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Gravity-driven turbulent bedload transport has been extensively studied over the
past century in regard to its importance for Earth surface processes such as natural
riverbed morphological evolution. In the present contribution, the influence of the
longitudinal channel inclination angle on gravity-driven turbulent bedload transport
is studied in an idealised framework considering steady and uniform flow conditions.
From an analytical analysis based on the two-phase continuous equations, it is shown
that: (i) the classical slope correction of the critical Shields number is based on an
erroneous formulation of the buoyancy force, (ii) the influence of the slope is not
restricted to the critical Shields number but affects the whole transport formula and
(iii) pressure-driven and gravity-driven turbulent bedload transport are not equivalent
from the slope influence standpoint. Analysing further the granular flow driving
mechanisms, the longitudinal slope is shown to not only influence the fluid bed shear
stress and the resistance of the granular bed, but also to affect the fluid flow inside
the granular bed – responsible for the transition from bedload transport to debris
flow. The relative influence of these coupled mechanisms allows us to understand the
evolution of the vertical structure of the granular flow and to predict the transport rate
scaling law as a function of a rescaled Shields number. The theoretical analysis is
validated with coupled fluid–discrete element simulations of idealised gravity-driven
turbulent bedload transport, performed over a wide range of Shields number values,
density ratios and channel inclination angles. In particular, all the data are shown
to collapse onto a master curve when considering the sediment transport rate as a
function of the proposed rescaled Shields number.

Key words: granular media, particle/fluid flow, sediment transport

1. Introduction
Turbulent bedload transport is of major importance for the prediction of riverbed

evolution and coastal processes, which represent important issues for public safety,

† Email address for correspondence: raphael.maurin@imft.fr
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management of water resources and environmental sustainability. In this framework,
the key parameter to predict is the dimensionless sediment transport rate (Einstein
1942), Q∗s =Qs/

√
(ρp/ρ f − 1)gd3, as a function of the dimensionless fluid bed shear

stress denoted as the Shields number (Shields 1936), θ∗ = τb/[(ρ
p
− ρ f )gd], where

Qs is the volumetric sediment transport rate per unit width, g is the acceleration of
gravity, d the particle’s diameter, ρp and ρ f are the particle and fluid densities and
τb is the fluid bed shear stress. Due to the inherent complexity of granular media
behaviour and turbulent fluid flows, turbulent bedload transport understanding remains
limited despite a century of modern research on the subject (Gilbert 1914; Bagnold
1956; Frey & Church 2011; Duran, Andreotti & Claudin 2012; Aussillous et al. 2013).
This is illustrated by the poor predictions provided by the classical formulas linking
Einstein and Shields numbers – such as the Meyer-Peter & Müller (1948) formula –
which lead to sediment transport rate up to two orders of magnitude different from
what is observed in the field (Recking et al. 2013). Accordingly, the present paper
focuses on the analysis of the slope influence in turbulent bedload transport, which
might be one of the key aspect of the observed data dispersion.

Most applications of turbulent bedload transport involve the presence of a slope, for
example in the case of a beach in coastal sediment transport, a river or a mountain
stream. The slope inclination angle is expected to affect the sediment transport rate
through a modification of the particle’s mobility. This is classically accounted for by
considering a force balance on a single grain at the top of the granular bed close
to the onset of motion (Fredsøe & Deigaard 1992; Andreotti, Forterre & Pouliquen
2013). In the zero-slope case (see figure 1), the streamwise force balance at the onset
of motion reduces to an equality between the streamwise force induced by the fluid
flow and the resistive sliding friction force on the granular layer below. Considering
only the main fluid forces to apply to the grain, i.e. drag and buoyancy (Schmeeckle,
Nelson & Shreve 2007) the friction force can be expressed as a granular friction
coefficient, µs, multiplied by the buoyant weight representing the vertical force applied
to the grain. Then, the force balance on a grain at the onset reads:

π

8
ρ f d2CDu2

∗
−µs

(
ρpg

π

6
d3
− ( fb)z

)
= 0, (1.1)

where CD is the drag coefficient, f b is the buoyancy force and u∗ is the velocity scale
at the granular bed assimilated to the fluid bed friction velocity. From this balance,
by expressing the buoyancy force, the critical Shields number can be written as:

θ 0
c =

ρ f u2
∗

(ρp − ρ f )gd
=

4µs

3CD
. (1.2)

In the presence of a longitudinal slope inclination angle, α, (see figure 1) two
additional positive terms appear in the force balance due to the projection of the
particle weight and buoyancy force along the streamwise axis, while the friction
force is reduced due to the projection of the particle weight along the vertical axis:

π

8
ρ f d2CDu2

∗
−µs

(
ρpg cos α

π

6
d3
− ( fb)z

)
+ ρpg sin α

π

6
d3
+ ( fb)x = 0. (1.3)

Taking the buoyancy force as f b = −ρ
f (π/6)d3g leads to the following reduction of

the critical Shields number with increasing slope:

θc(α)= θ
0
c cos α

[
1−

tan α
µs

]
. (1.4)
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FIGURE 1. (Colour online) Schematic slope influence on a particle at the top of the
granular bed at rest.

This expression of the modification of the critical Shields number was first
formulated by Fernandez Luque & Van Beek (1976) considering the onset of motion
to be due to rolling instead of sliding. The consecutive moment balance on the grain
leads to the same expression of the modified critical Shields number, with µs the
tangent of the so-called pocket angle formed by the local arrangement between the
particle and its neighbours (Wiberg & Smith 1987). Performing turbulent bedload
transport experiments in an inclined rectangular pressure-driven closed conduit, with
variation of particle diameter (d ∈ [0.9, 3.3] mm), density ratio ρp/ρ f

∈ [1.34, 4.5] and
channel inclination angle (α ∈ [0, 22]◦), Fernandez Luque & Van Beek (1976) found a
relatively good agreement between the theoretical prediction and experimental results
providing a fit of the pocket angle, which appeared unexpectedly large. Following
this pioneering work, Chiew & Parker (1994) reproduced a similar approach, deriving
(1.4) from a force balance associating µs with the granular medium repose angle,
and comparing the prediction to experimental data in pipe flows. Varying the particle
mean diameter d ∈ [0.5, 3] mm, the repose angle Φ ∈ [33, 38]◦ and the channel
inclination angle α ∈ [0, 31]◦, they showed that the critical Shields number follows
the prediction of (1.4) for downward slopes. This work has been further generalised
by Seminara, Solari & Parker (2002) and Dey (2003) to the combined effect of
transverse and longitudinal slopes, validating the analysis with experiments in pipe
flows in the latter study.

This type of approach is widespread in turbulent sediment transport and can be
found in classical textbooks of sediment transport (Fredsøe & Deigaard 1992) and
granular media (Andreotti et al. 2013), as well as in the aeolian saltation community
(Iversen & Rasmussen 1994, 1999). It is also known in the morphodynamic
community as the Ikeda–Coleman–Iwagaki model (Wiberg & Smith 1987) and
has been applied in turbulent bedload transport to experiments and field transport
rate predictions (see e.g. Li & Cheng 1999; Wilcock & Crowe 2003; Karmaker &
Dutta 2016). In addition, it has been extended to account for the lift force (Wiberg &
Smith 1987; Chiew & Parker 1994; Armanini & Gregoretti 2005), the fluid viscous
sub-layer at low slope (Wiberg & Smith 1987) and the duration of a given applied
fluid force in the context of turbulent fluid flows (Diplas et al. 2008; Valyrakis et al.
2010).

In the meantime, the longitudinal slope effect has been studied experimentally
in gravity-driven turbulent bedload transport. Considering a large range of slopes,
Smart & Jaeggi (1983), Smart (1984) and later Rickenmann (1991, 2001) have
determined empirical relationships between the dimensionless sediment transport
rate and a modified Shields number. The latter, classically evaluated from the water
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depth, h, was determined from the so-called mixture depth, hm = h + δs, including
both the water depth, h, and the thickness of the granular layer in motion, δs. As a
consequence, the Shields number has a different meaning and this approach cannot
be compared directly to the classical one, as the mobile layer thickness δs scales
with the classical Shields number and the slope (Sumer et al. 1996; Hsu, Jenkins
& Liu 2004; Revil-Baudard & Chauchat 2013). These dependencies are expected to
modify the classical scaling laws, underlining the importance of adopting the same
definition of the Shields number when comparing experimental data and theoretical
predictions. Although in a different framework, these studies show that the slope
not only modifies the critical Shields number but also the Shields number definition.
As a consequence, the empirical law relating the dimensionless sediment transport
rate to the Shields number is also modified. A similar modification of the sediment
transport formula has been proposed by Cheng & Chen (2014), replacing the gravity
contribution by a slope-modified gravity in both the Shields and Einstein number
formulations, and considering the classical Meyer-Peter & Müller (1948) formula.
The obtained formula fits the existing experimental data better than the classical
corrections (Cheng & Chen 2014), but lacks a solid theoretical justification. Lastly, it
is interesting to note that Damgaard, Whitehouse & Soulsby (1997) also proposed an
empirical correction of the transport formula based on experimental data in a closed
conduit.

The literature review underlines two different trends that seem to be associated with
pressure-driven and gravity-driven configurations in turbulent bedload transport. On
one hand, gravity-driven experiments exhibit a modification of the transport formula as
a function of the slope. On the other hand, the variation of the critical Shields number
with the slope seems to be well predicted from a force/moment balance on a single
particle in pressure-driven configurations. However, there is a priori no theoretical
justification why a variation of the slope should only affect the critical Shields number
and the study of Damgaard et al. (1997) at moderate Shields number values suggests
a behaviour similar to the gravity-driven configuration. This lack of characterisation
together with the absence of clear theoretical bases in the literature suggests the need
for further analysis.

In the present contribution, we attempt to give a better understanding of the
longitudinal slope influence on turbulent bedload transport by adopting an idealised
and theoretical point of view. Focusing on gravity-driven turbulent bedload transport
under steady uniform flow conditions, we discuss the bases of the critical Shields
number derivation and analyse the granular entrainment mechanisms in the framework
of the two-phase continuous equations (§ 2). This allows us to characterise the
influence of the slope on the vertical flow structure and propose a re-scaling of the
Shields number to account for the slope influence on the sediment transport rate.
The proposed scaling is tested against fluid–discrete element method simulations (§ 3)
and the theoretical results are discussed more generally in the light of the numerical
results, considering in particular the vertical flow structure and the difference between
gravity-driven and pressure-driven configurations (§ 4).

2. Theoretical analysis
2.1. Discussion on the classical critical Shields number derivation

The classical derivation of the critical Shields number reproduced in the introduction
relies on the following expression of the buoyancy force applied to a particle:

f b =−ρ
f π

6
d3g. (2.1)
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Slope influence in turbulent bedload transport 139

While this expression is classically used, it does not apply a priori to all the different
configurations explored in fluid–particle flow, as stressed by Christensen (1995).

The buoyancy force is defined as the force a fluid element would undergo if it
was occupying the position of the particle (Maxey & Riley 1983). It can be derived
explicitly in the Stokes flow case and leads to the following formulation (Maxey &
Riley 1983):

f b =−
π

6
d3
∇ · σ f

u , (2.2)

where σ f
u is the undisturbed fluid velocity stress tensor, i.e. the fluid stress tensor

based on the fluid velocity field undisturbed by the presence of the particles. This
formulation is used in Jackson (2000) at the level of the continuous medium, including
the Reynolds stresses contribution (Rf ) inside the fluid stress tensor, i.e. replacing
σ f

u by σ f
u + Rf inside (2.2). However, the formulation of the buoyancy force should

not a priori include the contribution from the Reynolds stresses considering that
they are associated with advection and related to the time averaging of the fluid
velocity fluctuations. Indeed, considering a single particle in a turbulent Newtonian
fluid flow, it experiences a time-averaged buoyancy force depending on the average
fluid velocity field but independent of the fluctuations with time. This is the case
because the expression of the buoyancy is linear with the second spatial derivative of
the fluid velocity for a Newtonian fluid,

f b =−
π

6
d3ηf
∇ · [∇uf

+ (∇uf )T], (2.3)

with ηf the dynamic fluid viscosity, so that the time averaging of the buoyancy
force reduces to the contribution from the average fluid velocity field. From these
considerations, the expression of the buoyancy force should follow (2.2) in all the
different fluid flow regimes (D. Lhuillier, 2011, Personal communication).

As a consequence, the above-mentioned derivation is not valid in uniform gravity-
driven turbulent bedload transport as the undisturbed fluid equation, 0 = −∇Rf

−

∇σ f
u + ρ

f g, together with the regular expression of the buoyancy force (2.2), does
not allow us to write the buoyancy force as (2.1).

Expressing the buoyancy directly from (2.2), it follows that ( fb)z=πd3/6 ρ f g cos α
and ( fb)x =−πd3/6 ∂zσ

f
xz, by using the hydrostatic characteristics of the fluid along z.

Considering that the viscous shear stress contribution is negligible in turbulent bedload
transport ∂zσ

f
xz' 0 (Revil-Baudard & Chauchat 2013; Maurin, Chauchat & Frey 2016),

the force balance performed on a particle lying on the granular bed at the onset of
motion (1.3) reads:

π

8
ρ f d2CDu2

∗
−µs(ρ

p
− ρ f )g cos α

π

6
d3
+ ρpg sin α

π

6
d3
= 0, (2.4)

where only the particle weight projection along the streamwise axis is non-negligible.
This leads to the following modification of the critical Shields number due to the slope
effect:

θc(α)= θ
0
c cos α

[
1−

tan α
µs

1
1− ρ f /ρp

]
, (2.5)

where the density ratio ρp/ρ f modifies the classical slope effect characterised by (1.4).
This difference is of importance for underwater bedload transport, where the density
ratio is typically of order one (ρp & ρ f ).
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Adopting the regular expression for the buoyancy force also affects the derivation of
the slope influence on the critical Shields number in the pressure-driven configuration.
In this case, the streamwise component of the buoyancy force is completed by the
term due to the presence of a longitudinal pressure gradient:

π

8
ρ f d2CDu2

∗
−µs(ρ

p
− ρ f )g cos α

π

6
d3
+ ρpg sin α

π

6
d3
−
∂Pf

∂x
= 0, (2.6)

which does not enable us to recover the classical modification of the critical Shields
number derived in the introduction (1.4). The latter equation remains only valid
for laminar flows and in the case where the fluid mass column stays at a constant
level perpendicular to the gravity, i.e. for underwater avalanches or coastal sediment
transport.

2.2. Vertical granular flow structure and entrainment mechanisms
Instead of focusing on the critical Shields number modification in a discrete particle
framework, we adopt a more general approach based on the continuous two-phase
flow framework to analyse the slope influence from the onset of motion up to intense
turbulent bedload transport. In order to better understand the vertical structure of the
granular flow and the local mechanisms at play, let us express the shear-to-normal
granular stress ratio as a function of the depth τ p

xz(z)/P
p(z). The yield criterion

τ p
xz/P

p > µs is characteristic of the onset of granular flow, so that the positive
contributions to the shear-to-normal stress ratio at a given height z reflects the local
entrainment mechanism of the granular medium.

The two-phase volume-averaged equations read for steady uniform flows (Anderson
& Jackson 1967; Jackson 2000; Chauchat 2017):

0=
∂τ f

xz

∂z
+
∂Rf

xz

∂z
+ ρ f (1− φ)g sin α − n〈 f p

f x
〉

p, (2.7)

0=
∂τ p

xz

∂z
+ ρpφg sin α + n〈 f p

f x
〉

p, (2.8)

0=−
∂Pf

∂z
+ ρ f (1− φ)g cos α − n〈 f p

f z
〉

p, (2.9)

0=−
∂Pp

∂z
+ ρpφg cos α + n〈 f p

f z
〉

p, (2.10)

where σ f
ij = −Pf δij + τ

f
ij is the effective fluid stress tensor with δij Kronecker’s delta,

σ
p
ij =−Ppδij+ τ

p
ij is the granular stress tensor, Rf

ij is the Reynolds stress tensor, φ and
ε are the solid and fluid volume fraction respectively and n〈 f p

f k
〉

p is the k component
of the fluid–solid momentum transfer, with n the particle density and 〈 f p

f k
〉

p the
volume-averaged fluid–particle interaction force. These equations represents the
volume-averaged momentum balance over the streamwise and wall-normal directions
of the fluid and solid phases, and the brackets with superscript p denotes the classical
volume averaging over the particle phase defined in Anderson & Jackson (1967).

Integrating these equations between a position z< hp in the moving granular layer
and hp, the top of it, allows us to simplify the equations and to express the shear-to-
normal stress ratio as a function of the vertical position z. Focusing on the granular
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Slope influence in turbulent bedload transport 141

equations (2.8) and (2.10), the granular stress tensor is zero at hp and the integrated
streamwise component of the granular momentum balance leads to:

τ p
xz(z)= ρ

pg sin α
∫ hp

z
φ(ζ ) dζ +

∫ hp

z
n〈 f p

f x
〉

p(ζ ) dζ . (2.11)

Assuming that the fluid wall-normal pressure is hydrostatic, the fluid–particle
interaction term n〈 f p

f z
〉

p can be expressed from (2.9). Replacing it in (2.10), we
obtain:

Pp(z)= g cos α(ρp
− ρ f )

∫ hp

z
φ(ζ ) dζ . (2.12)

Lastly, the fluid streamwise momentum balance (2.7) can be integrated between z and
hp in order to express the last term on the right-hand side of (2.11):

0= τ f
xz(hp)− τ

f
xz(z)+Rf

xz(hp)−Rf
xz(z)+ ρ

f g sinα
∫ hp

z
[1− φ(ζ )] dζ −

∫ hp

z
n〈 f p

f x
〉

p(ζ ) dζ .

(2.13)
It has been shown previously in turbulent bedload transport and sheet-flow simulations
that the effective viscous shear stress tensor is negligible throughout the depth with
respect to the Reynolds stresses and to the slope contribution (Revil-Baudard &
Chauchat 2013; Maurin et al. 2016). Furthermore, the Reynolds stresses are fully
damped in the granular bed, and we assume that their contribution is negligible
in the moving granular layer Rf

xz(z) ∼ 0. Also, the fluid bed shear stress used to
define the Shields number is taken here as the maximum of the turbulent shear stress
(Revil-Baudard & Chauchat 2013; Maurin et al. 2016), assuming that the latter is
located at the top of the granular layer, τb=Rf

xz(hp). Therefore, equation (2.13) reads:∫ hp

z
n〈 f p

f x
〉

p(ζ ) dζ = τb + ρ
f g sin α

∫ hp

z
[1− φ(ζ )] dζ . (2.14)

Combining equations (2.11), (2.13) and (2.14) and defining the average solid volume
fraction between z and hp, φ̄z as:

φ̄z(hp − z)=
∫ hp

z
φ(ζ ) dζ , (2.15)

the shear-to-normal stress ratio τ p
xz(z)/τ

p
zz(z) can be expressed as:

τ p
xz(z)
τ

p
zz(z)
=

ρp

ρp − ρ f
tan α +

τb

g cos α(ρp − ρ f )φ̄z(hp − z)
+

ρ f

ρp − ρ f

1− φ̄z

φ̄z
tan α. (2.16)

Three contributions to the granular phase shear-to-normal stress ratio can be
identified. The first term on the right-hand side of (2.16) is constant within the
depth, and represents the slope effect on the granular phase. It is analogous to the
classical configuration of a dry granular medium on an inclined plane, where the
shear-to-normal stress ratio is constant within the depth and equal to the tangent of
the inclination angle α (Andreotti et al. 2013). In bedload transport, the presence
of a buoyancy force along the vertical axis leads to a modification of this term
by the density ratio. The two last terms on the right-hand side correspond to the
fluid contribution on the granular phase, which has been split into two contributions
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coming from the fluid flow above the bed and the fluid flow inside the granular layer
respectively. The Shields number can be identified in the former and the term reduces
to:

τb

g cos α(ρp − ρ f )φ̄z(hp − z)
=
θ∗

φ̄z

d
hp − z

. (2.17)

This represents the contribution from the fluid bed shear stress to the entrainment
of particles. Its surface nature is characterised by a decrease of this contribution
inside the granular bed, i.e. as z decreases. It is accounted for in bedload transport
studies, by assuming that the Shields number is representative of the total imposed
fluid shear stress. However, the contribution from the fluid flow inside the granular
layer, corresponding to the third term on the right-hand side of (2.16), is usually
neglected while it is seen to be of importance when increasing the slope angle. This
contribution depends on the slope and characterises the effect of the slope on the
fluid flow inside the granular layer. The latter affects the granular phase through the
fluid–particle interaction, and in consequence depends also on the specific density. In
addition, the different dependence on the vertical position z of the two fluid terms
implies that a modification of the slope at given Shields number and specific density
would induce a change in the vertical repartition of the shear-to-normal stress ratio,
and therefore on the vertical structure of the granular flow. This could explain why
the velocity and solid volume fraction profiles are not self-similar in gravity-driven
bedload transport (Armanini et al. 2005; Larcher et al. 2007; Capart & Fraccarollo
2011; Frey 2014; Maurin 2015; Maurin et al. 2015).

In order to gain more insight into the physical meaning of the fluid flow
contribution inside the granular bed, let us consider the simple case of a gravity-driven
fluid flow through a quasi-static porous granular bed. The Shields number contribution
is negligible in this configuration and the granular bed is at rest so that the average
solid volume fraction is equal to the maximum packing fraction φ̄z= φ

max. This leads
to a shear-to-normal stress ratio independent of the vertical position z:

τ p
xz(z)

Pp(z)
=

ρp

ρp − ρ f
tan α +

ρ f

ρp − ρ f

1− φmax

φmax
tan α =

tan α
ρp/ρ f − 1

[
ρp

ρ f
+

1− φmax

φmax

]
. (2.18)

As a consequence, there exists a critical angle above which the entire granular
layer will be entrained independently from its thickness. This avalanche angle, α0,
corresponds to the configuration for which the shear-to-normal stress ratio exceeds
the static friction coefficient of the granular medium µs:

tan α0 =
µs

1+ [(ρp/ρ f − 1)φmax]−1
. (2.19)

This corresponds to the critical angle for the onset of debris flow as derived by
Takahashi (1978), and is well known in the debris flow community (Takahashi
2007). The derivation presented here makes the link between debris flows and
gravity-driven turbulent bedload transport, and evidences the importance of the slope
influence through the fluid flow inside the granular layer when considering steep
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slope configurations. In addition, it shows that the expression of the critical angle of
debris flow α0 is characteristic of the slope influence on the granular phase through
both its direct impact and the fluid-induced contribution in gravity-driven bedload
transport, two mechanisms that depend on the specific density ρp/ρ f

− 1.

2.3. Sediment transport rate scaling
Taking advantage of the developed analysis, we look for a scaling law of the sediment
transport rate accounting for the slope effect. Following Bagnold (1956), the sediment
transport rate per unit width Qs can be expressed as a function of the solid volume
fraction φ and the average particle velocity 〈vx〉

p profiles:

Qs =

∫
∞

0
φ(z)〈vx〉

p(z) dz=
∫ hp

hc

φ(z)〈vx〉
p(z) dz= φ〈vx〉

pδs, (2.20)

where hc is the lower bound of the mobile granular layer, δs = hp − hc is the mobile
granular layer thickness and •̄ denotes the average over z along the mobile granular
layer thickness. Considering z = hc in (2.16), the mobile layer thickness can be
expressed as:

δs

d
=

θ∗

φ̄[µs − (1+ [φ̄(ρp/ρ f − 1)]−1) tan α]
'

θ∗

φmaxµs[1− tan α/tan α0]
, (2.21)

where (2.19) has been used and it has been assumed that φ̄ ' φmax as the average
solid volume fraction φ̄ is only weakly varying in the problem.

The term φ〈vx〉
p has the dimension of a velocity, i.e. the square root of the product

of an acceleration and a length scale. In the problem, the only acceleration scale is
the buoyant reduced gravity g̃= (ρp/ρ f

− 1)g (Duran et al. 2012), and we have seen
that the relevant length scale is the mobile granular layer thickness. Thus, the volume
flux should scale as:

φ〈vx〉
p ∼
√
(ρp/ρ f − 1)gδs. (2.22)

Compiling (2.20)–(2.22), the scaling law of the dimensionless sediment transport
rate Q∗s can be written as:

Q∗s =
Qs√

(ρp/ρ f − 1)gd3
∼

√
(ρp/ρ f − 1)gδ3

s√
(ρp/ρ f − 1)gd3

∼

(
θ∗

φmaxµs[1− tan α/tan α0]

)3/2

. (2.23)

This approach not only allows us to recover the scaling law of the dimensionless
sediment transport rate with the Shields number and the power 3/2 in the high Shields
number limit, but also allows us to express the influence of the slope through an
effective granular friction coefficient, µeff =µs[1− tanα/tanα0]. The proposed scaling
law is consistent with the original definition of the Shields number as a ratio between
the driving and resistive forces applied to the granular phase. Indeed, it represents the
ratio between the tangential fluid bed shear stress τb and the tangential shear stress
associated with the friction between granular layers τ =µeff Pp

=φµeff (ρ
p
−ρ f )gd. The

dependence of the effective friction coefficient on the distance to the critical debris
flow angle, 1− tan α/tan α0, is consistent with the analysis of § 2.2, and allows us to
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x x

z

z

FIGURE 2. (Colour online) Scheme of the numerical set-up and its equivalent average
unidirectional picture with typical fluid velocity 〈uf

〉 = 〈uf
x〉(z)ex, solid volume fraction

φ, and solid velocity 〈vp
〉

s
= 〈vp

x 〉
s(z)ex depth profiles. The inclined three-dimensional

bi-periodic granular description is coupled with a unidirectional fluid momentum balance
using imposed fixed random bottom boundary condition and water free-surface position.
The particle colour is representative of the velocity intensity.

take into account both the direct and indirect slope effects on the granular phase in
gravity-driven bedload transport. It suggests that the key parameter is not the slope in
itself but the ratio between the slope and the critical angle of debris flow. This is of
particular importance as the latter is not constant and depends on the maximum solid
volume fraction and on the specific density.

3. Numerical analysis
In order to verify the developed analysis, numerical simulations of turbulent

bedload transport are performed using an existing coupled fluid–discrete element
model (Maurin et al. 2015).

3.1. Numerical model
The model is based on a three-dimensional (3-D) discrete element method (DEM)
coupled with a 1-D volume-averaged fluid momentum balance. The fine resolution
of the granular phase and the two-way coupling ensures an accurate description of
the vertical depth profiles and the momentum conservation of the system on average.
The model has been described in detail and validated experimentally in Maurin
et al. (2015), so that only the main characteristics are recalled here. The typical
configuration considered here is shown in figure 2.

The bi-periodic 3-D DEM is based on the explicit resolution of the particle phase,
solving Newton’s equations of motion for each particle p at position xp:

m
d2xp

dt2
= f p

ext +
∑
k∈N

f pk
c = f p

g + f p
f +
∑
k∈N

f pk
c , (3.1)

where the sum of the contact forces f pk
c is made over the ensemble of nearest

neighbours N , f p
g is the gravity force, f p

f is the force applied by the fluid on particle
p. Similarly, the rotation of the particles are solved from Newton’s equations of
motion. The contact force between particles is determined from the particles overlap
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using the classical spring-dashpot contact law (Schwager & Pöschel 2007) which
defines a unique normal restitution coefficient en, and considers tangential friction
characterised by a friction coefficient µp. The latter two are taken as respectively
en = 0.5 and µp = 0.4, as determined from experimental comparisons (Maurin et al.
2015). The interaction with the fluid phase (f p

f ) is mainly restricted to buoyancy, drag
and lift forces in turbulent bedload transport (Nino & Garcia 1994; Niño & García
1998). While it is clear that the lift force plays a non-negligible role in turbulent
bedload transport (Ji et al. 2013), its expression has only been derived in the limits
of Stokes flow (Saffman 1965) or an inviscid fluid (Schmeeckle et al. 2007), and
does not apply to the fluid flow regimes associated with turbulent bedload transport
(Schmeeckle et al. 2007). As a consequence, it has been decided to avoid including
a controversial expression of the lift force, which appeared to be unnecessary to
reproduce accurately turbulent bedload transport experiments (Maurin et al. 2015).
Therefore, the fluid–particle interactions are restricted in the present work to the
three-dimensional buoyancy (f p

b) and drag forces (f p
D) (Jackson 2000; Maurin et al.

2015):

f p
b =−

πd3

6
∇Pf , (3.2)

f p
D =

1
2
ρ f πd2

4
CD‖〈u〉

f
xp − vp

‖(〈u〉fxp − vp), (3.3)

where the average fluid velocity and the fluid pressure are taken at the centre
of particle p, and vp represents the velocity of particle p. The drag coefficient
CD depends on the particle Reynolds number Rep = ‖〈u〉

f
xp − vp

‖d/ν f and takes
into account hindrance effects (DallaValle 1948; Richardson & Zaki 1954): CD =

(0.4 + 24.4/Rep)(1 − φ)−3.1. Knowing the position and velocity of the particles, the
fluid pressure and velocity fields, Newton’s equations of motion are solved for the
ensemble of particles using the open-source DEM code YADE (Šmilauer et al. 2015).

The coupled fluid description solves the volume-averaged momentum balance of the
fluid phase, corresponding to (2.7) and (2.9):

0=
∂τ f

xz

∂z
+
∂Rf

xz

∂z
+ ρ f (1− φ)g sin α − n〈 f p

f x
〉

p, (3.4)

0=−
∂Pf

∂z
+ ρ f (1− φ)g cos α − n〈 f p

f z
〉

p. (3.5)

Due to the steady uniform character of the problem, the fluid velocity field reduces to
its streamwise component and depends only on the vertical position: 〈u〉f = 〈ux〉

f (z)ex,
as sketched in figure 2. Therefore, the buoyancy force (3.2) is restricted to its wall-
normal component and (3.5) leads to a hydrostatic fluid pressure distribution, the wall-
normal average drag force being negligible. The solution of the streamwise fluid phase
momentum balance (3.4) requires closures for the viscous and Reynolds stress tensors,
as well as the determination of the solid volume fraction φ and the momentum transfer
associated with the granular phase interactions. Considering a Newtonian fluid, the
effective viscous shear stress is expressed as:

τ f
xz = ρ

f (1− φ)ν f d〈ux〉
f

dz
, (3.6)
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with ν f the clear fluid kinematic viscosity and 〈ux〉
f the volume-averaged streamwise

fluid phase velocity. The Reynolds shear stress is based on the eddy viscosity concept
(ν t) using a mixing length formulation:

Rf
xz = ρ

fν t d〈ux〉
f

dz
with ν t

= (1− φ)l2
m

∣∣∣∣d〈ux〉
f

dz

∣∣∣∣ , (3.7)

where the mixing length is taken similarly to Li & Sawamoto (1995) as:

lm(z)= κ
∫ z

0

φmax
− φ(ζ )

φmax
dζ , (3.8)

with κ= 0.41, the von Kármán constant. The formulation adopted allows us to recover
the law of the wall (Prandtl 1926) in a clear fluid, while completely damping the
turbulence inside the granular bed at maximum packing fraction (φmax).

The solid volume fraction (φ) and the fluid–particle interaction term (n〈 f p
f 〉

p) are
determined from spatial averaging of the discrete solid phase. Considering cubic boxes
of finite wall-normal length scale lz, these two terms are averaged over the whole
length and width of the granular bi-periodic cell. In order to solve the important wall-
normal gradients present in turbulent bedload transport, a small wall-normal weighting
function length scale has been adopted (typically lz= d/30), and this choice has been
confirmed by the experimental validation (Maurin et al. 2015).

The 3-D DEM and the fluid model are solved as transient problems applying a
fixed bottom boundary condition for both the fluid (〈u〉f (z= 0)= 0) and the particle
phase (fixed random particles) and imposing the position of the water free surface
(d〈ux〉

f /dz(z = h) = 0). In order to achieve a stable integration, the DEM time step
is bounded by the propagation time of the fastest wave over a particle diameter
(Maurin 2015; Maurin et al. 2015). The fluid resolution time step corresponds to
a typical characteristic evolution time scale of the granular medium and is taken
much larger than the DEM one (Maurin et al. 2015): 1tf = 10−2s with respect to
1tp ∼O(10−4–10−5) s.

The model has been compared with experiments and has shown its capability to
describe accurately both the sediment transport rate and the granular depth structure
in turbulent bedload transport (Maurin et al. 2015).

3.2. Results
In order to study the bulk flow behaviour and to investigate the parameter space,
bi-periodic three-dimensional numerical simulations are performed by varying the
Shields number θ∗ between the onset of motion θ∗c and intense bedload transport
(θ∗∼ 0.6), the relative slope angle tanα/tanα0 between 0.1 and 0.75, and the specific
density ρp/ρ f

− 1 between 0.75 (lightweight plastic), 1.5 (glass/natural sediment) and
3 (metal). Detailed parameters of the runs are shown in table 1. In the simulations,
the water free-surface position and the channel slope angle are imposed before letting
the system evolves under the effect of gravity. After reaching the steady state, the
data are averaged over space every typical granular evolution time scale, 0.1 s, over
1000 measurements (Maurin et al. 2015). Note that the eddy turnover time varies
between 0.01 s and 0.1 s in the configurations considered. Consistently with the
theoretical derivation of § 2.2, the Shields number is evaluated by taking the fluid bed
shear stress as the maximum of the time-averaged turbulent Reynolds shear stresses.
The sediment transport rate is evaluated from (2.20), neglecting therefore the local
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TABLE 1. Parameters of the simulations studied and symbol correspondence.
Dimensionless number definitions are given in appendix B.
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FIGURE 3. Dimensionless sediment transport rate Q∗s as a function of the Shields number
θ∗ for (a) variation of slope at a specific density of ρp/ρ f

− 1 = 1.5, and (b) variation
of specific density at a given slope. The triangles, the squares and the circles denote
simulations with specific density ρp/ρ f

− 1 of 0.75, 1.5 and 3 respectively. The darkness
of the points is characteristic of the value of the slope angle α varied between 0.02, 0.1
and 0.14 (1◦, 6◦ and 9◦).

instantaneous lateral and vertical contributions. The latter have been checked to be
negligible with respect to the streamwise contribution.

Figure 3(a,b) shows the dimensionless sediment transport rate as a function of the
Shields number for variation of the channel inclination angle and the specific density
respectively. While being far from the threshold of motion, an increase of up to an
order of magnitude is observed in the dimensionless sediment transport rate when the
slope increases at constant Shields number. This important influence at high Shields
number evidences the impact of the bed slope on the sediment transport rate. In
addition, the variation of the specific density at constant slope and Shields number
is also seen to affect the dimensionless sediment transport rate (see figure 3b), as
expected from the theoretical analysis presented in § 2.

Combining the variation of the slope and of the specific density, figure 4(a) shows
a complex picture of the phenomenon, with an important dispersion at given Shields
number values resulting from the coupling between the two mechanisms. Evaluating
the granular medium friction coefficient from dry inclined plane avalanche simulations
(µs' 0.4), the results are plotted in figure 4(b) as a function of the modified Shields
number proposed in the previous section. All the data are shown to collapse on a
single curve of power law close to 3/2, with some dispersion at high modified Shields
number values. This collapse shows that the rescaling characterises at first order the
effect of the slope and of the specific density variations on the sediment transport rate
in gravity-driven turbulent bedload transport. While the small dispersion observed at
high modified Shields number values highlights the limits of the proposed scaling law,
its intuitive nature, its simplicity and the fact that it encompasses the different physical
mechanisms represent a clear improvement compared with previous corrections.

Additional simulations have been performed close to the onset of motion to
characterise the critical Shields number. The latter has been evaluated by forcing the
flow slightly above the onset of motion before letting the simulations evolve at the
given Shields number values in order to characterise the cessation threshold (Ouriemi
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FIGURE 4. Dimensionless sediment transport rate Q∗s as a function of the Shields number
θ∗ (a) and the rescaled Shields number (b) respectively, for variation of slope and specific
density. The triangles, the squares and the circles denote simulations with specific density
ρp/ρ f

− 1 of 0.75, 1.5 and 3 respectively, and the darkness of the points is characteristic
of the value of the slope angle α varied between 0.01 and 0.2 (1◦ and 12◦). The black
line shows the power law best fit, reading Q∗s = a(θ∗m − 0.1)b, with a= 0.79 and b= 1.60,
and θ∗m the modified Shields number.
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FIGURE 5. Dimensionless sediment transport rate Q∗s as a function of the Shields number
θ∗ (a) and the rescaled Shields number (b) respectively, for variation of slope and specific
density close to the onset of motion. The colour code is the same as the previous figures.

et al. 2007). The results are shown in figure 5 and suggest that the proposed rescaling
is valid at first order close to the critical Shields number. Even though the data exhibit
more dispersion due to the complex characterisation of the onset of motion (Clark
et al. 2015), the rather good collapse observed suggests that the proposed formulation
allows us to define a unique critical Shields number independent of the slope and
the specific density, which is close to θ∗c /[µs(1 − tan α/tan α0)] ' 0.1 in the present
simulations.

In order to illustrate the underlying mechanisms of the slope influence on the
vertical granular flow structure, the solid depth profiles of volume fraction, φ, average
streamwise particle velocity, 〈vp

x 〉, and transport rate density, qs = φ〈v
p
x 〉 are shown in

figure 6 for various Shields number values at constant tan α/tan α0 = 0.1. The solid
volume fraction depth profiles are characterised by the presence of a possible fixed
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FIGURE 6. Shields number influence on the solid velocity (m s−1), volume fraction and
transport rate density (m s−1) depth profiles, at given slope (α = 0.02, 1◦) and specific
density (ρp/ρ f

= 1.5). The Shields numbers are respectively θ∗ = 0.11, 0.20, 0.30 and
0.49, and correspond to the curves with increasing averaged velocity.
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FIGURE 7. Slope influence on the solid velocity (m s−1), volume fraction and transport
rate density (m s−1) depth profiles, at a given Shields number θ∗∼0.1 and specific density
(ρp/ρ f

= 1.5). The intensity of the points reflects the magnitude of the slope, which is
varying between 1◦ and 8◦ (α = 0.02, 0.05, 0.10, 0.14).

point at the interface between the granular bed and the fluid flow, around φ = 0.3.
The Shields number increase leads to an increase of the solid volume fraction above
the interface and a decrease below it, associated with an increase of the mobile
granular layer thickness. The corresponding solid velocity profiles keep the same
shape and exhibit a shift to higher values with increasing Shields number values,
similarly to the transport rate density profiles which are broadening in the same
time due to the increased mobile layer thickness. The presence of the fixed point in
the solid volume fraction profiles at a low relative slope inclination angle suggests
that an appropriate non-dimensionalisation of the z component could collapse all the
solid volume fraction profiles obtained at different Shields number values. However,
as we have seen in § 2.2, the vertical structure of the granular flow results from a
competition between the slope influence on the lower part of the granular flow and
the surface contribution from the dimensionless fluid bed shear stress, i.e. the Shields
number. These two effects are mostly independent and they are dominant in the lower
part and the upper part of the granular flow respectively. This is well observed when
considering the variation of the slope influence (tan α/tan α0) at a constant Shields
number (see figure 7).

Increasing the slope induces an increasing vertical asymmetry in the transport rate
profiles towards the bottom, resulting from a shift of the concentration shoulder to
higher solid volume fraction and an increase of the solid velocity in the lower part
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of the mobile layer. The absence of a fixed point and this changing asymmetry in the
solid volume fraction and transport rate density profiles show that the granular depth
profiles cannot be self-similar in gravity-driven turbulent bedload transport.

4. Discussion
The present theoretical analysis and numerical simulations of gravity-driven

turbulent bedload transport demonstrate that the effect of the slope on the sediment
transport rate is not restricted to the critical Shields number, but influence the whole
transport rate formula, in agreement with part of the literature (Smart & Jaeggi 1983;
Smart 1984; Rickenmann 1991; Cheng & Chen 2014). It highlights the importance of
the critical angle of debris flow in the transport rate prediction. The debris flow angle
is representative of the effective resistance of the granular layer at rest and includes
both the direct and indirect slope influence on the granular medium. Therefore, the
analysis suggests that the key parameter in turbulent bedload transport is not the
slope but the ratio between the tangent of the slope angle and the tangent of the
critical angle of debris flow, tan α/tan α0.

As a consequence, the specific density or density ratio plays a crucial role in
the slope effect on the sediment transport rate. A variation of the density ratio has
important consequences due to the associated modification of the critical debris
flow angle, and care should be taken when using model material in experiments. In
particular, plastic particles are commonly used for sheet flows and bedload transport
experiments (Armanini et al. 2005; Larcher et al. 2007; Capart & Fraccarollo 2011;
Ni & Capart 2015; Revil-Baudard et al. 2015), with density of approximately
ρp/ρ f

= 1.2, leading to a critical debris flow angle divided by four with respect
to the classical density ratio for underwater natural sediment, ρp/ρ f

= 2.65. This
modification strongly influences both the sediment transport rate and the vertical
structure of the granular flow, preventing a direct application of the results to natural
sediment transport. In particular, the absence of concentration shoulder in the solid
volume fraction profile measured by Sumer et al. (1996) and Capart & Fraccarollo
(2011) could be explained by the use of plastic particles in their experiments. Indeed,
the resulting higher importance of the fluid contribution inside the granular layer
tends to smooth out the concentration shoulder as seen in figure 7.

Lastly, we discuss the common points and differences between the gravity-driven
and the pressure-driven configurations in steady uniform turbulent bedload transport.
To illustrate the comparison, we consider the entrainment mechanisms of the granular
medium in the pressure-driven configuration, similarly to § 2.2 for the gravity-driven
case. Performing the same integration of the two-phase equation, the shear-to-normal
stress ratio in the pressure-driven configuration reads (see appendix A):

τ p
xz(z)
τ

p
zz(z)
=

ρp

ρp − ρ f
tan α +

τb

g cos α(ρp − ρ f )φ̄z(hp − z)
+

∂Pf /∂x
g cos α(ρp − ρ f )φ̄z

. (4.1)

The two first terms on the right-hand side correspond to the direct influence of the
slope on the granular phase and the Shields number dependence. They are exactly
the same as for the gravity-driven case (see (2.16)). The last term on the right-hand
side represents the effect of the fluid flow induced by the pressure gradient inside the
granular layer and does not vanish at zero slope.

Similarly to the gravity-driven configuration, increasing the slope at a constant
Shields number decreases the resistance of the granular bed to entrainment, and one
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might expect a similar consequence on the transport rate scaling. This indicates that
the effect of the slope in pressure-driven configurations would not only be restricted
to the critical Shields number as suggested in the literature (Fernandez Luque & Van
Beek 1976; Fredsøe & Deigaard 1992; Chiew & Parker 1994; Dey 2003; Andreotti
et al. 2013), but also affects the whole transport rate formula, as evidenced by the
experiments of Damgaard et al. (1997). In addition, similarly to the gravity-driven
case developed in this paper, the importance of the fluid flow inside the granular
layer cannot be accounted for in the classical framework in term of Shields number
– i.e. dimensionless fluid shear stress at the top of the granular bed – and should be
considered when modelling pressure-driven bedload transport. This has already been
achieved and verified experimentally in laminar bedload transport, and leads to a
transport rate scaling law in terms of dimensionless fluid flow rate (Aussillous et al.
2013).

Besides, the gravity-driven and pressure-driven configurations do not exhibit the
same dependency on the slope. In the former, the fluid flow inside the granular bed
is driven by the slope (2.16), while in the latter it is driven by the pressure gradient
and is independent of the slope (4.1). As a consequence, the two configurations are
different in nature and not equivalent in terms of slope dependency. Therefore, care
should be taken to consider configuration where the subsurface fluid flow contribution
is negligible when applying results established for pressure-driven flows (e.g. Chiew
& Parker 1994; Dey 2003) to field prediction and experimental gravity-driven
configurations (e.g. Li & Cheng 1999; Wilcock & Crowe 2003; Karmaker & Dutta
2016; among others).

5. Conclusion

Analysing turbulent bedload transport from a theoretical and numerical point of
view, we attempted to clarify the mechanisms and origin of the slope influence and
made a step toward a better understanding of the phenomenon. In particular, it has
been evidenced that the classical modification of the critical Shields number relies on
an expression of the buoyancy force which is not valid for uniform turbulent bedload
transport. Focusing on gravity-driven configurations in steady uniform conditions, we
have evidenced the entrainment mechanisms of the granular phase and shown the
neglected importance of the fluid flow inside the bed. The relative importance of the
latter with respect to the surface contribution characterised by the Shields number,
affects the vertical structure of the granular flow and the sediment transport rate.
The proposed modification of the Shields number to account macroscopically for
these mechanisms has been shown to make all the present numerical data collapse
onto a single master curve. It evidences that the key parameter in gravity-driven
turbulent bedload transport is not the slope but the ratio between the tangent of
the slope angle and the tangent of the critical debris flow angle. The difference is
of importance when considering ideal particles for which the density (e.g. plastic)
and the shape (e.g. spheres) are different from natural sediments. In addition, the
theoretical analysis has evidenced a difference in nature between gravity-driven
and pressure-driven configurations with respect to the slope influence. This result
underlines the necessity to differentiate the two configurations in the analysis of
slope influence on turbulent bedload transport.

The present contribution provides a better understanding of the slope influence in
idealised configurations, and represents a step in the understanding and prediction of
the slope influence in turbulent bedload transport. In order to go further, it would be
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interesting to perform precisely controlled experiments and fully resolved simulations
at varying slope inclination angle, to validate the present approach and characterise
the importance of the neglected mechanisms such as the submergence, the lift force
and the coherent structures.
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Appendix A. Pressure-driven vertical granular flow structure
For the pressure-driven case, only the streamwise fluid momentum balance is

modified, by replacing the driving slope term with a pressure gradient:

0=
∂Sf

xz

∂z
+
∂Rf

xz

∂z
− (1− φ)

∂Pf

∂x
− n〈 f p

f x
〉

p. (A 1)

Contrary to the gravity-driven case, there exists a pressure gradient in the streamwise
direction so that the buoyancy force has a streamwise component which can be
expressed as −φ(∂Pf /∂x) and leads to the following reformulation:

0=
∂Sf

xz

∂z
+
∂Rf

xz

∂z
−
∂Pf

∂x
− n〈 f p

f x
〉

p. (A 2)

Performing the same manipulation of the equations as for the gravity-driven case, the
shear-to-normal granular stress ratio can be shown to read:

τ p
xz(z)
τ

p
zz(z)
=

ρ f g sin α
∫ hp

z
φ(ζ ) dζ

g cos α(ρp − ρ f )

∫ hp

z
φ(ζ ) dζ

+

τb +
∂Pf

∂x

∫ hp

z
dζ

g cos α(ρp − ρ f )

∫ hp

z
φ(ζ ) dζ

, (A 3)

leading to the final equation:

τ p
xz(z)
τ

p
zz(z)
=

ρp

ρp − ρ f
tan α +

τb

g cos α(ρp − ρ f )φ̄z(hp − z)
+

∂Pf /∂x
g cos α(ρp − ρ f )φ̄z

. (A 4)

Appendix B. Detailed characteristics of the numerical runs
Table 1 presents the detailed characteristics and the associated symbols of the

simulations performed far from the threshold of motion, excluding the simulations
of figure 5 which are secondary. The Reynolds number, Re = Uh/ν f , the Froude
number Fr=U/

√
gzh and the relative submergence h/d are evaluated considering the

mean fluid velocity U inside water depth h, defined as the difference between the
position of the water free surface and the maximum of the Reynolds stresses. This is
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consistent with the definition adopted for the Shields number, based on the maximum
Reynolds stresses and equivalent to θ∗ = h sin α/[(ρp/ρ f

− 1)d].
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