ need to be discretely divergence free on the
fine overset mesh. To ensure ∇hG · u = 0 if ∇h · u = 0, we employ the optimal con-
strained approach for divergence-free velocity interpolation [21], recursively apply-
ing the interpolation technique for nested staggeredmeshes up to the refinement level
of the overset mesh.

The sub-filter fluctuation velocity u′ is calculated from

u′ = W k
F Iu − u, (17)

where the superscript k indicates k-times application of the fractal interpolation

operator WF I , with k = log
(

h
hG

)
/ log(2). Next u′ is projected into the subspace

of solenoidal velocity fields using the projection/correction step of a fractional step
method. Although the fractal interpolation could be applied to the temporally evolv-
ing LES velocity u to obtain a time dependent u′, here, we use a single snapshot of
the LES field only (the initial velocity field), and thus u′ is frozen in time.

To calculate ψ , Eq. (11) is evaluated by setting the filter size to the flow solver
mesh size h and evaluating the integral by explicitly summing ψ of those overset-
mesh cells that are contained within a given LES flow solver cell.

5 Results

An initiallyflat interface is placed inside aboxof fully developed isotropic turbulence.
Both density and viscosity ratio are unity, and no surface tension forces are present
with a Reynolds number of Reλ = 313 and Weλ = ∞. Direct numerical simulation
results using a 10243 mesh for this case are reported in [3]. Here, we present LES
results using the dual-scale approach employing a LESmesh resolution of 323 and an
overset mesh resolution of 2563 and 5123. The sub-filter velocity u′ is obtained from
fractal interpolation using the combination of approaches summarized in Table1.

We define α(x, z, t) as the liquid volume fraction that is contained within a square
column normal to the planar interface and with cross sectional area equal to h2G . The
corresponding quantity on the LESmesh,α(x, z, t), can be calculated using a column

Table 1 Fractal interpolation methods used

Method Interpolation Scaling factors Velocity location

3D-ZE1-N 3D ZE1 Node

3D-P-N 3D Poisson Node

3D-P-F 3D Poisson Face

1D-P-F 1D Poisson Face

nmachico@uw.edu



A Dual-Scale Approach for Modeling Turbulent Liquid/Gas Phase Interfaces 263

Fig. 1 Interface geometry at different times using fractal interpolation velocity method 3D-ZE1-N
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Fig. 2 Comparison of sub-filter liquid column height RMS α′. Left: 3D-ZE1-N-256, 3D-P-N-256,
3D-P-F-256, 1D-P-F-256, and DNS-1024 (symbol). Right: impact of overset mesh resolution with
3D-P-N-256, 3D-P-F-256, 3D-P-N-512, 3D-P-F-512, and DNS (symbol)

with cross sectional area h2. Then, the sub-filter liquid column height RMS can be
defined as

α′(t) =
√

1

L2

∫

L

∫

L
((α(x, z, t) − α(x, z, t))2 dxdz. (18)

Note that without a dual scale model, both α′ remains zero for all time.
Figure1 shows realizations of the phase interface geometry at different times

using fractal interpolation 3D-ZE1-N. Significant small scale surface corrugations
on the overset mesh are visible, i.e., significant sub-filter surface fluctuations exist.

Figure2 shows the sub-filter liquid column height RMS α′ using the four methods
listed inTable 1 compared to the result of the 10243 DNS [3].No significant difference
between the four fractal interpolation methods can be discerned. Compared to the
DNS, the dual scale LES slightly over-predicts α′. This is due to the fact that the dual
scale model uses a frozen fluctuation velocity field, whereas the DNS is simulated
in decaying turbulence. Interactive coupling of the dual scale approach to the time
evolving LES field, to be done in future work, should eliminate this discrepancy.
On the right, Fig. 2 analyzes the impact of the overset mesh resolution, comparing
results obtained using a 2563 overset mesh to a 5123 mesh. No significant differences
are present, indicating that in this metric, the phase interface is well resolved even
on the 2563 overset mesh.

nmachico@uw.edu



264 D. Kedelty et al.

6 Conclusions

A dual-scale modeling approach for phase interface dynamics in turbulent flows is
presented. The method uses overset high-resolution meshes for a resolved realiza-
tion of the interface geometry that can be explicitly filtered to close the terms that
require modeling in the filtered Navier-Stokes equations. This contribution focuses
on different fractal interpolation techniques to generate sub-filter velocity fluctua-
tions that have a significant impact on interface metrics as compared to the case of
no dual-scale model, where these metrics remain zero for all time. Results show that
no differences between the different fractal interpolation methods can be discerned
using the metric of sub-filter column height RMS. Necessary future work includes
more detailed comparisons to DNS data as well as on-the-fly reconstruction of the
sub-filter turbulent eddy velocity u′ to capture the temporal evolution of the sub-filter
velocity.

Acknowledgements The support of NASATTT grant NNX16AB07A is gratefully acknowledged.
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Precession of Plumes in the Presence
of Background Rotation

Iresha Atthanayake, Petr Denissenko, Yongmann M. Chung
and Peter J. Thomas

Abstract We present results of a particle image velocimetry (PIV) study conducted
on forced plumes in a rotating system. The measurements were carried out for nine
different background rotations and it was found that the plume precesses anticycloni-
cally around the axis of background rotation. The data analysis has revealed that the
precession rate increases linearly with the rate of background rotation.

1 Introduction

Turbulent jets, plumes and thermals are prevalent in nature and technology. Jets and
plumes are continuous streams of, respectively, non-buoyant or buoyant fluid forced
out of a small opening. The instantaneous release of a parcel of buoyant liquid from
such a source is referred to as a thermal. Technological examples for jets and plumes
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include ventilation and heating, smoke release from chimney stacks and waste-water
disposal outfalls. Jet- and plume-like behaviour can be found in natural settings such
as volcanic eruptions and sea floor hydrothermal vents. The length scales and velocity
scales of most of the jets and plumes in technological or industrial category are small
enough not to be affected by the earth’s rotation while naturally occurring flows can
can be associated with parameter ranges where effects of the earth’s rotation need to
be taken into consideration. The influence of the Earth’s rotation on the dynamics of
turbulent plumes and jets is also problem of interest in a wide variety of geophysical
problems, including deep oceanmixing induced by either surface cooling in the open
ocean or freezing events in the Earth’s atmosphere [2, 4, 5]. On the other hand there
do also exist a variety of industrial applications where jets and plumes are emerging
into rotating environments such as combustion chambers, chemical mixing processes
and cooling towers.
Plumes in rotating fluids have recently attracted attention.Bruno et al. [1] numerically
investigated the effects of background rotation on convective plumes. They concluded
that the rotation strongly affects classical convection patterns of the plumes, that
the plume is confined at the intrusion level by the establishment of a geostrophic
balance, and that non-trivial swirl speed develops in and around the plume. Tomas et
al. [6] also carried out a numerical study to investigate the effects of rotation on the
turbulent dynamics of thermally driven buoyant plumes in stratified environments at
large Rossby numbers. Their simulations revealed that the primary response to the
adverse pressure gradient is an off-axis deflection of the plume that evolves into a
robust, organized anticyclonic radial precession about the buoyancy source. Frank
et al. [3] recently conducted an experimental study on plumes in rotating systems.
They conducted a series of dye-visualisation experiments and concluded that after
approximately one rotation period, the plume tilts laterally and starts to precess
anticyclonically. The experiments of Frank et al. [3] motivated us to conduct the
current short study where we revisit the observed precession described in their paper
but by means of more quantitative Particle-Image-Velocimetry (PIV) measurements.

2 Experimental Facility and Methodology

The experiments were conducted inside a large tank mounted on a computer con-
trolled turntable. A schematic diagram of the experimental set up is shown in Fig. 1.
The plumes studied were released vertically upwards from an exit nozzle embedded
flush within the top surface of an acrylic ejector box as illustrated in the figure. The
ejector box had a diameter of 500mm and it was placed at the bottom of the rotating
tank. The center of the exit nozzle was aligned to coincide with the rotational axis of
the turntable. The diameter of the exit nozzle, from which the plumes were ejected,
was d = 6mm. Thus, the ratio of tank width to source diameter was approximately
167. This ensured that effects from the surrounding walls of the tank, induced on the
flow during the experiments, can be assumed to be negligible. The density difference
between the plume and the surrounding environment was maintained by increasing
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Fig. 1 Schematic diagram
of the experimental set up

honeycomb

ejector box

Camera
Mirror

Laser and optics

z

r

the salinity of the ambient water in the tank. In preparation for each experiment that
the turntable was accelerated to the required rotation rate and the fluid inside the tank
was allowed to reach solid-body rotation. Then the plume was released with a flow
rate 0.5 × 10−3 m3/min. The Reynolds number based on the diameter of the nozzle
and the mean ejection velocity is Re0 = 1800. The plume Richardson number (Γ ) is
approximately 0.03. Therefore the plume considered in the study is a forced plume
not a pure plume.

The velocity-field measurements were conducted at a non-dimensional height
z/d = 10, where z is the axial height and d is the diameter of the source. The
data were analysed by means of Proper Orthogonal Decomposition(POD). The time
characteristics of the first energetic POD mode was used to calculate the precession
frequency of the plume. Moreover, since these time characteristics show non station-
ary behaviour, they were analysed using the Hilbert-Huang transformation to find
the frequency of precession (ωp).

3 Results

Figure2a–o show a series of vector fields of the plume in the horizontal plane, at
height z/d = 10 above the source. The figures represent the time development of the
plume in the horizontal plane between 20s after ejection of liquid had commenced
and 104s. Due to the entrainment velocity affected by the Coriolis force a cyclonic
vortex is formed. The background rotation associated with the figures is 0.52 rad s−1.
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Fig. 3 Velocity vectors and vorticity field of a first, b second and c third POD mode for a plume
with Re0 = 1800, at Ω = 0.21 rad s−1, for z/d = 10

Fig. 4 The time characteristics of the first POD mode: a Ω = 0.21 rad s−1, b Ω0 = 0.31 rad s−1

and c Ω = 0.42 rad s−1 POD mode for a plume with Re0 = 1800, at z/d = 10

In each one of Fig. 2a–o the superposed crosshair-style lines identify the center of
the source at distance z/d = 10 below the measurement location. These lines serve
to provide a clear visualisation of the movement of the centre of the vortex with
respect to the centre of the source. An inspection of the series of figures reveals that
the centre of the vortex, that is the centre of the plume, precesses anticyclonically
around the centre of the source.

Figure3a, b show the first three POD modes of a plume subject to background
rotation of Ω = 0.21 rad s−1. The velocity vector arrangement of the three POD
modes represent two counter rotating vortices. The background of the three figures
shows the corresponding vorticity. Moreover Fig. 4 shows the time characteristics
associate with the first POD mode for three different rotation rates as identified in
the caption. The temporal variation of the time coefficient(C1) of the first PODmode
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Fig. 5 Variation of plume
precession frequency(ωp)
with the rotational velocity
of the turntable (Ω0)

displays a non-stationary behaviour for each one of the three rotation rates. Therefore
the Fourier transform was not used for analysing these data. The time characteristics
were subjected to Hilbert-Huang transformation and instantaneous frequencies were
obtained. Then the mean frequency was calculated and identified as the precession
frequency at the respective background rotation rate.
Figure5 displays the dependence of the precession rate of the plume as a function of
the rotational velocity Ω0 of the turntable. A linear least-squares fit to the measured
data yields ωp ≈ 0.7Ω0 and is identified in Fig. 5 by the solid line interpolating the
data points.

4 Summary and Conclusions

Results from series of PIV experiments investigating plumes subject to different
levels of background rotation rates were presented. The PIV measurements were
conducted at the cross section of the plume at height z/d = 10 above the source
for nine different background rotation rates. The velocity fields obtained from the
PIV measurements were subjected to POD analysis. It was found that the first POD
mode, for all background rotation rates, displays two counter rotating vortices. The
time characteristics of the first POD mode was further subjected to a Hilbert-Huang
transformation which yielded the precession frequency of the plume around axis of
rotation. This frequencywas found to increase with the background rotation. Figure6
shows the variation of the precession rate with the background rotation for plumes for
nine different experimental data sets by Frank et al. [3]. The nine different data series
shown in the figure are for nine different Rossby number ranges. The least square fit
shown by green line suggests ωp ≈ 0.4Ω0. Further Frank et al. [3] considered pure
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Fig. 6 Mean plume precession frequency ω as a function of the rotation rate of the environment
Ω by Frank et al. [3]

plumes(Γ ≈ 1). But the plume that we considered in our study is a forced plume for
which Γ ≈ 0.03. Therefore in summary it can be concluded that even with a initial
momentum at the source plumes do precess around the axis of background rotation.
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Flow Structures and Scale Interactions
in Stable Atmospheric Boundary Layer
Turbulence

Nikki Vercauteren and Danijel Belušić

Abstract Atmospheric boundary layer turbulence in stably stratified conditions is
characterised by an intermittent, unsteady behaviour. The intermittency can result
from localised flow acceleration due to non-turbulent motions, which can exhibit
structures such as ramp-cliff convective patterns, waves or microfronts. Based on a
timeseries clustering method, we characterise interactions between scales of motion
in a dataset of near-surface stable boundary layer turbulence. Individual flow struc-
tures are investigated in two weak-wind flow regimes exhibiting distinct scale inter-
action properties. The signature of flow structures differs despite comparable wind
and stability properties.

1 Introduction

Turbulent flows can become globally intermittent in cases of strongly stable density
stratification. In this context, turbulence is observed to cease partially and localized
turbulent patches on scales that are large compared to themain eddy size occur within
otherwise quiet flow [8].Within such a globally intermittent flow, the spatio-temporal
patterns of mixing events are modulated by increased shear due to larger scale flow
structures which lack the universal character of the inertial range [1, 2]. In the case
of atmospheric turbulence, the increased shear can be the result of external perturba-
tions due to nonstationarywind accelerations on the so-called submeso-scales (scales
between the largest turbulent eddies and the smallest mesoscale motions tradition-
ally specified at 2km). These submeso motions have been shown to exhibit struc-
tures such as ramp-cliff convective patterns, waves or microfronts but are generally
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unknown [7]. There are ongoing challenges to represent strongly stable conditions
in atmospheric models; progress in the characterisation of submeso motions, along
with a characterisation of their effect on turbulence, can be a step to inform model
improvement.

The goal of our study is to apply a combination of methods originating from non-
stationary timeseries analysis in order to gain insights on the non-stationary enhance-
ment mechanism of intermittent turbulence in the stable atmospheric boundary layer
(SBL). We want to extract ubiquitous flow structures, or events, in the SnoHATS
dataset of near-surface atmospheric turbulence [3]. The SnoHATS dataset was col-
lected over the PlaineMorte glacier in Switzerland and includes long periods of stable
stratification, with several periods of very stable stratification. Several methods were
previously applied to this dataset in order to analyse flow regimes, and the activity
of different scales of motion in the different regimes [12, 13]. In [9], a statistical
indicator that quantifies the dynamical (in)stability of timeseries, provided evidence
that flow regimes under the influence of submeso motions are dynamically unstable
and require higher order closure models to reflect non-local scale interactions.

In the present contribution,we relate twoflow regimes characterised by very stable
stratification but different scales activity to a signature of flow structures thought to
be submeso motions.

2 Scale Interactions

Periods of influence of non-turbulent scales of motion on the time evolution of
the turbulent vertical velocity variance are detected based on a statistical cluster-
ing methodology. The procedure is based on a finite element, bounded variation,
vector autoregressive factor method (FEM-BV-VARX) introduced by Horenko [5]
which allows to cluster timeseries according to dynamical properties and to detect
regime modulation by external variables. The turbulent timeseries analysed here are
the vertical velocity fluctuations on scales faster than 1min, which is fast enough to
minimise contamination by non-turbulent motions [13]. The influence of the hori-
zontal wind velocity, filtered to extract contributions on scales ranging from 1 to 30
minutes, is considered by defining it as the external factor in the statistical VARX
models. Those scales are denoted as sub-mesoscales and correspond in large part to
non-turbulent fluctuations [13]. Vercauteren and Klein [12] showed that modulation
of the turbulence by sub-mesoscale motions differs in different flow regimes corre-
sponding to weakly and strongly stable, and that the algorithmic procedure was able
to separate the flow regimes automatically. The reader is referred to [12] for further
details on the clustering of the turbulent flow regimes.

The multiple resolution decomposition (MRD, [14]) is a wavelet filtering method
that allows to analyse the dynamical activity of different scales of motion. MRD
cospectra can be used to assess the amount of flux that is due to eddies of a certain
size, thereby providing a method to identify a cospectral gap scale. The gap is usu-
ally identified as the scale at which the flux crosses the zero-line and indicates the
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appropriate averaging period needed to separate contributions of non-turbulent sub-
mesoscales of motion from turbulent flux. In an extended MRD methodology [10],
the relative contributions to the flux variability of the horizontal and vertical wind
velocity fluctuations on different pairs of scales can be quantified. Detailed analyses
of the scale dependent dynamical activity in distinct flow regimes of the SnoHATS
dataset are presented in [13]. In the present work we focus on two different regimes
of very stable flows, which were found to be influenced by submeso motions in [12].
Those will be denoted as regime 2 and regime 4 in order to follow numbering used
in [12]. Our goal in this study is to identify flow structures in each regime to analyse
if the differences in scales and turbulence dynamics relates to different signatures of
submeso motions. The results on the dynamics activity of different scales of motion,
which were presented in [13], are summarised here for the two strongly stable flow
regimes under investigation.

The scales activity is shown in Fig. 1 for regime 2, and in Fig. 2 for regime 4,
based on MRD analyses. MRD cospectra and extended cospectra are calculated on
periods of 30 minutes, and results are shown for the median (heat flux cospectra)
resp. average (extended cospectra) over all periods within the given flow regime.
In both regimes, the variability of larger horizontal scales relates to smaller vertical
scales (middle panels, Figs. 1 and 2). The right panels show the joint variability of
the scale-wise horizontal velocity fluctuations and of the vertical velocity variance.
The strongest joint variability appears for large horizontal scales and simultaneous
small vertical scales, in agreement with the hypothesis that sub-mesoscales motions
modulate turbulent fluxes. The submeso-influenced regimes 2 and 4 however differ
in their scale characteristics. Indeed, regime 2 (Fig. 1) shows very little turbulent
fluctuations while showing more fluctuations in the submeso scales, suggesting the
presence of a scale gap between turbulence and submeso scales. In regime 4 (Fig. 2),
the variability is continuously spread between turbulent and larger scales.
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Fig. 1 Heat flux MRD cospectra (left panel) and extended MRD showing the standard deviations
(std) of the streamwise u and vertical w wind velocity components (middle panel), resp. w2 (right
panel) on all pairs of scales, normalized by the total std of u′w′. Left panel: median over all 30-min
periods within flow regime 2, with 0.1 and 0.9 quantiles as errorbars. Middle and right panels:
average over all 30-min periods in regime 2. Adapted from [13]
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Fig. 2 Heat flux MRD cospectra (left panel) and extended MRD showing the standard deviations
(std) of the streamwise u and vertical w wind velocity components (middle panel), resp. w2 (right
panel) on all pairs of scales, normalized by the total std of u′w′. Left panel: median over all 30-min
periods within flow regime 2, with 0.1 and 0.9 quantiles as errorbars. Middle and right panels:
average over all 30-min periods in regime 2. Adapted from [13]

3 Turbulent Event Detection

The present contribution aims at characterizing submeso motions which are present
in the two introduced very stable flow regimes. The timeseries analysis methodology
for turbulent event detection (TED) derived byKang et al. [6] aims at identifying non-
stationary events or flow patterns in noisy timeseries. Instead of detecting signatures
of knownflowpatterns in timeseries, theTEDmethoddetects flowstructures as events
that are significantly different from noise, assuming that the typical duration of events
is know a priori. In the context of timeseries resulting from turbulent quantities, the
noise is taken as white and red noise. Indeed, statistical descriptions of turbulence
lead to the formulation of stochastic models for the turbulent observables such that in
the inertial subrange, Lagrangian velocities can be modeled by a Langevin equation
(or Ornstein–Uhlenbeck process) with suitable drift and noise terms [11]:

du = − u

TL
dt + √

C0εdW, (1)

where u is the velocity (or a turbulent observable), TL is the Lagrangian decorrelation
timescale, C0 is a universal constant and ε is the the mean dissipation; dW are
increments of a Wiener process. As shown in Faranda et al. [4], this model is in fact
equivalent to an autoregressive process of order one or AR(1) process (also known
as red noise):

ut = φut−1 + ψt , (2)

where t is a discrete time label, and φ =
(
1 − Δt

TL

)
and ψt are independent variables

being normally distributed. In the SBL, gravity waves, transient drainage flows and
other flow structures on submeso scales will typically superimpose on the turbulence
or affect its intensity, thereby inducing non-stationarity and hence departures from

nmachico@uw.edu



Flow Structures and Scale Interactions in Stable … 279

the idealized inertial subrange Langevin model Eq.1 or AR(1) model Eq.2. This is
the core idea of the TED method: sequential subsequences of the timeseries x(t) of
turbulent observables are analysed using a sliding window of predefined length-scale
l. Events are defined as subsequences that are significantly different fromwhite noise
or from an AR(1) process. In practice, an AR(1) model is fitted to each detrended
subsequence xq(t) = [

x(tq), . . . , x(tq+l−1)
]
and a test is performed on the model

residuals to seewhether they are uncorrelated. If this is not the case (i.e. if the residuals
are not white noise), then xq(t) is defined as a potential event. Additionally, non-
stationary subsequences that exhibit a structural break are considered as potential
events.

The TED method is applied to 6 s averaged temperature measurements from both
flow regimes. The choice of scale for the block averages of the turbulent observables
will define the time increments of the AR(1) model in Eq.2. Hence the averaging
scale should be chosen such that the increments fall within the range of scales of
inertial turbulence. As shown by the extended MRD analyses, scales faster than
approximately 5–10s exhibit fluctuations characteristic of isotropic turbulence and
block averaging within this time range represents an appropriate choice. An example
of temperature timeseries detected as an event is shown in Fig. 3. The trajectories are
shown for the corresponding event, where the temperature is shown in colour. We
observe a clear structure in the event. Comparison with periods not detected as event
by the TED method showed absence of structures (not shown).

Statistics of the main physical characteristics of the identified events are shown
in Fig. 4, conditionally on the flow regime affiliation (i.e. for regime 2 and regime 4
separately). The median and quartiles of the mean wind speed and bulk Richardson
number are shown as an indicator of the wind and stability conditions during the
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Fig. 3 Timeseries of temperature detected as an event (left) and corresponding phase space visual-
isation of the event (right), where the axis show the streamwise and cross-stream wind coordinates,
and the temperature is shown in colour
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events. Events in regime 2 occur with slightly lower wind speed, and slightly higher
bulk Ri number. The vertical velocity variance (based on the 6 s averaging windows),
the largest temperature change within one event, the maximal wind direction change,
and the standard deviation of the wind direction, highlight that events occurring in
regime 2 and in regime 4 have a different signature.

The largest difference appears in the wind direction behaviour during events:
events in regime 2 have very little wind direction variability while those in regime
4 have a very large wind direction variability. On the contrary, events in regime 2
have larger temperature changes than in regime 4. Note that the events are detected
based solely on the temperature timeseries, without considering information on the
wind direction. Events in regime 2 are associated with very little vertical velocity
fluctuations, while those in regime 4 have larger vertical velocity fluctuations.

4 Conclusions

The submeso-influenced flow regimes analysed here differ in their scale character-
istics. Indeed, regime 2 exhibits a scale gap, whereas turbulent and submeso scales
overlap in regime 4. The results in Fig. 4 show that non-stationary events in regime
2, where the scale of events is significantly larger than the turbulent scales do not
appear to trigger much turbulent mixing. From the observed signature of the type of
events in this regime (temperature changes with little wind direction variability), we
hypothesise that advected air masses or density currents that tend to take amicrofront
structure, while enhancing shear locally, may only trigger little turbulence on small
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scales. On the contrary, the wind-direction variability characteristics of events in
regime 4, with its scale overlap, lead us to hypothesise that this regime encompasses
wave-like phenomena thatmay break down to turbulence through a cascade of scales.
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Approximating Turbulent and
Non-turbulent Events with the Tensor
Train Decomposition Method

Thomas von Larcher and Rupert Klein

Abstract Low-rank multilevel approximation methods are often suited to attack
high-dimensional problems successfully and they allow very compact representation
of large data sets. Specifically, hierarchical tensor product decomposition methods,
e.g., the Tree-Tucker format and the Tensor Train format emerge as a promising
approach for application to data that are concerned with cascade-of-scales problems
as, e.g., in turbulent fluid dynamics. Beyond multilinear mathematics, those tensor
formats are also successfully applied in e.g., physics or chemistry, where they are
used in many body problems and quantum states. Here, we focus on two particular
objectives, that is, we aim at capturing self-similar structures that might be hid-
den in the data and we present the reconstruction capabilities of the Tensor Train
decomposition method tested with 3D channel turbulence flow data.

1 Introduction

In recent research on multiscale problems low-rank multilevel approximation meth-
ods are found to attack high-dimensional problems successfully and they offer oppor-
tunities for compact representation of large data sets [3, 11]. Specifically, hierarchical
tensor product decomposition methods such as the Tree-Tucker format [4], and the
Tensor Train format [5, 13], are promising approaches for application to data that are
concerned with cascade-of-scales problems, for instance in turbulent fluid dynamics.
Beyond multilinear mathematics, those tensor formats are also successfully applied
in e.g., physics or chemistry, where they are used in many body problems and quan-
tum states.
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Tensors are multidimensional arrays or mathematically more precisely polylinear
formats. For example, vectors are tensors of order d = 1, and tensors of order 3 or
higher are generally denoted as higher-order tensors. Clearly, the storage requirement
of a tensor depends on its order and on the mode sizes, that is, on the number of
entries, n, per dimension. A d-dimensional tensor with mode sizes n results in a
storage requirement of nd . Thus, in high dimensional problems or in so-called big
data applications one has to deal with a massive storage requirement. Tensor product
decomposition methods, first mentioned by Hitchcock (1927) [6], were developed
to overcome that curse of dimensionality.

Here, we test the capabilities of the Tensor Train decomposition to both, numeri-
cally computed and experimentally measured flow profile data. We aim at capturing
coherent structures and self-similar patterns that might be hidden in the data, cf. [10].
Our study is concerned with the question of whether Tensor decomposition methods
can support the development of improved understanding and quantitative character-
isation of multiscale behavior of turbulent flows, cf. e.g. [14]. Results of tests using
synthetic data to evaluate the suitability of the method to generally detect self-similar
patterns are published in [17].

2 Tensor Product Decomposition Method

The Tensor Train format is a hierarchical tensor format and a specific branch of the
hierarchical Tucker format. It is mainly based on the key idea to transform higher
order tensors into tensors of order 2 (matrices) that then allow for the application of the
matrix singular value decomposition (SVD). Generally, SVD of a matrix A ∈ R

m×n

is written as A = U�VT, where U ∈ R
m×m and V ∈ R

n×n . The matrix � contains
the singular values, σi , on its diagonal, � = diag(σ1, . . . , σmin(m,n)) ∈ R

m×n , with
σ1 ≥ σ2 ≥ σmin(m,n) ≥ 0. The number of singular values unequal 0 defines the rank
r of the matrix A: rank(A) = r . SVD often enables compact representation by
truncating U,�, V with respect to rank r , i.e., the size of the matrices is truncated
with respect to the singular values unequal 0.

Tensor Train decomposition makes use of the compact SVD in successive steps.
Figure1 shows a sketch of the step-by-step procedure that we apply here to transform
aTensor (of dimension 4 in this example) into theTensorTrain format. In thefirst step,
the input Tensor, A(n1, n2, n3, n4), is reshaped into a 2-dimensional n1 × (n2n3n4)
matrix A1 to which a compact SVD is applied, that is, a parameter r (so-called TT-
rank) is set which compresses the size of thematrices. The factormatrixU1 ∈ R

n1×r1 ,
so-called first core, is stored and the remaining part�1V T

1 = A2 ∈ R
r1×n2n3n4 is used

for the second step. In the second step, A2 is reshaped into a r1n2 × n3n4 matrix to
which again a SVD is applied leading to the second core U2 ∈ R

r1n2×r2 . Finally, the
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Fig. 1 Scheme of the tensor train decomposition. Note that r1 = r2 = r3

step-by-step procedure gives 4 cores U1, . . . , U4 that are used for writing the Tensor
A in the Tensor Train format

A(n1, n2, n3, n4) =
r1∑

k1=1

r2∑

k2=1

r3∑

k3=1

U1(n1, k1)U2(k1, n2, k2)U3(k2, n3, k3)U4(k3, n4).

(1)
Note, that the core tensors are linked by the TT-rank r which is kept fix in all steps
of the step-by-step procedure. The cores are tensors of order 3 except the first and
the last core which are of order 2.

3 Results

We begin this section with an exemplary demonstration of the Tensor Train decom-
position method, that is, we apply it to numerically computed data of a Taylor-Green
Vortex flow. Then, we show results of application to in-situ data of the atmospheric
stable boundary layer. Finally, we analyse data of a direct numerical simulation
(DNS) of a channel turbulence flow.

We write the relative error between the original data Tensor and the approximated
Tensor in the Frobenius norm that reads

||A|| =
√√√√

N1∑

n1=1

N2∑

n2=1

· · ·
Nd∑

nd=1

x2n1···nd , (2)
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where A is a d-dimensional Tensor with entries n1, . . . , nd . Then, the relative error
reads

e = ||(Y − A)||
||A|| , (3)

with Y as approximation of A.

3.1 Taylor-Green Vortex

In computational fluid dynamics, Taylor-Green Vortex flow is a classical test bed for
at least two reasons. First, it is computed using a fully periodic box with analytical
initial conditions. Second, depending on the Reynolds number, it shows a transition
from laminar flow to a fully turbulent state and homogeneous, isotropic decay of
turbulence with fully developed inertial range.

Here, we use data of a 3D direct numerical simulation; data courtesy of G. Gassner
(University of Cologne, Germany). The Reynolds number is Re = 800 and the grid
size 256 × 256 × 256 in (x, y, z). To demonstrate the capabilities of the Tensor Train
approximation, we extract a 2D (x, y) horizontal slice at height z = 10. The snapshot
is taken at t = 12 s; at this time step the flow state shows a mirror symmetric profile
in x− and y−axis relation (Fig. 2, left panel). We make use of the mirror symmetry
and reshape the 2D data set into a Tensor T of order 4, i.e., T[2, 128, 2, 128]. The
Tensor Train decomposition is then applied to this input Tensor.

Figures2 and 3 show results of the approximation of the input Tensor T at various
TT-ranks. Already at TT-rank 6 we find a remarkable low relative error (e ≈ 0.02%)
and the compression factor is about 27 (storage requirement 2382 compared to 65,536
of the original 2Dsnapshot).At higher ranks also the small-scale structures are getting
well resolved, linked with an increase of the storage requirement.

Fig. 2 TGV. Left: (x, y)-slice at height z = 10. Snapshot is taken at t = 12 s. Right: approximation
at TT-rank 6
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Fig. 3 TGV. Log-log plot of
storage requirement against
relative error for various
TT-ranks. Note that the
increment is 2 up to TT-rank
100 and 5 up to 200
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3.2 Atmospheric Stable Boundary Layer

During the Snow-Horizontal Array Turbulence Study (SnoHATS) at the PlaineMorte
Glacier in the Swiss Alps [1, 12] time series of velocity and temperature data were
measured in the atmospheric stable boundary layer (SBL). Analysis of SBL turbu-
lence data [16], shows that data can be clustered according to different interactions
of submesoscale wind velocity and vertical velocity fluctuations.

Here,we apply theTensor Train decomposition to a time series of temperature data
of cluster 4 as described in [16]; data courtesy of N. Vercauteren (Freie Universitaet
Berlin, Germany).We limit the scalar data series to 218 = 262,144 entries and reshape
it into a Tensor of dimension 18, i.e., each dimension has 2 entries. Thus, we ignore
any a priori knowledge about the physics hidden in the data that has been described in
[16]. Applying the Tensor Train decomposition with a given TT-rank 2 approximates
the data series with a relative error of 20.0%, and the storage requirement in the
Tensor Train format is 138 which corresponds to a compression factor of about

Fig. 4 SBL. Time series of
measured temperature data
from cluster 4 (gray) in [16]
and approximated data
modelled with TT-rank 2
(black)
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1900. Interestingly, reconstruction of the data series at TT-rank 2 reveals a periodic
signal with a cycle length of about 819s, see Fig. 4. This value is in good agreement
with the results of [16] who found both, turbulence motion and wave activity in the
cluster under consideration.

3.3 Application to Channel Turbulence Flow

Finally, we consider a fully turbulent 3D channel flow generated in a numerical study
by [15]; data courtesy ofM. Uhlmann (Karlsruhe Institute of Technology, Germany).
The grid size is 600 × 352 × 600 in (x, y, z), the friction-based Reynolds number
is Reτ = 590. We focus on data of vorticity magnitude calculated from the DNS
velocity data as turbulence is heavily linked with vorticity.

The Q-criterion [8, 9], a scalar quantity defined to identify vortex (coherent)
structures within turbulent flows, represents the balance of shear strain rate and
vorticity magnitude. Figure5 shows iso-surfaces of the Q-criterion. Various vortex
tubes of different size and shape, stretched and rotated, can be identified indicating
the highly turbulent regime.

To capture the broad range of space scales, the vorticity field is reshaped into its
prime factors. Thus, the input Tensor to which the Tensor Train decomposition is
applied is of order 18

Fig. 5 Channel turbulence flow. Iso-surfaces of the Q-criterion. Colored surfaces represent unfil-
tered data of Q = 9. Gray surfaces (large tubes) represents data of Q = 2 filtered with a box-filter
of size 10. Colors represents the angle α of vorticity between the unfiltered and the filtered data set,
green is α = 0◦, yellow is α = 90◦, and red is α = 180◦, cf. [2]
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Fig. 6 Channel turbulence flow. (x, y)-slice at z = 300 (mid-channel) of approximated vorticity
data. a for TT-rank 100 (e ≈ 0.42), b for TT-rank 500 (e ≈ 0.21), c for TT-rank 1000 (e ≈ 0.12), d
original data. Note that the colorbar scale is the same for all panels, that is, it is a linear scale from
0 (blue) to 8 (red)

T[n1, . . . , n18] = T[2, 2, 2, 2, 3, 5, 5, 2, 2, 2, 2, 2, 11, 2, 2, 2, 2, 3, 5, 5]. (4)

Figure6 shows (x, y)-slices of the resulting approximated data at various TT-
ranks. Qualitatively, the trend of a decrease in the relative error and accompanying
increase in the TT-rank is similar to our finding for the TGV flow. However, we
find a large relative error at small TT-ranks (e ≈ 0.42 at rank 100) and the error is
still relative large at larger TT-ranks (e ≈ 0.12 at rank 1000). This is reasonable as
vorticity dominates at small scales that are approximated at higher but not at lower
TT-ranks. As observed in the previous tests, approximation at low TT-ranks averages
also the turbulent vorticity field.

4 Conclusion

In this study, we apply the Tensor Train decomposition method to flow profiles of
computational and experimental fluid dynamics. We found the Tensor Train format
to be an efficient method to compress big data. The occurrence of (self-)similar
structures results in low relative errors at low TT-ranks. Especially, for low-rank
approximation of the data the Tensor Train format acts similar to an average filter
as the approximated data represent a smooth version of the original profiles. In
particular, analysis of the atmospheric SBL data set uncovers a periodic signal that
is hidden in the data.

The present results are very promising. In future work, we will apply different
multiscale and advanced data analysis methods such as, e.g., shearlets, wavelets, and
turbulent event detection methods to detect self-similar structures that might emerge
repeatedly in time on different spatial scales.
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