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A B S T R A C T

A Reynolds-averaged Euler–Lagrange sediment transport model (CFDEM-EIM) was developed for steady sheet
flow, where the inter-granular interactions were resolved and the flow turbulence was modeled with a low
Reynolds number corrected −k ω turbulence closure modified for two-phase flows. To model the effect of
turbulence on the sediment suspension, the interaction between the turbulent eddies and particles was simulated
with an eddy interaction model (EIM). The EIM was first calibrated with measurements from dilute suspension
experiments. We demonstrated that the eddy-interaction model was able to reproduce the well-known Rouse
profile for suspended sediment concentration. The model results were found to be sensitive to the choice of the
coefficient, C0, associated with the turbulence-sediment interaction time. A value =C 30 was suggested to match
the measured concentration in the dilute suspension. The calibrated CFDEM-EIM was used to model a steady
sheet flow experiment of lightweight coarse particles and yielded reasonable agreements with measured velo-
city, concentration and turbulence kinetic energy profiles. Further numerical experiments for sheet flow sug-
gested that when C0 was decreased to C0< 3, the simulation under-predicted the amount of suspended sediment
in the dilute region and the Schmidt number is over-predicted (Sc>1.0). Additional simulations for a range of
Shields parameters between 0.3 and 1.2 confirmed that CFDEM-EIM was capable of predicting sediment
transport rates similar to empirical formulations. Based on the analysis of sediment transport rate and transport
layer thickness, the EIM and the resulting suspended load were shown to be important when the fall parameter is
less than 1.25.

1. Introduction

Studying sediment transport in rivers and coastal regions is critical
to understand the fluvial geomorphology, loss of wetland, and beach
erosion. For example, significant engineering efforts were devoted to
control the river discharge and sediment budget to reduce the loss of
Louisiana wetland (Allison et al., 2012; Mossa, 1996). In the Indian
River inlet, significant erosion of the north beach is mitigated through
proper beach nourishment that interacts with littoral drift
(Keshtpoor et al., 2013). The characteristics of sediment transport vary
significantly with sediment properties and flow conditions, and it is
widely believed that sheet flow plays a dominant role in nearshore
beach erosion and riverine sediment delivery, especially during storm
and flood conditions, respectively.

Sheet flow is an intense sediment transport mode, in which a thick
layer of concentrated sediment is mobilized above the quasi-static bed.

The conventional single-phase-based sediment transport models assume
the dynamics of transport can be subjectively separated into bedload
and suspended load (e.g., van Rijn, 1984a; 1984b). While the suspended
load are directly resolved, the bedload are parameterized by empirical
formulations. Several laboratory measurements of sheet flow with the
full profile of sediment transport flux and net transport rate indicated
that the split of bedload and suspended load may be too simple because
sediment entrainment/deposition is a continuous and highly dynamic
process near the mobile bed (e.g., O’Donoghue and Wright, 2004; Revil-
Baudard et al., 2015). In sheet flow, the two prevailing mechanisms
driving the sediment transport are inter-granular interactions and tur-
bulent suspension (Jenkins and Hanes, 1998; Revil-Baudard et al.,
2015). In order to model the full profile of sediment transport, both
mechanisms must be taken into account. In the past decade, many
Eulerian two-phase flow models have been developed for sheet flow
transport in steady (Jenkins and Hanes, 1998; Longo, 2005; Revil-
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Baudard and Chauchat, 2013) and oscillatory flows (Dong and Zhang,
2002; Hsu et al., 2004), Amoudry et al., (Chen et al., 2011; Cheng et al.,
2017a; Liu and Sato, 2006). By solving the mass and momentum
equations of fluid phase and sediment phase with appropriate closures
for interphase momentum transfer, turbulence, and intergranular
stresses, these models are able to resolve the entire profiles of sediment
transport without the assumption of bedload and suspended load.

In the continuum description of the sediment phase, the assumption
of uniform particle properties and spherical particle shapes are usually
adopted. To better capture the polydisperse nature of sediment trans-
port and irregular particle shapes, the Lagrangian approach for the
particle phase, namely the Discrete Element Method (DEM, Cundall and
Strack, 1979; Maurin et al., 2015; Sun and Xiao, 2016a) is superior to
the Eulerian approach because individual particle properties may be
uniquely specified (Calantoni et al., 2004; Fukuoka et al., 2014; Harada
and Gotoh, 2008). One of the main challenges in modeling sheet flow
arise from the various length scales involved in inter-granular interac-
tions and sediment-turbulence interactions. To resolve the flow turbu-
lence and turbulence-sediment interactions in sheet flow, the compu-
tational domain needs to be sufficiently large to resolve the largest
eddies, while the grid resolution should be small enough to resolve the
energy containing turbulent eddies. This constrain becomes even more
challenging in the Euler–Lagrange modeling framework. Large domains
require both a large number of grid points to resolve a sufficient
amount of turbulence energy cascade (i.e., large-eddy simulation) and a
large number of particles in a given simulation (e.g., Finn et al., 2016).
It is well-established that in sheet flow, the transport layer thickness
scales with the grain size and the Shields parameter (Wilson, 1987),
suggesting that a common sheet flow layer thickness must be about
several tens of grain diameters. To simulate the largest eddies and their
subsequent cascade, the domain lengths in the two horizontal directions
must be proportional to the boundary layer thickness, which is usually
about several tens of centimeters. For a bed layer thickness of 50 grains
with a typical grain diameter of 0.2 mm, sheet flow simulations may
require at least several tens of millions of particles. Therefore, to effi-
ciently model sediment transport for many scenarios in sheet flow, a
turbulence-averaged approach for the carrier phase may be necessary.
In a turbulence-averaged formulation, turbulent eddies are not resolved
and their effects on the averaged flow field are often parameterized via
eddy viscosity. In this case, the domain lengths in the two horizontal
directions are solely determined by the largest length scale of inter-
granular interaction, which is usually captured within 50 grain dia-
meters (Maurin et al., 2015). Consequently, the number of particles
needed for each sheet flow simulation is limited to no more than a few
hundred thousand.

With a goal to develop a robust open-source coupled Computational
Fluid Dynamics-Discrete Element Method (CFD-DEM) for sheet flow
applications, we adopt a turbulence-averaged approach in this study.
Existing Reynolds-averaged CFD-DEM models have the capability to
model bedload transport (Durán et al., 2012; Maurin et al., 2015) and
sheet flow for coarse sand (Drake and Calantoni, 2001), where the
inter-granular interactions are dominant, and the turbulent suspension
is of minor importance. The previous studies made significant pro-
gresses in understanding the sediment dynamics due to intergranular
collisions and interactions with the mean flow, and the key character-
istics such as sediment transport rate and transport layer thickness close
to the empirical formulations were obtained. In more energetic sheet
flows with medium to fine sand particles, the role of turbulence-in-
duced suspension can become important, where substantial sediment
suspension occurs above the bedload layer (Bagnold, 1966; Sumer
et al., 1996). In such condition, a more complete closure models for
turbulent suspension and turbulence modulation by particles are
needed. The natural way of describing the diffusion and dispersion of
dispersed particles is to sample the turbulent velocity statistics along
their trajectories in a stochastic manner (Taylor, 1922), and this idea
lays the foundation of modeling the turbulent motions of particles with

a Lagrangian approach.
In the stochastic Lagrange model for particle dispersion, the tur-

bulent agitation to the sediment particles are considered either through
a random-walk model (RWM) or an eddy interaction model (EIM). In
the RWM framework, the strength of particle velocity fluctuations are
typically assumed to be similar to the fluid turbulence, and a series of
random velocity fluctuations are directly added to the particle velo-
cities. While the Lagrange model with RWM is successful in studying
the particle dispersion in mixing layer (Coimbra et al., 1998) and dilute
suspension (Shi and Yu, 2015), the assumption of estimating the par-
ticle velocity fluctuations based on the fluid turbulence is crucial, and
many researchers found that the correlation between the particle and
fluid fluctuations are highly dependent on the particle Stokes number,

=St t t/p l (Balachandar and Eaton, 2010), where tp is the particle re-
sponse time, and tl is the characteristic time scale of energetic eddies.
For the particles with very small inertia (St≪ 1), they can closely follow
the eddy motion. However, if St≫ 1, the particle trajectory is hardly
affected by the fluid eddy motion. Due to the particle inertia effect, it
was found that the fluid turbulent intensity needs to be enhanced for
medium to coarse particles (Shi and Yu, 2015). This problem can be
largely remedied by the EIM (Matida et al., 2004), where the fluid
velocity fluctuations associated with the fluid turbulence are added
through the particle-sediment interaction force, i.e., the drag force. This
approach incorporates the particle inertia effect naturally and it is ap-
plicable for a wide range of sediment properties. Graham (1996) found
that the dispersion of inertial particles may be correctly represented
with a suitable choice of maximum interaction time and length scales
with the eddies. This model was later improved by using a randomly
sampled eddy interaction time, in which more realistic turbulent scales
become possible, and the enhanced dispersion of high-inertia particles
are captured. In the previous studies of particle dispersion (e.g., Shi and
Yu, 2015), the turbulent intensity is either prescribed from the em-
pirical formula, or modeled using clear fluid turbulence closure without
considering turbulence modulation by the presence of particles. In sheet
flow, it is well-known that the sediment-turbulence interaction is im-
portant in attenuating the flow turbulence, thus the presence of sedi-
ment can dissipate/enhance flow turbulence through drag/density
stratification.

In this paper, we present an application of the eddy interaction
model (EIM) in a Reynolds-averaged Euler–Lagrange formulation to
study sheet flow. The eddy interaction model is implemented into an
open source coupled CFD-DEM scheme called CFDEM (Goniva et al.,
2012), and the new solver is called CFDEM-EIM. The fluid phase is
modeled in a similar way as the Eulerian two-phase flow model Sed-
FOAM (Cheng et al., 2017a), and the particles are modeled with the
discrete particle model, LIGGGHTS (Kloss et al., 2012). The paper is
organized in the following manner. The model formulation is described
in Section 2. The model calibration with dilute suspension experiments
is presented in Section 3.1, followed by model validation of steady sheet
flow (Section 3.2) using a comprehensive dataset (Revil-Baudard et al.,
2015; 2016). Section 4 discusses the model sensitivity of the resulting
sediment diffusivity and Schmidt number to model coefficients in the
eddy interaction scheme, and effects of the EIM on the modeled sedi-
ment transport rate and transport layer thickness are also evaluated.
Finally, a practical regime for the EIM to be important is proposed
based on the fall parameter. Concluding remarks are given in Section 5.

2. Model formulations

2.1. Discrete particle model

In the framework of the discrete element method (Cundall and
Strack, 1979), the position of each particle is tracked by integrating the
particle equation of motion,
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where xp, i is the position of particle i and vi is the translational velocity.
The governing equation for the translational motion of particle i with
radius ri and mass mi may be written as,
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The forces acting on the ith particle include the particle-fluid interac-
tion force, fpf, i, the gravitational force, mig, and the normal, fn, ij, and
tangential, ft, ij, contact forces where Nc is the number of particles in
contact with the particle i. The rotational motion of particle i with
moment of inertia Ii may be written as,
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=
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N
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c
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where Ωi is the angular velocity of particle i. The torque acting on
particle i from particle j consists of two components. Closures are used
for Mt, ij, which is generated by the tangential force, and Mr, ij, which is
commonly known as the rolling friction torque (Luding, 2008).

To model grain contact forces, we adopt the soft-sphere approach
(Cundall and Strack, 1979) based on Hertz–Mindlin theory. Hertz
theory is implemented in the normal direction, and the improved
Mindlin no-slip model is implemented in the shear direction
(Mindlin, 1949). In the soft-sphere model (e.g., Renzo and Maio, 2005),
particles are allowed to overlap slightly, and the contact between two
particles may be described as a nonlinear spring-dashpot, where the
normal contact force, fn, ij, is determined by the overlap, δij, and relative
velocity between colliding particles, Vr, ij, while the tangental force, ft,
ij, is calculated in a similar way and includes the tangental contact
history. In addition, if the tangential force exceeds the Coulomb fric-
tional limit, the particles begin to slide, and the tangential force is set to

= μf f ,t ij c n ij, , where μc is the Coulomb friction coefficient. In the present
study, we only consider the torque induced by particle-particle/par-
ticle-wall contact, and the influence of fluid-induced torque is ignored.

In general, the particle-fluid interaction force, fpf, is the sum of all
types of particle-fluid interaction forces on individual particles by fluid,
including the so-called drag force, fd, the pressure gradient force, fp,
buoyancy force if assuming locally hydrostatic flow, virtual mass force,
fvm, Basset force, fB and lift forces such as the Saffman force, fSaff, and
the Magnus force, fMag. We assume that the fluid and particles share the
pressure field, thus the fluid pressure gradient force is also included in
the fluid-particle interactions (Maxey and Riley, 1983; Zhou et al.,
2010). In CFDEM-EIM, only the two dominant forces, namely the drag
force and pressure gradient force, are retained. Here the total fluid-
particle interaction force acting on particle i may be written as,

= +f f f .pf i d i p i, , , (4)

The pressure gradient force acting on particle i is calculated as,

= − ∇p Vf f( )· ,p i x i i i, , (5)

where fx, i is the external body force driving the steady flow. ∇ip is the
interpolated fluid pressure gradient at particle i, and Vi is the volume of
particle i. The drag force acting on particle i is expressed as,

= − −C Af u v u v1
2

( ),d i D s i f i i f i i, , , , (6)

where uf i, is the instantaneous fluid velocity interpolated at particle i,
and As, i is the projected area of the ith spherical particle (or equivalent
spherical particle for non-spherical particles). According to the Rey-
nolds decomposition, the instantaneous fluid velocity is decomposed

into the Reynolds-averaged component uf i, and the turbulent fluctu-
ating component u′f, i. In CFDEM-EIM, the Reynolds-averaged velocities
are provided by the carrier fluid model. While the turbulent fluctuating
component is modeled with an additional eddy-interaction closure (see
Section 2.4). To generalize the drag coefficient for both spherical and
non-spherical particles, the drag coefficient CD is given by (Haider and
Levenspiel, 1989),

= ⎡
⎣
⎢ + +

+
⎤
⎦
⎥C f ϕ

Re
A Re C

D Re
( ) 24 (1 · )

1 /
,D

p
p

B
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where = − −Re ϕ d νu v(1 ) /p f i i i f, is the particle Reynolds number, νf is
the fluid kinematic viscosity, and di is the diameter of the spherical
particle or an equivalent sphere that has the same volume as the non-
spherical particle. The four parameters A, B, C, and D are proposed to
be functions of particle sphericity, η, with

= − +A η ηexp(2.3288 6.4581 2.4486 ),2 (8)

= +B η0.0964 0.5565 , (9)

= − + −C η η ηexp(4.905 13.8944 18.4222 10.2599 ),2 3 (10)

= + − +D η η ηexp(1.4681 12.2584 20.7322 15.8855 ).2 3 (11)

For spherical particles, =η 1, and for nonspherical particles, η<1.
In the drag coefficient (Eq. (7)), a correction for particle concentration,
f ϕ( ), is introduced to take into account the hindered settling effect
(Felice, 1994),

= − −f ϕ ϕ( ) (1 ) .n2 (12)

where, the empirical exponent, n, is related to the particle Reynolds
number,

= − ⎡
⎣⎢

−
− ⎤

⎦⎥
n

Re
3.7 0.65 exp

(1.5 log )
2

.p10
2

(13)

The local sediment concentration, ϕ , is calculated by averaging the
sediment instantaneous sediment concentration within one CFD time
step,

∑=
=

ϕ
N

ϕ1 ,
s j

N

j
1

s

(14)

where Ns is number of DEM time steps within one CFD time step (see
more details in Section 2.5), the divided volume fraction model
(Goniva et al., 2012) is used for the instantaneous sediment con-
centration at each DEM time step, where the particle volumes are di-
vided into 29 parts using the satellite points, and the volumes are dis-
tributed into the touched fluid grid cells. The model works well when
particle size is similar to the mesh size.

2.2. Fluid phase governing equations

In contrast of the particle phase, the fluid phase is solved in an
Eulerian framework and the coupled Euler–Lagrange system follows the
so-called model “A” (e.g., Zhou et al., 2010). By further carrying out
Reynolds-averaging, the fluid momentum equation may be written as,

∂ −

∂
+ ∇ − = − − − ∇

+ ∇ + − +

ρ ϕ

t
ρ ϕ ϕ ϕ p

ρ ϕ

u
u u f

τ g F

(1 )
·[ (1 ) ] (1 ) (1 )

· (1 ) ,

f f
f f f x

f f d (15)

where the overbar ‘ ’ denotes the ensemble-averaged fields, ρf is the fluid
density. The first term on the right-hand-side (R.H.S.) is the external
body force that drives the steady flow. The second term on R.H.S. is the

Z. Cheng et al. Advances in Water Resources 111 (2018) 435–451

437



pressure gradient force. τf is the total fluid stress tensor, which includes
the viscous stress (τν) and the Reynolds stress (τft). The last term on the
R.H.S. is the sum of the drag force from the particles within the fluid
grid volume (Vcell), which must satisfy the Newton’s 3rd law,

∑ ∑= −
= =N V

F f1 .d
s cell j

N

i

N

d i
1 1

,

s cell

(16)

The sediment concentration (ϕ ) calculated directly by grid aver-
aging in the DEM is usually not smooth, and averaging errors may
depend on the averaging length scale (Simeonov et al., 2015). To ensure
numerical stability, a diffusion model is often used to obtain a suffi-
ciently smoothed concentration profile,

∂
∂

= ∇ ∇
ϕ
t

D ϕ·( ).t (17)

The diffusion constant, Dt, is calculated as, =D L dt/ ,t d
2 where Ld is a

length scale, and dt is the fluid phase time step (i.e., CFD time step). The
choice of length scale, =L dd is found to be stable and necessary when
the fluid grid length is similar to or smaller than the particle diameter
(Capecelatro and Desjardins, 2013; Pirker et al., 2011). Note that this
smoothed concentration field is only used in the fluid governing
equations and turbulence closures. The model results (mainly in
Sections 3 and 4) of the sediment concentration, sediment velocity and
transport rate are directly obtained from the DEM part (i.e., not
smoothed by the diffusion model). To ensure a stable calculation of
conservation of mass, a mixture continuity equation for the in-
compressible fluid-particle system can be derived and is solved
(Cheng et al., 2017a),

∇ − + =ϕ ϕu u·[(1 ) ] 0.f s (18)

2.3. Fluid turbulence modeling

As briefly described in Eq. (15), the total fluid stress tensor consists
of the viscous stress (τν) and the Reynolds stress (τft):

= + = − ⎡
⎣
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in which, the Reynolds stress in the Reynolds-averaged Eulerian fluid
model may be written as,

= − ⎡
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where I is an identity tensor, ∇T is the transpose of gradient tensor, νft is
the turbulent eddy viscosity, and kf is the fluid turbulent kinetic energy
(TKE). The eddy viscosity and TKE are modeled with a low Reynolds
number version −k ω turbulence model (LRN −k ω closure
(Wilcox, 1992)) modified for two-phase flows.

2.3.1. Low Reynolds number corrected −k ω closure for two-phase flow
In LRN −k ω closure, the low Reynolds number correction was

introduced based on the local Reynolds number, =Re k ν ω/( )t f f f . With
this correction, the LRN −k ω closure is capable of capturing transi-
tional turbulent flow in the near-bed region. To take into account of the
sediment effect on the flow turbulence, the sediment–turbulence in-
teraction terms were added to both the transport equations for the fluid
TKE (kf) and specific turbulent dissipation frequency (ωf), similar to the
approach suggested by Amoudry (2014) and Chauchat et al. (2017),
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where the operation ‘:’ denotes the scalar product of two tensors. C*μ is
model coefficients with low Reynolds number corrections based on the
original coefficient Cμ (see Table 1),

=
+

+
C C

Re Re
Re Re

*
4/15 ( / )

1 ( / )
,μ μ

t β

t β

4
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where the model constant =Re 8β is a critical Reynolds number.
Except for the last two terms on the R.H.S. of Eq. (21), the rest of the

terms in the present kf equation are essentially the same as those in the
clear fluid TKE equation. The last term in Eq. (21) represents the
buoyancy term. For typical sediment concentration with an upward
decaying profile, this term represents the well-known sediment-induced
density stratification that can attenuate the fluid turbulence. The fourth
term on the R.H.S. represents attenuation of TKE due to drag with β
calculated as,

=β
ρ C

d

U3
4

,f D r

(23)

where CD is calculated by Eq. (7) with particle Reynolds number,
= −Re ϕ d νU(1 ) / ,p fr in which |Ur| is the magnitude of relative velo-

city seen by the fluid. Here, to better estimate Ur in dilute condition,
where instantaneous sediment concentration fluctuation is significant, a
temporal average of the relative velocity is carried out,

∫=
−

−
t t

dtU u u1 ( ) ,
t

t
f sr

0 0 (24)

where t0 is the starting time of the time average, and t is the current run
time of the simulation. For a steady sheet flow application, this time
average procedure is representative of the ensemble-averaged relative
velocity between fluid and sediment phases. Throughout the simula-
tions in this study, the quasi-steady state is usually reached within 5 s of
numerical simulations, thus we choose =t 50 s. To quantify the effect of
fluid-particle turbulence modulation, the parameter λ is introduced by
following (Cheng et al., 2017a),

= −λ e ,C St·s (25)

where Cs is an empirical coefficient. =St t t/ ,p l is the particle Stokes
number, i.e., the ratio of the particle response time ( =t ρ β/p s ) to the
characteristic time scale of energetic eddies. In the literatures of Rey-
nolds-averaged turbulence closures, the general expression for the eddy
life time can be written as, =t C C ω/( ),l t μ f and the value of the coeffi-
cient Ct ranges from 0.135 to 0.41 (Milojeviè, 1990), which is highly
dependent on the flow conditions. From the preliminary numerical
experiment, we found the eddy life time is vital for the turbulence-
sediment interaction, thus we chose the coefficient =C 1/6t by fol-
lowing (Cheng et al., 2017a), and the model coefficients associated with
the eddy life time are left as model calibration. For example, the
coefficient Cs in Eqn. (25) is calibrated using the sheet flow experi-
mental dataset (see Section 3.2) to match the flow hydrodynamics, and
it was chosen to be =C 1s .

The balance equation for ωf follows the original work of
Wilcox (1992). However, for turbulence-particle sinteractions, similar
damping terms as in the kf equation are included. The ωf equation is
written as,

Table 1
List of coefficients in the LRN −k ω equations for two-phase flows.

α0 α *0 Rek Reω Reβ Cμ σk σω Cs C1ω C2ω C3ω C4ω

1/9 0.024 6 2.95 8 0.09 2.0 2.0 1.0 0.52 0.072 0.14 0
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where the fourth and fifth terms take into account of the sediment effect
on the fluid turbulence through drag and buoyancy, respectively. The
coefficients C*ω1 is also modulated using the local turbulent Reynolds
number as,
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+

C C
α

α Re Re
Re Re

* 1
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1 /

,ω ω
t ω

t ω
1 1
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where α* is a damping function based on Ret,

=
+

+
α

α Re Re
Re Re

*
* /

1 /
.t k

t k

0

(28)

where α *0 and Rek are model coefficient for the low Reynolds number
corrections. The model constant C1ω, C2ω, σk, σω, Rek, Reω and α0 are
similar to the closure coefficients suggested by Guizien et al. (2003)
(see Table 1). The coefficient of the buoyancy term, =C 0ω4 is chosen
for stable stratification applicable for steady sheet flow (Rodi, 1987).
Through a series of sensitivity test, we found that the modeled flow
velocities are also sensitive to the coefficient C3ω, and the optimum
value of C3ω is 0.14, which is close to the value 0.2 suggested by
Amoudry (2014). A full list of the coefficients associated with the low
Reynolds number −k ω model used in this study is presented in
Table 1.

Finally, the turbulent eddy viscosity νft is calculated by the fluid
turbulence kinetic energy kf (TKE) and specific turbulence dissipation
rate ωf,

=ν α
k
ω

* .ft
f

f (29)

It shall be noted that the LRN −k ω can be reduced to the original
−k ω model (Wilcox, 1993) in the fully turbulent region when the local

Reynolds number is sufficiently high compared with the critical Rey-
nolds numbers.

2.3.2. Smooth and rough wall functions
The wall functions for a smooth bed and rough bed are both relevant

to the present study. For clear fluid or dilute suspension, such as the
experiment of Muste et al. (2005) to be discussed in Section 3.1, a
smooth wall is exposed and the ωf value in the viscous sublayer scales
with 1/z2, where z is the distance to the bottom wall boundary. As a
result, ωf goes to infinity at the wall boundary. In the numerical im-
plementation, a finite value of ωf is imposed to the first grid above the
solid smooth wall, and the following bottom boundary condition is
specified (Bredberg et al., 2000; Menter and Esch, 2001),

= +ω ω ω ,wall vis log
2 2

(30)

with the ωwall value specified as a blend function of the values in the
viscous sublayer (ωvis) and logarithmic layer (ωlog ),

= =ω
ν

z
ω u

C κz
6
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f

o
log

μ o
2

(31)

where =κ 0.41 is the von Karman constant, and the bottom frictional
velocity is calculated as = + ∂ ∂u ν ν u z* ( ) /f ft f at the wall boundary. It
was found that this formulation of bottom boundary condition for
smooth wall is robust for low to high Reynolds number turbulent
boundary layer flows.

On the other hand, the bed is covered with a thick layer of sediment
particles in sheet flow condition, and the particles imposes a rough wall
boundary to the flow above the bed. However, the location of the bed in
sediment transport is difficult to determine as a priori due to possible
erosion processes. To avoid this complexity, the last term on the R.H.S.
of Eq. (26) is proposed to impose a desired value of specific turbulence
dissipation rate, ωbed, in the sediment bed, and ϕΓ( ) is a step-like
function of sediment concentration,

=
− +

ϕ
ϕ ϕ

Γ( )
tanh[500( )] 1

2
,b

(32)

where ϕb should be specified as the sediment concentration in the bed,
so that the ωf value is only imposed inside the sediment bed. In this
study, we choose =ϕ 0.55b . An intrinsic relaxation timescale is used for
Trelax, which sums the proper timescale on the R.H.S. of the ωf equation,
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It shall be noted that the relaxation time scale proposed here is
positive in sheet flow applications. For specific energy dissipation fre-
quency ωbed inside the bed, the rough wall value can be specified as
(Wilcox, 1988),

=ω S
u
ν
* ,bed r
f

2

(34)

where u* is the bottom frictional velocity at the bed interface specified
based on the flow forcing to drive the steady channel flow and Sr is a
parameter depending on the bed roughness,
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where =+k k u ν*/s s f is the normalized wall roughness in wall units, and
ks is the Nikuradse’s equivalent sand roughness, which is related with
the sand grain size, =k d2.5s . The original coefficient Kr is 100 as
suggested by Wilcox (1988), however, Fuhrman et al. (2010) proposed
that this coefficient needs to be reduced to =K 80r to match the law of
wall. Therefore, =K 80r is used throughout this paper.

2.4. Eddy interaction model

The drag force (Eq. (6)) in the particle momentum equation depends
on the instantaneous fluid velocity. However, only the Reynolds-aver-
aged fluid velocity (uf i, ) is solved and hence an additional closure
model for the fluid velocity fluctuation in turbulent flow (u′f, i) is re-
quired. Appropriate consideration of particle dispersion by turbulent
eddies provides a key suspension mechanism in sediment transport (i.e.,
turbulent suspension). Following Graham and James (1996), particle
dispersion by turbulence can be modeled with a stochastic Eddy

Table 2
List of numerical simulations of dilute sand suspension in steady channel flows.

Cases d (mm) ρs(kg/m3) ws(cm/s) u*(cm/s) Φ×103 N

Kiger and Pan (2002) 0.195 2605 2.4 2.85 0.23 476
NS1 in Muste et al. (2005) 0.23 2650 2.4 4.2 0.46 803
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Interaction Model (EIM), and a series of random Lagrangian velocities
can be used to represent the fluid turbulent motions, i.e. ′ =u U σ ,f i i

t
, 1

′ =v V σ ,f i i
t

, 2 and ′ =w W σ ,f i i
t

, 3 where σ1, 2, 3 are Gaussian random num-
bers with a zero mean value and a standard deviation of unity. In this
study, the velocity fluctuations are calculated using the fluid turbulent
kinetic energy, = = =U V W k2 /3 ,i

t
i
t

i
t

f i, where kf, i is interpolated
turbulence kinetic energy at the mass center of particle i. It is possible to
model the anisotropic velocity fluctuations in three directions, how-
ever, to be consistent with the two-equation turbulence-averaged
models (LRN −k ω closure), the turbulent fluctuations are assumed to
be isotropic.

In the eddy interaction model, the velocity fluctuations (i.e., U ,i
t V ,i

t

Wi
t) are updated every step with the particle position. However, the

random numbers σ1, 2, 3 remained unchanged until the eddy interaction
time tI is exceeded, which is determined either when a particle has
completely crossed a turbulent eddy or remains in an eddy but exceeds
the eddy life time. The mean life time of the turbulent eddy can be
estimated as = −T C ω(6 )l i μ f i, ,

1 in the LRN −k ω model. However, the
instantaneous turbulent eddy life time is of random-like nature (Kallio
and Reeks, 1989; Mehrotra et al., 1998) and it is estimated as,

= − −t C ξ Tln(1 ) ,e i l i, 0 , (36)

where ξ is the random number ranging from 0 to 1. As discussed in
Section 2.3, due to the uncertainties in the parameterization of the eddy
life time, the coefficient C0 is introduced as a constant for model cali-
bration (see Section 3.1). As a result, the turbulent eddy length le can be
estimated as =l t k2 /3e i e i f i, , , . With the estimation of the turbulent eddy
length le, the eddy crossing time for a particle can be computed as
(Gosman and Loannides, 1983),

⎜ ⎟= − ⎛
⎝

−
−

⎞
⎠

t t
l

tv u
ln 1 ,c i p i

e i

i f i p i
, ,

,

, , (37)

where tp, i is the particle response time calculated as
= −t ρ d ρ Cv u4 /(3 )p i s i i f i f i D, , , . It is noted that Eq. (37) is only evaluated

when < −l tv u ,e i i f i p i, , , and the eddy interaction time tI, i is the
minimum between eddy lifetime te, i and eddy crossing time tc, i. Once
the time interval exceeds tI, i, the particle i enters another turbulent
eddy, i.e., the Gaussian random numbers σ1, 2, 3 are re-evaluated every
interval =t t tmin{ , }I i e i c i, , , .

2.5. CFD-DEM coupling procedure

In the present Euler–Lagrange modeling framework, the coupling
between the fluid phase and sediment phase utilizes the open source
code CFDEM (Goniva et al., 2012), which couples the Finite-volume
CFD toolbox OpenFOAM (Weller, 2002) with the DEM solver
LIGGGHTS (Kloss et al., 2012). At the beginning of the simulation, the
particle positions and velocities are initialized in the DEM module, and
the fluid velocity and turbulence quantities are initialized in the CFD
module. The loop of the CFD-DEM coupling begins with the update of
particle positions and velocities for Ns DEM time steps within one fluid
time step (dt), in which the time step dts in the DEMmodule is related to
the fluid time step by =dt dt N/s s. In the contact force model, the energy
stored in the collision increases rapidly with the overlapping length of
particles, thus the time step dts should be sufficiently small to avoid the
unphysical energy generation due to particle contacts. In this study, the
following three criteria are used to determine dts:

(1) The overlap length δn is smaller than 0.5% of particle diameter d,
i.e., dts<0.005d/Vrn, where Vrn is normal component of the relative
velocity to the contact face between two contacting particles.

(2) To capture the energy transmission in the solid particles, the time
step dts is chosen to be small enough compared with the Rayleigh
timescale Tr, where = + −T πr ρ G ν/ (0.163 0.8766)r s

1 and G is the
shear modulus. G is further related to the Young’s modulus E and

the Poisson ratio υ as + =G υ E2 (1 ) .
(3) dts is required to be smaller than the Hertzian contact time in order

to capture the contact process. The Hertzian contact time is the
duration of a pair of particles in contact, which can be estimated as,

=T m r E V2.87( * / * * ) ,c rn
2 2 1/5 where = +

−( )r* ,r r
1 1 1

i j
=m* +

−( ) ,m m
1 1 1
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E
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i
i

j

j

2 2
. For a contact between a sphere particle i

with wall j, the same relationship applies to E*, whereas =r r* i and
=m m* i.

The dts is constant throughout the simulation once appropriately
chosen to satisfy the above criteria, and the particle velocities are up-
dated every dts, where the forces acting on each particles are solved
according to Eq. (4). In the calculation of drag forces, the eddy inter-
action model is implemented to model the turbulence-induced sediment
suspensions, where a fluctuating component of velocities are in-
troduced to the drag forces through a stochastic procedure, which is
outlined as follows:

(a) Initially at =t 0, the time marker tmark, i, and eddy interaction time
tI, i are set to zero for each particle.

(b) Random numbers σ1, 2, 3 are generated and the fluid velocity fluc-
tuation ′u ,f i, ′v ,f i, ′wf i, are updated. The drag forces are then calculated
using Eq. (6).

(c) The following two scenarios are considered:
(i) If − ≥t t t( ) ,mark i I i, , the particle enters a new turbulent eddy, and

then new Gaussian random number σ1, 2, 3 are generated, and
fluid fluctuations are updated with the new values of σ1, 2, 3.
Both tmark, i and tI, i are updated to the current values.

(ii) Else if − <t t t( ) ,mark i I i, , the particle remains in the same eddy,
thus the existing Gaussian random numbers are retained, and
tmark, i and tI, i remains unchanged. However, the fluid fluctua-
tions are updated with new particle positions (i.e., new kf, i).

After solving the particle velocities and positions, the particle in-
formations are communicated to the fluid phase. However, prior to
solving the fluid equations, the diffusion model of Sun and Xiao (2016a)
(see Eq. (17)) is applied to the sediment concentration to obtain a
smooth profile. The fluid phase is computed in a similar way as the
Eulerian two-phase flow model SedFOAM (Cheng et al., 2017a). The
fluid momentum equation in Eq. (15) is solved over a collocated grid
arrangement, in which the velocities and pressure are stored in the cell
centers. The convection terms (including the −k ω equations) are dis-
cretized using a total variation diminishing (TVD) scheme based on a
Sweby limiter (Sweby, 1984). The second-order central scheme is used
for the diffusion terms. For the temporal integration, a first-order im-
plicit Euler scheme is used. The PISO (Pressure Implicit Splitting Op-
eration) algorithm is used for the velocity-pressure decoupling, so that
the continuity equation (18) is satisfied. More details on the numerical
solution procedures for the fluid solver can be found in Rusche (2002).

3. Model results

Through preliminary numerical experiments, we confirmed that the
modeled sediment concentration profile is sensitive to the prediction of
fluid TKE and the coefficient C0 in estimating the turbulent eddy life
time in the eddy interaction model (see Eq. (36)). This is somewhat
expected as the turbulent intensity and the eddy interaction time are
the main factors differentiating the present stochastic procedure for
modeling turbulent diffusion from incoherent random motions. There-
fore, we first validated the turbulence closure with direct numerical
simulation (DNS) of clear fluid turbulent channel flow. After estab-
lishing the accuracy of the turbulence closure for clear fluid, the coef-
ficient C0 in the eddy interaction model is calibrated with the dilute
suspension experiment of Kiger and Pan (2002), where the velocity,
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sediment concentration and Reynolds shear stress profiles are measured
for sand in a steady channel flow over a smooth bed (starved bed). The
calibrated model is then applied to predict the suspended sand con-
centration and turbulence of another similar dilute suspension experi-
ment reported by Muste et al. (2005). Because the sediment con-
centration is very dilute (< 1%) and there is negligible deposit on the
bed, these datasets allow us to solely calibrate the C0 value in the eddy
interaction model without complication from intergranular interac-
tions. After the calibration, the model is applied to the steady sheet flow
experimental configuration of Revil-Baudard et al. (2015). A sensitivity
analysis of the model results to the C0 value is investigated in detail to
illustrate the effects on the turbulent suspension in steady sheet flow.
The capability of the present CFDEM-EIM is further demonstrated by
comparing predictions of sediment transport rate and transport layer
thickness with classical empirical formula.

3.1. Model calibration of dilute suspension in steady channel flow

Firstly, the LRN −k ω turbulence closure is validated against the
DNS dataset of Moser et al. (1999) for a clear fluid steady wall-bounded
channel flow at a Reynolds number of = =Re u h ν* / 570τ f (Moser et al.,
1999), where h is the channel half-width. We carried out a 1DV nu-
merical simulation at the same Reynolds number with a vertical domain
height =h 0.02 m. A shear-free symmetric boundary condition is used
at the top boundary, while the bottom boundary condition is a no-slip
wall. The standard smooth wall functions for k and ω are used at the
bottom wall boundary (see Eq. 31). In both x and y directions, periodic
boundaries are used and only one grid cell is used in these two direc-
tions with a grid size (domain size) of = =L L 0.02x y m. The vertical
domain is discretized into 168 grid cells with a uniform grid size

=Δ 0.122z mm. The flow is driven by a mean pressure gradient of
=f 43.5x Pa/m, so that the bottom frictional velocity is =u* 0.0285 m/

s. The distance of the first grid center to the bottom boundary patch
corresponds to a wall unit = =+ u νΔ 0.5 *Δ / 1.76z z f . Therefore, the first
cell center is within the viscous sublayer.

The comparisons of the mean Reynolds shear stress, velocity and
TKE profiles between the LRN −k ω model and DNS data are shown in
Fig. 1. Very good agreements on all three profiles are obtained, espe-
cially the velocity profile and Reynolds shear stress. The agreement in
the Reynolds shear stress profile confirms that the flow has reached a
quasi-steady state and the flow condition is similar to the DNS

simulation of Moser et al. (1999). Meanwhile, it is evident that the
overall shear stress follows a linear profile = −τ u z h* (1 / )tot

2 in the
range of z/h>0.1 (dashed curve in Fig. 1b). The modeled TKE is also
remarkably close to the DNS data. It is evident that the LRN −k ω
model is able to resolve the peak of turbulent kinetic energy near the
bottom wall (around =z h0.02 ), even though the peak value from the
LRN −k ω closure ( u4.4 *

2) is slightly smaller than the DNS data ( u4.75 *
2).

Kiger and Pan (2002) later conducted a sediment-laden turbulent
flow experiment at a similar Reynolds number as Moser et al. (1999).
The data of Kiger and Pan (2002) can be further used to calibrate the C0

coefficient in the EIM. In the experiment, the half channel height is
=h 0.02 m, which is the same as the clear fluid simulation at =Re 570,τ

and hence we kept the same domain setup and boundary conditions as
the clear fluid 1DV simulation. In the DEM implementation, the parti-
cles are tracked in a meshless 3D domain (domain size is the same as in
the CFD). The lateral boundaries in DEM are periodic, while the wall
boundary was used for both the top and bottom boundaries to conserve
the number of particles in the domain. The sediments are spherical
particles with a density of =ρ 2605s kg/m3, and the grain diameter is

=d 0.195 mm. The particle settling velocity is about 0.024 m/s, which
corresponds to a shape factor =η 1 in the drag model (see
Eqs. (8)–(11)). The domain averaged sediment volumetric concentra-
tion in the experiment is = × −Φ 2.3 10 4. To match the domain-aver-
aged sediment concentration in Kiger and Pan (2002), a total of

=N 476 particles are simulated in the DEM.
To calibrate the C0 value in the EIM, we carried out four simulations

with different C0 values, =C 1, 2, 3, 40 . The resulting profiles of the
streamwise velocity, TKE and sediment concentration are compared
with the measured data of Kiger and Pan (2002) and clear fluid DNS
data of Moser et al. (1999) in Fig. 2. Due to the dilute sediment con-
centration in the domain, the numerical results of the streamwise ve-
locity profile are not very sensitive to the C0 values, so only the velocity
profiles corresponding to =C 30 is shown. We notice that the measured
velocity profile differs slightly from the DNS data, possibly due to the
effect of the presence of sediment in the water column and/or mea-
surement uncertainties. In addition, the averaged particle velocity
profile (not shown) is very close to the fluid velocity. The measured
data of the turbulent intensity is only available for the streamwise ( ′urms)
and vertical ( ′wrms) velocity fluctuations. In order to compare the tur-
bulence kinetic energy of numerical results and measured data, the
spanwise velocity fluctuation is reconstructed following the

Fig. 1. The comparison of non-dimensiona-
lized (a) streamwise velocity profile (u u/ *f ),

(b) Reynolds shear stress profile
(− ′ ′u w u/ *f f

2), and (c) TKE profile (k u/ *f
2)

between LRN −k ω closure (solid curves)
and DNS data (symbols) of
Moser et al. (1999). In panel (b), the dashed
curve denotes a linear fit of the total shear
stress, = −τ u z h* (1 / )tot

2 .
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relationship suggested by Jha and Bombardelli (2009),
′ = − ′v u u0.3 * 0.6rms rms. Thus the turbulent kinetic energy in the experi-
ment can be estimated by = ′ + ′ + ′k u v w( )/2f rms rms rms

2 2 2 . The model results
also predict slightly smaller turbulence kinetic energy compared with
clear fluid counterpart, but the reduction is very small due to dilute
sediment concentration. Overall, the velocity and turbulence kinetic
energy profiles are in good agreement with the measured data.

The sediment concentration profiles corresponding to different C0

values are presented in Fig. 2c (solid curves) and they can be compared
with measured data (symbols in Fig. 2c). It is evident that the sus-
pended sediment concentration is strongly affected by the coefficient
C0. In general, more significant sediment suspension is obtained with a
larger C0 value. Clearly, a C0 value of 1 under-predicts the suspended
sediment concentration, and almost all the sediment particles accu-
mulate near the bottom (z/h<0.15, see magenta curve in Fig. 2c).
When the C0 value is increased to =C 2,0 considerably more sediments
are suspended, however, the resulting sediment concentration remains
to be lower than the measured data. The optimum C0 value is found to
be =C 3,0 and the resulting sediment concentration profile is in good
agreement with the measured data. Finally, using =C 40 clearly over-
predicts sediment concentration. It is well-known that the sediment
concentration profile in a steady turbulent channel flow follows the
Rouse profile (Vanoni, 2006),

⎜ ⎟= ⎛
⎝

−
−
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−ϕ
ϕ

h z
z

z
h z

,
r

r

r
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(38)

where =Ro w Sc κu/( *)s is the Rouse number, in which the Schmidt
number Sc is the ratio of turbulent eddy viscosity over the sediment
diffusivity. zr is the reference location above the bed, and ϕr is the
concentration at the reference location. We choose the reference loca-
tion to be =z h0.1 ,r corresponding to the lowest elevation that the
Reynolds shear stress follows a linear profile. The dashed curve in
Fig. 2c shows the fitted Rouse profile to the measured data with the
Rouse number =Ro 1.44. It is evident that both the measured data and
the numerical result with =C 30 match the Rouse profile very well.

The calibrated C0 is further applied to another similar dilute sus-
pension experiment reported by Muste et al. (2005, see Table 2). The
flow is driven by a prescribed pressure gradient force in order to match
the bottom friction velocity of =u* 0.042 m/s in a flow depth of

=h 0.021 m. The sand density is =ρ 2650s kg/m3 and the grain dia-
meter is =d 0.23 mm. The measured settling velocity is about 2.4 cm/s,

which correspond to a shape factor of =η 0.644 (see Eqs. (8)–(11)). A
similar numerical setup as the simulation of Kiger and Pan (2002) is
used, except that the domain height is =h 0.021 m to match the ex-
perimental condition. The streamwise and spanwise domain lengths are
specified to be = =L L d100x y . In the vertical direction, uniform grid
sizes are used with =N 210z grids to resolve the entire flow depth, and
the first grid center above the bottom wall corresponds to a wall unit

=+Δ 1.05z . A total number of particles used in the DEM is =N 803,
which matches the domain averaged concentration = × −Φ 4.6 10 4.

The model results of velocity profile, concentration profile and TKE
(kf) profile with =C 30 are compared with the measured data in Fig. 3.
The resulting fluid velocity profile (Fig. 3a) matches the measured data
reasonably well, except that the velocity magnitude is slightly over-
predicted in the range of 0.1< z/h<0.5. The normalized sediment
concentration (normalized by the mean concentration ϕr at the re-
ference location =z h/ 0.1r ) shows that the suspended sediment con-
centration profile is similar to the measured data as well as the Rouse
profile with a Rouse number =Ro 0.86 (dashed curve in Fig. 3b). In
Fig. 3c, the numerical result of TKE is compared with the measured
data. The measured data of the turbulent intensity is reconstructed in
the same way as the measurement of Kiger and Pan (2002). Overall, the
magnitude of the turbulent kinetic energy is smaller than the measured
data by no more than 30%. However, the vertical profile shape is re-
produced well by the model.

In summary, the LRN −k ω model is validated using a clear fluid
DNS dataset of Moser et al. (1999) and the eddy interaction model is
calibrated by using the measurements from Kiger and Pan (2002) and
Muste et al. (2005). It is found that the optimum C0 value that matches
the measured concentration profiles for both experiments is =C 3.0,0
while C0< 3.0 underestimated the suspended sediment concentration.
Therefore, this calibrated C0 value is applied to the sheet flow appli-
cations in the following subsection.

3.2. Steady sheet flow

In this section, we further apply CFDEM-EIM to model steady sheet
flow, where both bedload (inter-granular interaction dominant) and
suspended load (turbulent suspension dominant) are important. The
laboratory experiments reported by Revil-Baudard et al. (2015); 2016),
which include a steady flow over a rough fixed bed (“FB”) and a steady
sheet flow (mobile bed, “MB”) were used for model validation. The flow

Fig. 2. The comparison of (a) fluid velocity
profile, (b) nondimensional fluid turbulent
kinetic energy (kf, normalized by u*

2) and (c)
normalized concentration profile between
model results (solid curves) and measured
(or DNS) data (symbols). In all panels, the
triangle symbols are measured data from
Kiger and Pan (2002), and the DNS data of
Moser et al. (1999) is shown as circle sym-
bols in panel (a) and (b). In panel (c), sedi-
ment concentrations are plotted in semi-
logarithmic scale. The solid curves corre-
sponds to =C 10 (magenta), =C 20 (blue),

=C 30 (red) and =C 40 (black). The dashed
curve is the fitted Rouse profile with

=Ro 1.44. (For interpretation of the refer-
ences to color in this figure legend, the
reader is referred to the web version of this
article.)
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condition and sediment properties are summarized in Table 3. The se-
diment particles are irregularly shaped with density =ρ 1192s kg/m3,
and median grain diameter =d 3 mm. The resulting mean settling ve-
locity is measured to be =w 5.59s cm/s. Similar to the case NS1 in
Muste et al. (2005), we used a sphericity of =η 0.594 to match the
settling velocity with the experiment, while the original grain size d is

retained in the DEM contact model. In the DEM model, the Young’s
modulus of particles is specified as = ×E 5 106 Pa, the restitution
coefficient is =e 0.5, the Coulomb friction coefficient is =μ 0.5c and the
poison ratio is =ν 0.45. In the fixed bed (“FB”) experiment, these par-
ticles are glued to the bed forming a single layer rough elements, while
the bed is covered by thick layers of particles in the “MB” case, and the
particles are free to move.

We first carried out a numerical simulation of the case FB to es-
tablish the accuracy of the present numerical model on hydrodynamics
before presenting more complicated mobile bed sheet flow model va-
lidation. To simulate the flow over fixed rough bottom, a single layer of
particles are fixed above the bottom boundary in the DEM (i.e., the
particle velocities are zero and their positions are fixed). The rough wall
function (Eq. (34)) is used with a bed roughness =k d2.5s to estimate
the ωbed in the turbulence closure. In the experiment of Revil-

Fig. 3. The comparison of (a) fluid velocity
profile, (b) normalized concentration pro-
file, and (c) fluid turbulent kinetic energy
(kf, normalized by u*

2) between model re-
sults and measured data of case NS1 in
Muste et al. (2005). In all panels, the sym-
bols represent the measure data in
Muste et al. (2005), and the solid curves are
model results. In panel (b), sediment con-
centrations are plotted in semi-log scale. The
dashed curve is the Rouse profile with

=Ro 0.86.

Table 3
Flow condition and sediment properties in the fixed bed (“FB”) and mobile bed (“MB”)
sheet flow experiment of Revil-Baudard et al. (2015,2016).

Cases h(m) u* (cm/s) ρf (kg/m3) νf (m2/s) d (mm) =s ρ ρ/s f ws(cm/s)

FB 0.105 5.2 1000 −10 6 3 – –
MB 0.128 5.0 1000 −10 6 3 1.192 5.59

Fig. 4. The comparison of (a) velocity pro-
file, (b) normalized Reynolds shear stress
and (c) TKE profile between numerical re-
sults (solid curves) and measured data
(filled triangle symbols) for the fixed bed
case (‘FB’) in the experiment of Revil-
Baudard et al. (2016); In all panels, the fixed
particle layer is denoted as circle symbols. In
panel (b), the dashed curve is denotes a
linear profile of the total shear stress.
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Baudard et al. (2016), the flow depth above the fixed particles is about
=h 0.105 m. The vertical domain length is chosen to be
= + =L h d 0.108z m with a uniform grid size of =Δ 0.25z mm.

Therefore, the fixed bed layer is resolved by the first 12 grid points
above the bottom. The measured bottom frictional velocity in the ex-
periment is =u* 0.052 m/s. To match the bottom shear stress, the flow
driving force is prescribed as =f 25.8x Pa/m. The model results of the
fluid velocity, Reynolds shear stress and the TKE profiles are compared
with the measured data in Fig. 4, where the fixed particle layer is also
denoted as circle symbols. Due to the drag force from the fixed particles
above the bottom, the velocity profile drops to zero within the fixed bed
layer, and good agreements in the streamwise velocity profiles are
obtained with the measured data. The modeled Reynolds shear stress
profile captures the linear decaying shape (dashed curve) and it mat-
ches the experimental data reasonably well. In particular, the Reynolds-
averaged closure provides a good prediction of the TKE magnitude
throughout most of the water column. The good agreement with the FB
case confirms that the turbulence closure works well for the steady flow
over a rough fixed sediment bed.

The mobile bed sheet flow (see case MB in Table 3) is then studied
with a thick layer of particles at the bottom of the domain. To prepare
the sediment bed, the particle velocities are initialized to be zero, and
43,929 particles are well mixed in the whole domain. Due to the
gravitational settling, the particles settle down to the bottom until their
kinematic energies are minimized. After this initialization step, the
initial bed level locates at =z 0.045 m above the bottom of the domain.
Due to the sediment suspension, the final bed depth at the quasi-steady
state will be smaller. Through a preliminary test, we determined that
the total vertical domain height should be =L 0.168z m so that the final
flow depth of =h 0.128 m (sediment bed location becomes =z 0.04b m)
can be obtained after the flow reaches the steady state. The vertical
domain is discretized into 168 grid cells with a uniform grid size

=Δ 0.001z m. The streamwise and spanwise domain lengths are
=L 0.144x m and =L 0.072y m. In these two horizontal directions, only

one CFD grid cell is used in each direction. To confirm the model do-
main size is adequate, we carried out a comparative case by reducing
the streamwise domain length by half ( =L 0.072x m), and the model
results on mean flow quantities show good convergence. The same
coefficient =C 30 calibrated for dilute suspension (see Section 3.1) is
used here for the sheet flow simulation using the LRN −k ω model. The
snapshot of the horizontal fluid velocity profile and sediment particle
distribution after the flow reaches the statistically steady state is shown
in Fig. 5. Although the flow is solved using a Reynolds-averaged tur-
bulence closure, the stochastic motions of the sediment particles are
captured by the eddy interaction model and particle collisions. As a
result of the eddy interaction model, the sediment particles are sus-
pended away from the bed via turbulent suspension.

The numerical results of the mean velocity profile, normalized
concentration profile, sediment fluxes ( =Q ϕus s) and TKE profiles are
compared with the measured data in Fig. 6. To reduce the fluctuations
due to stochastic motion of particles, time-averaging with a 10 second
window is applied to calculate the mean flow quantity after the flow
reaches steady state. In panel (a), we observe that the modeled fluid
velocity profile is similar to the measured data in the upper water
column ( − >z z d( ) 7b ) when sediment concentration is very dilute. In
the region of intermediate sediment concentration,
( < − <z z d0 ( )/ 7b ), sediment velocity is slightly smaller than the fluid
velocity and agrees with measured velocity profile. This lag in sediment
phase velocity is consistent with many particle-laden flow observations
(e.g., Muste et al., 2005; Pal et al., 2016). The modeled velocity profiles
without the eddy interaction model are similar and hence they are not
shown here for brevity. Very near the bed ( − ≤z z d( ) 3b ), the model
over-predicts the velocity gradient, while the measured data shows a
milder increase of velocity away from the bottom in the range of

< − <z z d0 ( ) 7b . As a result, the numerical model under-predicts the
shear layer thickness above the bed. According to Revil-

Baudard et al. (2015), the large nearbed shear layer observed in the
experiment may be related to the nearbed intermittencies. Even though
the EIM is used for the turbulence-sediment interaction, the stochastic
model is still too simple to model the bed intermittency, and a turbu-
lence-resolving simulation approach may be necessary for such feature
Cheng et al. (2017b).

The sediment concentration profiles normalized by the maximum
sediment concentration ϕmax are compared in Fig. 6b. It shall be noted
that our numerical model predicts that the maximum sediment con-
centration is ϕmax≈ 0.635, while the measured data gives =ϕ 0.55max .
The discrepancy in the maximum packing concentration is probably
related to the non-spherical particle shape used in the experiments.
From the normalized sediment concentration profiles, we can see that
the modeled sediment concentration with EIM shows a more smooth
vertical distribution and is more consistent with measured concentra-
tion profile. On the other hand, the concentration profile without the
EIM indicates that a dense, thin transport layer is predicted between

< − <d z z d3 ( ) 5b . Consequently, excessive sediment accumulation
occurs in this region, and sediment flux is over-predicted (see Fig. 6c).
This feature is similar to typical bedload transport model results for
much coarser particles or aeolian transport (Durán et al., 2012). Here,
the ‘shoulder-shape’ concentration profile is clearly absent in the
measured data and the model result with EIM shows a better agree-
ment. At the higher Shields parameter and a fall parameter (ratio of
settling velocity to friction velocity) around 1 or smaller, the suspended
transport becomes non-negligible. This point will be discussed more
extensively in Section 4.2. Comparisons presented here indicate that the
EIM can effectively model the turbulent diffusion of sediment con-
centration. Therefore, including the eddy-interaction model in Rey-
nolds-averaged formulation is essential to accurately model sediment
concentration. Although the concentration profile with =C 30 captures
the main features similar to the measured data, it is clear that the
present model underpredicts the sediment suspension in the range of

< − <d z z d5 ( ) 10 ,b and hence the sediment flux is also underpredicted
(see panel (c) in Fig. 6). While it is possible to further increase C0 (in-
crease turbulent suspension) to match the measured data better, it may
not be physically valid. The TKE profiles are further compared with the
measured data in Fig. 6d. Firstly, we can see that including/excluding
the EIM has negligible impact on the modeled TKE profile, and both

Fig. 5. A snapshot of flow velocity field (arrows) and sediment particles (assumed to be
spherical) for the entire computation domain along with the definition of coordinate
system. The initial bed depth is denote as zb, and the water depth is denoted as h.
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results show under-prediction of TKE away from the bed
( − >z z d( )/ 7b ) and very near the bed ( − <z z d( )/ 3b ). As presented in
Fig. 4, the model predicts the TKE profile very well for fixed rough bed
condition of similar bottom friction velocity. Inter-comparison of the
measured TKE between the “FB” and “MB” conditions indicate that
turbulence is enhanced by about 40% away from the bed
( < − <z z d7 ( )/ 25b ) and a significant enhancement is also observed
very near the bed ( − <z z d( )/ 3b ) in the mobile bed experiment. Revil-
Baudard et al. (2016) attribute the enhancement of turbulence to near-
bed intermittency. More recent Eulerian two-phase Large-eddy simu-
lation study (Cheng et al., 2017b) further demonstrated that turbulence
above the concentrated sheet layer ( − >z z d( )/ 7b ) can be enhanced

through these frequent but intermittent sediment burst events. It is
noted that the present turbulence-averaged model is not designed to
capture these intermittent turbulent features.

In summary, including the eddy interaction model is required for
the prediction of sediment concentration and sediment flux under sheet
flow conditions. Although sediment concentration in the dilute region is
under-predicted with =C 30 in the EIM, the discrepancy is believed to
be caused by under-prediction of turbulence due to intermittent tur-
bulent features but not EIM itself. The sensitivity of the modeled sus-
pended sediment concentration will be discussed in more details sub-
sequently.

Fig. 6. The comparison of (a) velocity profile, (b) normalized concentration profile and (c) sediment flux profile between numerical results and measured data with eddy interaction
model (solid curve) and without eddy interaction model (dashed curve); In all panels, the circle symbols are measured data. In panel (a), solid curve denotes the fluid velocity, and dash-
dot curve is the sediment velocity with EIM.

Fig. 7. The comparison of (a) Reynolds shear stress profiles and
(b) sediment concentration profiles plotted in semi-log scale for
model result ( =C 2,0 thick solid curve; =C 3,0 thick magenta
dashed curve; =C 6,0 thick black dash-dot curve; =C 8,0 thick
blue dash-dot curve) and measured data (symbols). In panel (a),
the thin dashed curve denotes a linear fit to the Reynolds shear
stress profile. In panel (b), the thin dash-dot curves are the fitted
Rouse profile with Rouse number =Ro 4.78, 2.98, 2.42 and 1.64
for the model results of =C 2,0 3, 6 and 8, respectively. The value
for the measured data is =Ro 2.14. (For interpretation of the re-
ferences to color in this figure legend, the reader is referred to the
web version of this article.)
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4. Discussion

4.1. Sensitivity of sediment diffusivity to the coefficient C0

As demonstrated in Section 3.1 for the channel flow with dilute
sediment suspension, the sediment concentration profiles are sensitive
to the coefficient C0 in the eddy interaction model, and the suspended
sediment concentration gradient increases with C0 values. It is clear
that the gradient of sediment concentration profile is related to the
particle dispersion (or sediment diffusion). In this section, we further
analyze the sensitivity of the suspended sediment concentrations and
the sediment diffusivity to the coefficient C0 under steady sheet flow
conditions by varying =C0 2, 3, 6, and 8.

The effect of C0 values on the sediment concentration profile is il-
lustrated in Fig. 7. Similar to the Rouse profile in dilute particle-laden
flows (Eq. (38)), the Rouse profile in the sheet flow can be determined
as,
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In practice, the Rouse profile is only applicable when the turbulent
suspension is dominant while the particle–particle interactions are
negligible. Therefore, the reference location zr is chosen to be the
lowest elevation at which the Reynolds shear stress follows a linear
profile. The shear stress profiles corresponding to different C0 values are
shown in Fig. 7a. The Reynolds shear stress profile is nearly unaffected
by the C0 value. Meanwhile, the Reynolds shear stress follows the linear
distribution above − =z z d( )/ 7.5,b and therefore it can be conjectured
that the inter-granular stress becomes important below − =z z d( )/ 7.5b
and a common reference location = +z z d7.5r b is chosen.

The normalized sediment concentration profiles are plotted in
logarithmic scale in Fig. 7b, where the thick curves are numerical re-
sults, and thin dash-dot curves are the corresponding fitted Rouse
profiles. The modeled sediment concentration profiles fit the Rouse
profile well in the dilute region ( − >z z d( ) 7b ) for all the C0 values
tested. However, different slopes of concentration profiles were ob-
served by varying C0 values. We quantify the slope of sediment con-
centration in logarithmic scale using the Rouse number Ro (see
Eq. (39)). For =C 2,0 nearly no sediment is suspended above

− =z z d( )/ 15b and the Rouse number =Ro 4.78 is large compared with
the measured data =Ro 2.14. Using =C 3,0 sediments are suspended
much higher in the water column and the resulting =Ro 2.98 is sig-
nificantly lower. Further increasing C0 to 6 and 8, the Rouse number
reduced to 2.42 and 1.64. Although the model result using =C 60

matches the measured sediment concentration profile, as discussed
before, increasing C0 may not be physically justified because the pre-
dicted suspended sediment concentration also depends on modeled
turbulence quantities.

For given sediment properties and flow conditions, the Rouse
number depends on the Schmidt number Sc, which is defined as the
ratio between the fluid turbulent eddy viscosity (νft) and the sediment
diffusivity (νp). In many Reynolds-averaged Eulerian simulations of
sediment transport (e.g., Hsu et al., 2004; Revil-Baudard and Chauchat,
2013; Cheng et al., 2017a), the gradient transport assumption is
adopted,

′ = −
∂
∂

′w ϕ ν
ϕ
z

,s
p (40)

where the sediment diffusivity is often parameterized by the turbulent
eddy viscosity, =ν ν Sc/ ,p ft with a constant Schmidt number (e.g., Hsu
et al., 2003; Chen et al., 2011; Cheng et al., 2017a). Alternatively, the
sediment diffusivity may be evaluated as = − ∂ ∂ν w ϕ ϕ z/( / )p s by con-
sidering the balance between the turbulent suspension flux and the

settling flux, ′ =′w ϕ w ϕs
s . In the present model, the sediment motion is

directly resolved by a Lagrangian approach, and the eddy interaction
model is incorporated to simulate the sediment suspension by the flow
turbulence. Therefore, it is interesting to evaluate the eddy interaction
model in terms of the resulting sediment diffusivity and Schmidt
number.

The vertical profiles of turbulent eddy viscosity and sediment dif-
fusivity for =C0 2, 3, 6 and 8 are compared in Fig. 8(a) and (b). The
turbulent eddy viscosity profiles obtained using different C0 values are
similar to each other and their vertical distributions are close to the
measured data. However, the magnitude of the eddy viscosity is over-
predicted compared with the measured data. Recall in Fig. 6(d) that the
present model also underpredicts TKE, we can conclude that the model
may significantly underpredict ω due to inability to resolve intermittent
turbulent motion and sediment burst. This may provide some useful
insights to further improve the present −k ω model for two-phase flow
in the future. As shown in Fig. 8(b), the vertical profiles of the sediment
diffusivities are sensitive to the C0 values (see Fig. 8(b)), and the se-
diment diffusivity increases with the increasing values of C0. Because
discrepancies exist in both eddy viscosity and sediment diffusivity, the
overall evaluation was also examined by the ratio of these two quan-
tities, namely the Schmidt number. The resulting Schmidt numbers
( =Sc ν ν/ft p) are presented in Fig. 8(c). We noticed that the predicted
Schmidt number was more or less a constant in the suspension layer

− >z z d( ) 6b for all the runs regardless of C0 values, and this feature is

Fig. 8. The vertical structure of turbulent
eddy viscosity and sediment diffusivity are
compared in panel (a) and (b), respectively.
The corresponding vertical structure of
Schmidt number ( =Sc ν ν/ft p) is plotted in

panel (c). In all three panels, model result
with =C 20 is denoted as thick solid curve,

=C 30 is denoted as thick dashed curve,
=C 60 is denoted as thick dash-dot curve

and =C 80 is denoted as magenta thick
dash-dot curve. The symbols are the mea-
sured data. In panel (c), the thin dash-dot
curves show the mean level of Schmidt
number ( =Sc 0.44 for measured data,

=Sc 1.5, 1, 0.75 and 0.65 for model results
with =C 2, 3, 60 and 8, respectively).
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consistent with the measurement. With =C 30 the resulting Schmidt
number is around unity (Sc≈ 1), which is significantly larger than the
measured value (Sc≈ 0.44). The observed larger Schmidt number is
consistent with the under-prediction of suspended sediment con-
centration and over-prediction of eddy viscosity discussed above. By
increasing the value of C0 to 6 and 8, the resulting Schmidt number
decreased to Sc≈ 0.75 and Sc≈ 0.65, respectively. With this analysis,
we can also conclude that simply increasing C0 cannot reproduce the
measured Schmidt because the eddy viscosity is over-predicted by the
present two-phase flow −k ω model.

In summary, we showed that the discrepancies in the sediment
diffusivity and Schmidt number could be due to the inability of the
Reynolds-averaged model to capture the nearbed intermittencies as
observed in the sheet flow experiment of Revil-Baudard et al. (2015).
The nearbed intermittency enhances the turbulent intensities within the
dense layer and upper water column. As a result, the present model
underpredicted turbulent intensity in these regions, which can further
cause the underprediction of the suspended sediment concentration. To
fully understand the dependence of Schmidt number on turbulent flow
characteristics and sediment properties, a more sophisticated turbu-
lence-resolving models may be needed. Secondly, several interphase
momentum transfer forces such as the added mass and lift forces are
neglected in the present study. It is expected that these interphase
transfer forces are less important for heavy sand particles. However,
they can become important for lightweight coarse particles (Jha and
Bombardelli, 2010). Finally, we shall note that detailed experimental
measurements on natural sand transport in sheet flow are needed to
study the relevance of this nearbed intermittency of lightweight parti-
cles for the sand transport. More comprehensive investigations are
warranted for future work.

4.2. Transport rate and transport layer thickness

The present model is applied to study the role of turbulent sus-
pension (modeled by EIM) on sediment transport rate and transport
layer thickness. In sediment transport applications, the sediment
transport rate is often of high interest, as it is directly used in regional-
scale models to study morphological evolutions (e.g., Lesser et al., 2004;
Warner et al., 2008). Many steady flow experiments revealed that the
dimensionless sediment transport rate can be parameterized by the non-
dimensional bottom shear stress (e.g., Meyer-Peter and Muller, 1948;
Nnadi and Wilson, 1992; Ribberink, 1998). The non-dimensional form
of the bottom shear stress is called Shields parameter,

= −θ τ ρ ρ gd/[( ) ]b s f . To evaluate the model capability to predict sedi-
ment transport rate, we carried out 14 cases with Shields parameter
ranging from =θ 0.3 to 1.2 with/without EIM (see Table 4).

The resulting sediment concentration profiles and sediment flux
profiles for three representative Shields parameters ( =θ 0.5, 0.8 and 1.2)
are shown in Fig. 9, where panels (a, b) corresponds to the results with
EIM, and panels (c, d) corresponds to the results without EIM. As the
shear stress exerted on the granular bed increases, the shear-induced

dilation causes a larger erosion depth in the dense layer ( >ϕ ϕ/ 0.5max
or − <z z d( )/ 3,b see Fig. 9a and c). This phenomenon is similar to the
observations of Boyer et al. (2011) for dense immersed granular flows,
and it occurs regardless of the EIM. As a result of the shear-induced
dilation, more sediments are eroded as the Shields parameter increases
(the vertical location corresponding to =ϕ ϕ/ 0.5max is lower as θ in-
creases). Between < − <z z d3.5 ( )/ 10,b the turbulent suspension me-
chanism is missing without EIM, thus a steep concentration gradient is
obtained in each case in Fig. 9(c). As a consequence of the much rapid
decrease of sediment concentration below =ϕ ϕ/ 0.3,max the sediment
transport flux occurs mostly in the relatively dense layer (see Fig 9d,
e.g., sediment flux is nearly zero for − >z z d( )/ 8b for the case with the
highest Shields parameter). On the other hand, when EIM is in-
corporated to model turbulent suspension, sediments are suspended
further away from the bed. The sediment transport flux in the relatively
dilute layer ( <ϕ ϕ/ 0.3max ) is significantly larger, and the total flux is
expected to be larger compared with the cases without EIM (see
Fig. 9b).

The sediment transport rate can be obtained by integrating the se-
diment transport flux (Qs) over the entire vertical domain, and the di-
mensionless sediment transport rate can be computed as (Durán et al.,
2012),

=
∑

−
= V L L
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v
Ψ

/( )

( 1)
.i

N
i i x y1

3 (41)

In this study, the sediment transport rate obtained with EIM is denoted
as Ψt, while the transport rate without EIM is denoted as Ψb. According
to the previous experimental results on the sediment transport rate, a
general form of power law relationships between the dimensionless
sediment transport rate and the excess Shields parameter ( −θ θc) can
be written as,

= −M θ θΨ ( ) ,c
N

0 0 (42)

Where a typical critical Shields parameter =θ 0.05c is used, several
different values of the coefficient M0 and N0 were proposed from var-
ious experimental results. On the basis of the flume experiments for
rather coarse sand (d>3 mm) at low Shields parameter (θ<0.2),
Meyer-Peter and Muller (1948) proposed that =M 5.70 and =N 1.50 .
This is the well-known power law where the transport rate is propor-
tional to the 3/2 power of the excess Shields parameter −θ θ( )c . Based
on the duct flow experiment with a smaller grain size ( =d 0.7 mm) at
higher Shields parameters (θ>1), Nnadi and Wilson (1992) suggested
that the coefficient M0 should be increased to =M 120 . More recent
study by Ribberink (1998) found that the power 3/2 should be in-
creased to about 1.67 as the suspended load becomes important when
the Shields parameter becomes larger.

The numerical results of the dimensionless sediment transport rates
as a function of the Shields parameters are plotted in Fig. 10. Clearly,
the sediment transport rates predicted with EIM (circle symbols) and
without EIM (triangle symbols) increase rapidly when the Shields
parameter increases, and this trend follows the empirical power law
(Eq. (42)) very well. The dash-dot curve in Fig. 10 shows the power law
with =N 1.50 (Meyer-Peter and Muller, 1948) and the resulting best fit
is =M 8.10 . However, the fitted curve with a power of =N 1.50 over-
predicts the sediment transport rate for lower Shields parameters
(θ<1), while the transport rate in the higher Shields parameter range
is under-predicted. On the other hand, the best fit of the power law for
the present model results gives =M 8.270 and =N 2.0,0 which is con-
sistent the values reported by Ribberink (1998), =M 10.40 and

=N 1.670 . In addition, the transport rate without EIM is also compared
with that of EIM. It is evident that the transport rate without EIM is
generally smaller, and the discrepancy increases as the Shields para-
meter increases. If we further fit the transport rate obtained without
EIM into the power law formula, we obtain that =M 5.50 and =N 2.00 .
It is interesting to note that although the proportionality constant M0 is

Table 4
A summary of the numerical experiments to study the effect of EIM on the sediment
transport rate and transport layer thickness at various Shields parameters. The transport
rate and transport layer thickness with EIM are denoted as Ψt and δt, respectively, while
the results without EIM are denoted as Ψb and δb, respectively.

d (mm) u* (cm/s) θ =F w u/ *s Ψb Ψt δb/d δt/d

3 3.87 0.3 1.44 0.48 0.67 2.28 2.90
3 4.47 0.4 1.25 0.93 1.16 2.90 4.15
3 5.0 0.5 1.12 1.40 1.89 3.32 5.39
3 5.48 0.6 1.02 1.81 2.85 3.94 6.43
3 6.32 0.8 0.88 3.03 4.20 4.98 7.88
3 7.07 1.0 0.79 5.01 7.39 6.01 10.16
3 7.74 1.2 0.72 7.67 11.05 7.05 12.44
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much lower than that of EIM, the power N0 remains the same.
As shown in Fig. 9 (b) and (d), the sediment horizontal flux mainly

occurs within a thick layer of about 10∼ 15 grain diameters above the
bed. In sheet flow applications, the transport layer thickness is another
quantity of interest, because this is where a large portion of transport
takes place. For example, Wilson (1987) argues that mobile beds at high
shear stresses can neither be considered as a rough or smooth fixed wall
but they obey their own friction law with a frictional length scale
proportional to the thickness of the major transport layer.
Wilson (1987) defined the major transport layer thickness as the dis-
tance of the lowest mobile bed layer (us<1 mm/s) and the sediment
concentration =ϕ 8%. However, we noticed that using the 8%
threshold may neglect too much transport for the present analysis and a
lower threshold may be more appropriate. Here, we define the trans-
port layer directly from the sediment flux profile, where the di-
mensionless sediment flux is larger than a small threshold:

− >Q s gd/ ( 1) 0.05s . The resulting transport layer thickness with EIM
(δt) and without EIM (δb) are compared in Fig. 10b. It is evident that the
transport layer thickness increases with the Shields parameter. Ac-
cording to the experimental observations (e.g., Wilson, 1987; Sumer
et al., 1996), the transport layer thickness is nearly proportional to the
grain diameter and Shields parameter. As shown in Fig. 10b, we can see
that a linear relationship can be found regardless of whether EIM is
adopted or not, even though the proportionality coefficients are quite
different. Without EIM, the transport layer thickness can be well de-
scribed as =δ d θ/ 6.18b . However, the transport layer thickness with
EIM is much larger, =δ d θ/ 10.28s with the proportional coefficient very
close to the value 10 as suggested by Wilson (1987).

According to Bagnold (1966), the particle suspension occurs when
the dominant vertical velocity of the turbulent eddies exceeds the
particle settling velocity. Assuming that the vertical velocity fluctuation

Fig. 9. The sediment concentration profile and transport flux
profile at three different Shields parameter, =θ 0.5 (solid
curve), =θ 0.8 (dashed curve) and =θ 1.2 (dash-dot curve).
Panel (a) and (b) corresponds to the result with eddy inter-
action model, while panel (c) and (d) are the results without
eddy interaction model. The sediment concentration is nor-
malized by the maximum sediment concentration

=ϕ 0.635,max and the transport flux is normalized by

−s gd( 1) .

Fig. 10. The nondimensional transport rate (panel a) and transport layer thickness (panel
b) as a function of Shields parameter θ. The circled symbols are model results with eddy
interaction model (denoted as Ψt). To contrast the effect of EIM, the model results without
EIM (Ψb) are denoted as triangle symbols. The solid curve shows the empirical formula-
tion of Eq. (42) with =θ 0.05,c =M 8.270 and =N 1.97,0 while the dash-dot curve cor-
responds to =θ 0.05,c =M 8.10 and =N 1.50 . The best fit to the transport rate without
EIM is Eq. (42) with =θ 0.05,c =M 5.50 and =N 2.00 . In panel (b), the solid curve is the
linear fit transport layer thickness with EIM, while the dashed curve is for the cases
without EIM.
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can be quantified by the vertical turbulent velocity fluctuation, we can
assume that the turbulent suspension is important if ′ >w wrms s. In the
present model, an isotropic turbulence is assumed, such that the ver-
tical turbulence intensity is approximated as, ′ ≈w k2 /3rms .
Nezu (1993) suggested that the maximum TKE can be estimated as

u4.78 *
2 for turbulent flow over smooth bed. In the present sheet sedi-

ment transport with coarse light particles, the maximum TKE can be
reasonably represented by u3 *

2 (see Fig. 6d), thus the turbulent sus-
pension can be initiated when the shear velocity satisfies, <w u/ * 2s .
This is similar to the discussion of van Rijn (1984b) and
Sumer et al. (1996), where they suggested that the relative importance
between suspended load and bedload sediment transport can be cate-
gorized by the fall parameter, =F w u/ *s . As summarized in Table 4, the
fall parameter varies from 1.44 to 0.72 as the shear velocity increases
from 3.87 to 7.74 cm/s. From the previous discussion on the sediment
transport rate and transport layer thickness, it is found that the differ-
ence of the transport rate between the results with and without EIM is
negligible when the Shields parameter is smaller than 0.5 (fall para-
meter F≥ 1.25). However, when the Shields parameter is larger than
0.5 (or F<1.25), the difference becomes noticeable.

To carry out more quantitative analysis, we consider that the tur-
bulent suspension is most significant for the suspended load, which
mainly occurs in the region of ϕ<0.08. The non-dimensional sus-
pended load sediment transport rate can be defined as,

∫=
− =s gd

ϕu dzΨ 1
( 1)

.sus z ϕ

Lz
s3 ( 0.08) (43)

To illustrate the importance of EIM on the prediction of suspended
sediment flux, the suspended load with/without EIM are compared in
Fig. 11 for a range of fall parameters. As the fall parameter increases,
the sediment particles are less likely to be suspended by the turbulent
eddies, thus the suspended sediment transport reduces rapidly. This is
confirmed by the results of EIM, where the non-dimensional suspended
sediment transport rate is reduced from 1.4 to 0.2 when the fall para-
meter increases from 0.72 to 1.44. However, we can see that the sus-
pended load predicted without EIM is quite small (around 0.2) and
more or less a constant independent of the fall parameter. This indicates
that the EIM is essential to capture the suspended sediment flux. For
F<1.25, suspended load flux can be significantly under-predicted and
EIM should be included in the Euler-Lagrange model for steady sheet
flows.

5. Conclusion

In this paper, a Reynolds-averaged Euler–Lagrange sediment trans-
port model was developed and applied to steady sheet flow, where the
inter-granular interaction is directly resolved and the turbulent sus-
pension of particles is modeled using an eddy interaction model. A LRN

−k ω model extended for two-phase flow is implemented for the flow
turbulence, which also provides the required turbulence statistics for
the eddy-interaction model. The eddy interaction model was first cali-
brated using the dilute suspension experiments of Kiger and Pan (2002)
and Muste et al. (2005). While the model is able to predict the mea-
sured flow velocity and turbulence kinetic energy very well, the model
results are found to be sensitive to the coefficient C0 associated with the
eddy-particle interaction time (see Eq. (36)), and a value of C0≈ 3 is
calibrated to match the measured concentration profile in the dilute
particle-laden flow.

After calibrating the eddy-interaction model for dilute suspension,
an application of CFDEM-EIM to steady sheet flow was carried out by
simulating the laboratory experiment of Revil-Baudard et al. (2015)
with =C 30 . Although good agreements for flow velocity, turbulence
kinetic energy, sediment concentration and sediment flux profiles are
obtained for most of the sheet flow layer, the model clearly under-
predicts turbulence and suspended sediment concentration in the dilute
region. The underpredicted suspended sediment concentration is
quantified by sediment diffusivity and we found that the sediment
diffusivity decreases as the coefficient C0 increases, while the fluid
turbulent eddy viscosity is not sensitive to C0 values. As a result, the
resulting Schmidt number (ratio of fluid eddy viscosity to the sediment
diffusivity) reduces as C0 increases. However, the Schmidt number
cannot be reduced to the measured value of 0.44 unless an unrealistic
large value of C0 is used. Therefore, it is likely that the under-prediction
of suspended sediment concentration in the dilute region is mainly due
to underprediction of turbulence kinetic energy above the major sheet
flow layer. As the higher level of turbulence may be associated with
intermittent sediment burst events especially pronounced for light-
weight particles (Revil-Baudard et al., 2015), a turbulence-resolving
approach for the present Euler–Lagrange model may be necessary.
Meanwhile, as the model can reproduce the major features of sheet flow
layer, a model investigation was carried out to investigate the role of
EIM and the resulting turbulent suspension on sediment transport rate
and transport layer thickness. Model results confirmed that the non-
dimensional transport rate follows a power law with the Shields para-
meter consistent with empirical formulations. Significant under-
prediction of sediment transport rate were obtained without EIM due to
lack of turbulent suspension, and the discrepancy between the result of
EIM and without EIM is more pronounced when the fall parameter is
lower than 1.25 (relatively smaller setting velocity or larger bottom
friction velocity). Further analysis on transport layer thickness suggests
that only when EIM is incorporated, the model is able to reproduce the
well-known formula suggested by Wilson (1987).

Future improvements of the present CFDEM-EIM are suggested in
the following aspects: First, the eddy interaction model is included only
in the drag force, while the other interphase momentum transfer forces
such as added mass and lift forces are ignored. However, their relative
importance to the drag force in the eddy interaction model needs more
investigations, especially for lightweight coarse particles. Secondly,
even though the particles are tracked in a 3D domain with a Lagrangian
approach, the fluid is solved only in a 1DV domain, and the flow is
assumed to be homogeneous in the streamwise and spanwise directions.
This assumption is reasonable for typical sheet flow conditions.
However, for flows over nonuniform bathymetry or bedforms, this as-
sumption is violated, and multi-dimensional simulations are needed for
the fluid phase. Thirdly, the turbulence is assumed to be homogeneous
and isotropic, thus the eddy interaction model may be too simple to
reproduce the inhomogeneous features such as turbulent burst and
preferential concentrations. Within the context of turbulence-averaged

Fig. 11. Nondimensional suspended sediment transport rate Ψsus in the dilute region
(ϕ<0.08) as a function of the fall parameter =F w u/ *s . The circled symbols are model
results with eddy interaction model, while the triangle symbol denotes the transport rate
obtained without EIM.
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formulation, more sophisticated turbulence closure and eddy-interac-
tion schemes can be pursued. Fourthly, it is noted that the model results
are sensitive to the estimation of eddy life time, which is also highly
variable based on the flow condition (Coimbra et al., 1998), and a more
sophisticated turbulence model that directly resolves the eddy life time
will be highly viable. Furthermore, to make good use of the coupled
Euler-Lagrange scheme, CFDEM-EIM should be extensively applied to
study the effects of grain size distribution and grain shape on sediment
transport (Calantoni et al., 2004; Calantoni and Thaxton, 2008;
Fukuoka et al., 2014; Harada and Gotoh, 2008; Harada et al., 2015).
Finally, the present study focused on developing a robust turbulence-
averaged Euler–Lagrange model for various sediment transport appli-
cations. However, we also identified several outstanding issues in sheet
flow sediment transport requiring further investigations, such as near
bed intermittency and sediment diffusivity, which may require a tur-
bulence-resolving simulation approach. Clearly, a fundamental under-
standing on many aspects of turbulence-particle interactions must be
addressed by turbulence-resolving simulations and some encouraging
works using the CFDEM framework have been reported (Schmeeckle,
2014; Sun and Xiao, 2016b).
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