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Abstract. In this paper, a three-dimensional two-phase flow
solver, SedFoam-2.0, is presented for sediment transport ap-
plications. The solver is extended from twoPhaseEulerFoam
available in the 2.1.0 release of the open-source CFD (com-
putational fluid dynamics) toolbox OpenFOAM. In this ap-
proach the sediment phase is modeled as a continuum, and
constitutive laws have to be prescribed for the sediment
stresses. In the proposed solver, two different intergranular
stress models are implemented: the kinetic theory of gran-
ular flows and the dense granular flow rheology µ(I). For
the fluid stress, laminar or turbulent flow regimes can be
simulated and three different turbulence models are avail-
able for sediment transport: a simple mixing length model
(one-dimensional configuration only), a k− ε, and a k−ω
model. The numerical implementation is demonstrated on
four test cases: sedimentation of suspended particles, lami-
nar bed load, sheet flow, and scour at an apron. These test
cases illustrate the capabilities of SedFoam-2.0 to deal with
complex turbulent sediment transport problems with differ-
ent combinations of intergranular stress and turbulence mod-
els.

1 Introduction

Sediment transport is the main process that drives the mor-
phological evolution of fluvial and coastal environments.
Consequently, the ability to predict sediment transport is
a major societal issue for the management of natural sys-

tems in order to limit and prevent the impacts related to ex-
treme events exacerbated by climate change and human ac-
tivities such as the construction of hard structures (dams, har-
bors, dikes, etc.), land reclamation, and dredging. Address-
ing these issues requires the development of comprehen-
sive models that account for the variety of complex hydro-
sedimentary processes such as particle interactions with hy-
drodynamic and flow turbulence or particle–particle interac-
tions due to collisions or frictions. However, these complex
phenomena are only poorly understood at present and they
are incompletely integrated into engineering tools to predict
the coastal and river morphodynamics. As a result, our pre-
diction performance is limited. Improving these models is
urgently needed for land settlement decision-makers for the
management of water resources and environmental issues.

The processes at work in sediment transport are numer-
ous. In classical sediment transport definitions, particles can
be transported as suspended load, i.e., without contact with
the sediment bed, or as bed load, i.e., with permanent or in-
termittent contact with the sediment bed by rolling, sliding,
or saltation (Fredsoe and Deigaard, 1992). In the suspended
load, sediment concentration is quite low and the sediment
suspension is driven by their interactions with turbulent ed-
dies. In the near-bed region, the sediment concentration in-
creases drastically and can reach values as high as ∼ 60 % in
volume fraction. As a result, the particle–particle interactions
such as collisions or frictional contacts become dominant.
When the granular particles are agitated by a strong shear
stress, a thick layer of particles are mobilized and transported
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above the static bed. This regime, the so-called sheet-flow
regime, can significantly contribute to the sediment transport
and the morphological evolution of rivers (for example, un-
der extreme flood conditions, Hanes and Bowen, 1985) and
in the coastal zone (especially in the surf and swash zones,
e.g., Lanckriet et al., 2014; Aagaard et al., 2002).

From the modeling perspective, the classical modeling ap-
proach consists of dividing the physical domain into two
sublayers. The upper layer corresponds to the water col-
umn in which depth-integrated or depth-resolving Reynolds-
averaged Navier–Stokes equations are solved and the sed-
iment concentration is assumed to be dilute, in which the
sediment particles are treated as passive scalar with a set-
tling velocity difference with the fluid phase. The lower near-
bottom bed-load layer is solved by using a bed shear-stress-
based empirical formula for the sediment flux (e.g., Meyer-
Peter and Muller, 1948) coupled with the sediment mass
conservation equation (Exner equation, Exner, 1925). The
latter allows us to predict the bed morphological evolution.
These two layers are dynamically coupled using empirical
sediment vertical fluxes: deposition and pick-up fluxes (Van
Rijn, 1984), which are also parameterized based on the bed
shear stress. The single-phase model has been widely used
because of its simplicity and computational efficiency, and it
has been integrated into meso- to large-scale models such as
the Delft3D (Lesser et al., 2004; Hu et al., 2009), XBeach
(Roelvink et al., 2009), and ROMS (Warner et al., 2008).
Despite their ability to predict long-term regional morphol-
ogy in littoral zones, there are several challenges to model
sediment transport using such a single-phase methodology.
Firstly, major transport in sheet flow occurs within about
20–50 grain diameters above the bed. Hence, the resolved
suspended-load layer only accounts for a minor portion of
transport while the majority of the predicted transport relies
on the empirical bed-load parameterization. Secondly, most
of the existing formula for bed-load transport and suspen-
sion flux are developed for steady flow and hence their ap-
plicability to the highly unsteady wave-induced transport is
questionable (Yu et al., 2012). Thirdly, the particle–particle
collisions and frictions in the high concentration regions are
assumed to be negligible, and entrained sediments are as-
sumed to be suspended immediately by the flow turbulence.
Fourthly, the bed erosion/deposition and its impact on the
sediment concentration distribution and the carrier flow fields
are largely neglected. In addition, simple parameterization
solely on the bed shear stress may be insufficient; for ex-
ample, the role of pressure gradient in sediment transport
has been identified for extreme events such as storms (Fos-
ter et al., 2006; Cheng et al., 2017a). Addressing these is-
sues requires the development of comprehensive models that
account for the variety of complex hydrodynamics and sed-
iment transport processes on a regional-scale setting (e.g.,
Lesser et al., 2004; Roelvink et al., 2009). Because sediment
transport occurs very close to the bed, effective parameteri-
zations of sediment transport are needed. In the past decade,

significant progress has been demonstrated to utilize detailed
numerical models to understand sheet-flow processes, and ef-
fective parameterizations for coastal sediment transport have
been developed (van der A et al., 2013). To further tackle
more complex sediment transport problems, such as bed-
form evolution, scour, bank erosion, and dune erosion, fur-
ther expansion of these models through a community effort
is urgently needed. The development of more comprehensive
sediment transport models integrating the complexity of the
underlying physical coupling mechanisms is the main goal
of the open-source community model presented herein.

During the past two decades, an increasing amount of re-
search efforts have been devoted to develop two-phase flow
models for sediment transport (see a brief summary in Ta-
ble 1). In this two-phase flow approach, dynamical equa-
tions are solved for both the fluid phase (water) and the par-
ticle phase (sediment), with the latter being seen as a con-
tinuous phase dispersed in the fluid. The two-phase flow
approach gives a general modeling framework that poten-
tially allows us to take into account almost all the physi-
cal processes involved in sediment transport, such as fluid–
particle interactions, turbulence modulation, and particle–
particle interactions. From a technical point of view, the
difficulty is in solving two non-linearly coupled Navier–
Stokes type of partial differential equations. From a theoret-
ical perspective, it is difficult to incorporate various physi-
cal processes that take place on smaller scales than the av-
eraging scale, which is used to derive the two-phase equa-
tions. With closures for particle–particle interactions, flow
turbulence, and turbulence–sediment interactions, the Eule-
rian two-phase model excels the single-phase sediment trans-
port models in several aspects, and provides us with new in-
sights into sediment transport mechanisms.

The key closures in the two-phase flow sediment transport
models are flow turbulence and granular stress closures. In
terms of the turbulence closure, the first one that has been
tested was a mixing length model by Jenkins and Hanes
(1998) followed by others (e.g., Dong and Zhang, 1999;
Revil-Baudard and Chauchat, 2013). The other turbulence
model that has been used is the k− ε model (e.g., Hsu et al.,
2003; Longo, 2005; Bakhtyar et al., 2009). The k−ω model
has been tested by Jha and Bombardelli (2009) and Amoudry
(2014), and the Reynolds stress model has been tested by
Jha and Bombardelli (2010). Concerning the granular stress
models, the first model that has been tested by Hanes and
Bowen (1985) is the empirical rheology of Bagnold (1954).
This rheology has then been used by Dong and Zhang (1999)
and Bakhtyar et al. (2009) for oscillatory sheet-flow applica-
tions. Jenkins and Hanes (1998) were the first to apply the
kinetic theory of dense granular flows in a two-phase flow
model for sediment transport. The kinetic theory has been
used quite extensively by different authors to study sediment
transport (e.g., Hsu and Liu, 2004; Berzi, 2011; Berzi and
Fraccarollo, 2013; Cheng et al., 2017a). In this approach,
the particle stress associated with particle–particle collisions
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Table 1. Summary of Eulerian two-phase models for sediment transport applications.

Authors Turbulence model Particle stress

Asano (1990), Li and Sawamoto (1995), and Dong and Zhang (2002) mixing length Bagnold
Jenkins and Hanes (1998) mixing length kinetic theory
Revil-Baudard and Chauchat (2013) mixing length granular rheology
Li et al. (2008) k−L Bagnold
Bakhtyar et al. (2009) k− ε Bagnold
Hsu and Liu (2004), Chauchat and Guillou (2008), and Amoudry et al. (2008) k− ε kinetic theory
Yu et al. (2010) and Cheng et al. (2017a)
Amoudry (2014) and Jha and Bombardelli (2009, 2010) k−ω kinetic theory
Lee et al. (2016) k− ε granular rheology

is modeled by the fluctuation energy of the particle phase
(or granular temperature). Various models were developed to
model the granular temperature. Jenkins and Hanes (1998)
first applied kinetic theory for dry granular flows to sheet
flow, and the granular temperature transport equation was
later extended to consider the fluid–sediment turbulence in-
teractions (e.g., Hsu and Hanes, 2004; Chauchat and Guillou,
2008). The aforementioned kinetic theory considered dense
collisions of particles, while the streaming effect of parti-
cle random motions was missing in the dilute concentration
regime. A further extension to include the streaming effects
was developed by Lun and Savage (1987) and Ding and Gi-
daspow (1990), and it was implemented into a more com-
plete two-phase model by Cheng et al. (2017b). In contrast to
solving the transport of granular temperature, Jha and Bom-
bardelli (2010) used a mixing length concept for the particle
phase, and a simpler algebraic model for the granular temper-
ature was used with success. More recently, the dense granu-
lar flow rheology initially proposed by GDRmidi (2004) for
dry granular flows has been used for sediment transport ap-
plications in the laminar flow regime by Ouriemi et al. (2009)
and later to turbulent flow conditions by Revil-Baudard and
Chauchat (2013), Chiodi et al. (2014), and Lee et al. (2016).
Due to the complexity of the model formulation, most of
the existing two-phase models are based on the Reynolds-
averaged approach and simplified into one-dimensional form
(e.g., Hanes and Bowen, 1985; Jenkins and Hanes, 1998; Hsu
et al., 2003; Revil-Baudard and Chauchat, 2013), with a few
exceptions (two-dimensional models; Chauchat and Guillou,
2008; Bakhtyar et al., 2009; Amoudry and Liu, 2009). Only
very recently, a three-dimensional (3-D) large-eddy simula-
tion two-phase flow model has been applied for sheet-flow
sediment transport (Cheng et al., 2017b). This 3-D numeri-
cal model is based on the open-source CFD toolbox Open-
FOAM.

Cheng et al. (2017a) have applied SedFoam using the ki-
netic theory of granular flows and the k−ε turbulence model
to reproduce oscillatory sheet flows of fine, medium, and
coarse sand (O’Donoghue and Wright, 2004). The purpose
of the present contribution is to follow up on the work of
Cheng et al. (2017a) by adding new capabilities to the open-

source model SedFoam. In particular, the mixing length tur-
bulence model and dense granular flow rheology used by
Revil-Baudard and Chauchat (2013) and Chauchat (2017)
for sheet flows have been implemented. In addition, we im-
plemented and tested the k−ω turbulence model for two-
phase flow sediment transport modeling purposes. Our fi-
nal goal is to provide a comprehensive numerical framework
that solves the two-phase flow equations in three dimensions
with the capability to select different combinations of tur-
bulence and granular stress models for sediment transport
applications. By disseminating the numerical model in the
open-source framework, in the long run, we expect new ca-
pabilities will be added to the model by the scientific com-
munity. We strongly believe that developing such an open-
source community model is the only effective way to make
significant progress.

The focus of the present work is to demonstrate the ca-
pabilities included in SedFoam-2.0 to model sediment trans-
port. In particular, the comparison of different combinations
of granular stress and turbulence models in the same numer-
ical framework is presented here for the first time.

The paper is organized as follows, in Sect. 2 the mathe-
matical formulation of the model is presented together with
the closures for drag, turbulence model, and granular stress
models. In Sect. 3, the semi-discretized form of the equa-
tions and the velocity–pressure coupling algorithm are pre-
sented in detail. In Sect. 4, four test cases are presented: three
of them are one-dimensional vertical problems namely sedi-
mentation, laminar bed load, and sheet flow for which exper-
imental data or analytical solutions exist. The last test case
on the scour at an apron is used to illustrate the multidimen-
sional capabilities of SedFoam-2.0. Finally, summaries and
conclusions are drawn in Sect. 5.

2 Mathematical formulation

The mathematical formulation of the Eulerian two-phase
flow model is obtained by averaging local and instanta-
neous mass and momentum conservation equations over fluid
and dispersed particles. Different averaging operators can be

www.geosci-model-dev.net/10/4367/2017/ Geosci. Model Dev., 10, 4367–4392, 2017



4370 J. Chauchat et al.: SedFoam-2.0: two-phase flow sediment transport model

used, ensemble averaging (Drew, 1983) or spatial averaging
(Jackson, 2000), and provided that the mathematical deriva-
tion is done properly, the different approaches should lead
to the same conservation equations (Zhang and Prosperetti,
1997; Jackson, 1997). The resulting governing equations can
be considered as the counterpart of the clear fluid Navier–
Stokes equations for single-phase flow. In order to apply
these equations to turbulent flow, in which turbulent motions
are generated by flow shear much larger than the grain scale,
additional turbulence averaging or filtering is required. In the
present model, turbulence-averaged Eulerian two-phase flow
equations are derived by following a similar procedure pre-
sented in Hsu et al. (2003) and Hsu and Liu (2004).

2.1 Turbulence-averaged two-phase flow governing
equations

The mass conservation equations for the particle phase and
fluid phase are written as the following:

∂α

∂t
+
∂αuai

∂xi
= 0, (1)

∂β

∂t
+
∂βubi

∂xi
= 0, (2)

where α and β (β = 1−α) are the particle and fluid volume
concentrations, uai ,u

b
i are the sediment and fluid-phase ve-

locities, and i = 1,2,3 represents streamwise, spanwise, and
vertical components, respectively. The momentum equations
for fluid and particle phases can be written as the following:

∂ρaαuai

∂t
+
∂ρaαuai u

a
j

∂xj
=−α

∂p

∂xi
+αfi −

∂p̃a

∂xi
+
∂τ aij

∂xj

+αρagi +αfi +αβK(u
b
i − u

a
i )− SUS βKν

b
t
∂α

∂xi
, (3)

∂ρbβubi

∂t
+
∂ρbβubi u

b
j

∂xj
=−β

∂p

∂xi
+βfi +

∂τ bij

∂xj

+βρbgi +βfi −αβK(u
b
i − u

a
i )+ SUS βKν

b
t
∂α

∂xi
, (4)

where ρa,ρb are particle and fluid density, respectively, gi
is the gravitational acceleration, fi is an external volume
force, and p is the fluid pressure. fi is the external force that
drives the flow. The fluid stress τ bij includes fluid grain-scale
(viscous) stress and fluid Reynolds stresses (see Sect. 2.2),
and p̃a,τ aij are particle normal stress and shear stress (see
Sect. 2.3). The last two terms on the right-hand side (RHS)
of Eqs. (3) and (4) are momentum coupling between the fluid
phase and particle phase through drag force, where K is the
drag parameter. In particular, the second to last term repre-
sents averaged drag force due to mean relative velocity be-
tween fluid and particle phases, while the last term repre-
sents the fluid turbulent suspension term, also called drift
velocity by Simonin (1991). This term is due to the corre-
lation of sediment concentration and fluid velocity fluctua-
tions, and the gradient transport assumption is adopted here

for its closure. Hence, νbt is the turbulent viscosity to be cal-
culated using a turbulence closure, and SUS = 1/σc is inverse
of the Schmidt number. This term is equivalent to the turbu-
lent suspension flux of the Rouse profile in the two-phase
flow formalism (see Chauchat, 2017, Appendix 1 for a de-
tailed demonstration). Other forces such as the lift force or
the added mass force could play a role in sediment transport:
according to Jha and Bombardelli (2010), the lift force in di-
lute suspended sediment transport only represents 4 % of the
drag force and the added mass force can be on the order of
10 % in the near-bed region. The influence of the added mass
force would require further investigation that is beyond the
scope of the present paper.

The drag parameter K is modeled following Schiller and
Naumann (1933):

K = 0.75Cd
ρb

deff
‖ ub−ua ‖ β−hExp , (5)

where deff = ψd is the effective sediment diameter, in which
ψ is the shape factor and d is the particle diameter. The hin-
drance function β−hExp represents the drag increase when
the particle volume concentration increases. hExp is the hin-
drance exponent that depends on the particulate Reynolds
number (Di Felice, 1994). For simplicity, the value of hExp
is assumed to be constant (default value is 2.65), and its
value can be specified from the constant/transportProperties
file in SedFoam-2.0. This hypothesis is valid for particulate
Reynolds numbers lower than unity or larger than 300; within
this range the exponent value decreases down to hExp ≈ 2.
The drag coefficient Cd is calculated as

Cd =


24

Rep
(1+ 0.15Re0.687

p ), Rep ≤ 1000

0.44, Rep > 1000
, (6)

in which the particulate Reynolds number Rep is defined as
Rep = β ‖ ub−ua ‖ deff/ν

b, where νb stands for the fluid
kinematic viscosity. This drag model can be chosen by
the keyword “GidaspowSchillerNaumann” in the file con-
stant/interfacialProperties and it is especially well adapted
for dealing with suspended particles. For situations in which
the fluid flow inside the porous sediment bed has to be accu-
rately solved, other drag models are available in SedFoam-
2.0 but as they are not relevant to the test cases investigated
in this paper, their description is omitted. The major issue
in developing a Eulerian two-phase flow model is to provide
closure laws for turbulence closures and granular stress mod-
els. This will be extensively discussed in the following sub-
sections, where particularly different modeling options avail-
able in SedFoam-2.0 are presented.

2.2 Fluid-phase shear stress

Because the present model equations are obtained by averag-
ing over turbulence, the fluid stresses consist of a large-scale
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componentRbtij (i.e., Reynolds stress) and a grain-scale stress
rbij , which includes the viscous stress and an additional effect
due to fluid–particle interaction on the grain scale. The total
fluid stress is written as

τ bij = R
bt
ij + r

b
ij = ρ

bβ
[
2νbEff S

b
ij −

2
3
kδij

]
, (7)

where νbEff = ν
b
t + ν

mix is the fluid-phase effective viscosity
with νbt being the eddy viscosity, and νmix is the mixture vis-
cosity. Sbij is the deviatoric part of the fluid-phase strain rate
tensor defined as

Sbij =
1
2

(∂ubi
∂xj
+
∂ubj

∂xi

)
−

1
3
∂ubk

∂xk
δij . (8)

The Reynolds stress tensor Rbtij is modeled as

Rbtij = ρ
bβ
[
2νbt S

b
ij −

2
3
kδij

]
, (9)

and the viscous stress tensor is modeled as

rbij = 2ρbβνmix Sbij . (10)

In SedFoam-2.0, several different viscosity or turbulence
closures are implemented, and these models can be selected
according to specific flow conditions ranging from laminar
to turbulent flows, and in particular, the mixture viscosity
can be selected in combination with the granular rheology
model for the granular stresses (see Sect. 2.3.2). For the tur-
bulent eddy viscosity, modified turbulence closures are im-
plemented for sediment transport applications, and they are
presented in Sect. 2.2.2.

2.2.1 Mixture viscosity

The mixture viscosity model mostly depends on the particle-
phase volume concentration. Four different models are avail-
able in SedFoam-2.0. In the pure fluid model, the mix-
ture viscosity is equal to the fluid one: νmix

= νb. This
model is selected by default when using the kinetic the-
ory of granular flows and can be selected by setting
none for the keyword FluidViscosityModel in the file con-
stant/granularRheologyProperties.

The Einstein model (Einstein, 1906) is valid for very dilute
situations (α < 0.01):

νmix

νb
= 1+ 2.5α. (11)

The phenomenological model proposed by Krieger and
Dougherty (1959) is valid for very dense situations:

νmix

νb
=

(
1−

α

αmax

)−n
, (12)

where αmax is the maximum volume concentration and n is
an empirical exponent usually taken as n= 2.5αmax for con-
sistency with Einstein’s model at low volume concentration.

The model proposed by Boyer et al. (2011) is also empir-
ical but has been obtained based on detailed rheological ex-
periment. It is consistent with Einstein’s model for low vol-
ume concentration and Krieger–Dougherty’s model at high
volume concentrations:

νmix

νb
= 1+ 2.5α

(
1−

α

αmax

)−1

. (13)

The choice of mixture viscosity model is made in the file
constant/granularRheologyProperties through the keyword
FluidViscosityModel and is only available when the granu-
lar rheology is chosen.

A special treatment of the term (1−α/αmax)
−n is needed

to avoid dividing by zero as α approaches αmax; basi-
cally, this term is clipped as follows: 1−α/αmax = 1−
min(α/αmax,0.99).

2.2.2 Turbulence modeling

As discussed above, the turbulence-averaged formulation re-
quires a closure for the eddy viscosity. Three turbulence
models are available in SedFoam-2.0: a mixing length model
(only valid for 1-D configuration), the k− ε model from
Cheng and Hsu (2014) and Cheng et al. (2017a), and a k−ω
turbulence model introduced in the present contribution.

Laminar

For laminar-flow applications, the turbulence model is turned
off by setting νbt = 0 and k = 0; however, the mixture viscos-
ity model can be selected to account for the sediment effect
on the mixture viscosity; thus the effective fluid viscosity is
calculated as νbEff = ν

mix.

Mixing length (1-D only)

In the mixing length approach, the eddy viscosity is modeled
using a simple algebraic equation:

νt
b
= l2m ‖∇ub ‖, (14)

lm = κ

y∫
0

1−
(
α(ξ)

αmax

)1.66

dξ, (15)

where κ is the von Karman constant and the exponent 1.66
has been proposed by Chauchat (2017) based on matching
experimental data from Revil-Baudard et al. (2015). This
model is only working in the 1-D configuration for which
the direction of gravity is y. This turbulence model has been
implemented mostly for compatibility with earlier works.

k− ε model

Cheng et al. (2017a) have implemented the k− ε model re-
fined from Hsu et al. (2004) and Yu et al. (2010), in which
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Table 2. List of the mixture viscosity model that can be selected through the keyword FluidViscosityModel together with model equation
references.

Keyword name Keyword value

FluidViscosityModel none Einstein KriegerDougherty BoyerEtAl

νmix/νb = 1 Eq. (11) Eq. (12) Eq. (13)

the turbulent eddy viscosity νbt is calculated by

νbt = Cµ
k2

ε
, (16)

where Cµ is an empirical coefficient (see Table 3). The tur-
bulent kinetic energy (TKE) k is computed from the solution
of Eq. (17), appropriate for sand particles in water:

∂k

∂t
+ ubj

∂k

∂xj
=
Rbtij

ρb

∂ubi

∂xj
+

∂

∂xj

[(
νb+

νbt
σk

) ∂k
∂xj

]
− ε

−
2K(1− tmf )αk

ρb
−
SUS

β
νbt
∂α

∂xj

(ρa
ρb
− 1

)
gj . (17)

The above k equation is similar to the clear fluid k−ε closure,
except that the last two terms on the RHS in Eq. (17) take
account of the sediment damping effect on the carrier-flow
turbulence through drag (the fourth term) and density strat-
ification (the last term). In the drag-induced damping term,
the parameter tmf is introduced to characterize the degree of
correlation between particles and fluid velocity fluctuations
and it can be quantified by the Stokes number St (Benavides
and van Wachem, 2008):

St =
tp

tl
, (18)

where tp = ρa/(β K) is the particle response time and tl =
k/(6ε) is the characteristic timescale of energetic eddies.
Danon et al. (1977) and Chen and Wood (1985) proposed
an exponential function for tmf , which is also used in Kra-
nenburg et al. (2014) and Cheng et al. (2017a):

tmf = e
−B·St , (19)

where B is an empirical coefficient. The last term in the TKE
Eq. (17) represents the buoyancy term. For typical sediment
concentration with an upward decaying profile, this term
represents the well-known sediment-induced stable density
stratification that provides another source of turbulence at-
tenuation.

Finally, the balance equation for the rate of turbulent ki-
netic energy dissipation ε is written as

∂ε

∂t
+ ubj

∂ε

∂xj
= C1ε

ε

k

Rbtij

ρb

∂u
f
i

∂xj
+

∂

∂xj

[(
νb+

νbt
σε

) ∂ε
∂xj

]
−C2ε

ε2

k
−C3ε

ε

k

2K(1− tmf )αk
ρb

−C4εSUS
ε

kβ
νbt
∂α

∂xj

(ρa
ρb
− 1

)
gj . (20)

As discussed in Hsu et al. (2004), due to a lack of compre-
hensive experimental data, the coefficients associated with
the present two-equation closure are adopted from their clear
fluid counterparts. The coefficient C3ε in the ε Eq. (20) is
chosen to be 1.2. For the coefficient associated with the buoy-
ancy term, C4ε = 0 is used for the stably stratified condition,
while it is set to 1 for the unstably stratified condition. Table 3
summarizes the model coefficients. These coefficients were
shown to work well for typical medium to coarse sand trans-
port (Hsu et al., 2004; Yu et al., 2010; Cheng et al., 2017a).
Furthermore, it was found that the coefficient B (see Eq. 19)
is sensitive to the model result and thus the coefficient B is
chosen to be a free parameter to be calibrated with measured
data.

k−ω model

It is well-known that the original k− ε model has been de-
rived for high Reynolds number flows and is not very ac-
curate to describe transitional flows such as the situation of
the flow reversal in a wave boundary layer (Guizien et al.,
2003). For this situation and for near-wall treatment, the k−ω
model is more suitable and more stable than the k− ε model
(Guizien et al., 2003). Another physical situation in which a
k−ω model works better than a k− ε model is in the pres-
ence of an adverse pressure gradient such as the downward
facing step or at the upstream side of an obstacle (Menter,
1994; Wilcox, 2008). In order to test the influence of the tur-
bulence model, a two-phase k−ω model is introduced in the
present contribution, which is very similar to those of Jha and
Bombardelli (2009) and Amoudry (2014).

The turbulent eddy viscosity νbt is calculated as

νbt =
k

ω
. (21)

Following the same method as for the two-phase k−ε turbu-
lence model, the fluid TKE and the specific turbulent energy

Geosci. Model Dev., 10, 4367–4392, 2017 www.geosci-model-dev.net/10/4367/2017/



J. Chauchat et al.: SedFoam-2.0: two-phase flow sediment transport model 4373

Table 3. Default coefficient values for the k− ε model.

Coefficients Cµ C1ε C2ε C3ε C4ε σk σε SUS

Default values 0.09 1.44 1.92 1.2 0 or 1 1.0 1.3 1

dissipation rate (ω) equations are modified by adding the par-
ticle drag and the turbulent suspension terms to the clear fluid
k−ω model equations.

The fluid TKE equation reads as

∂k

∂t
+ ubj

∂k

∂xj
= Rbtij

∂ubi

∂xj
+

∂

∂xj

[(
νb+

νbt
σk

)
∂k

∂xj

]
−Cµkω−

2K(1− tmf )αk
ρb

−
SUS

β
νbt
∂α

∂xj

(ρa
ρb
− 1

)
gj , (22)

and the equation for ω reads as

∂ω

∂t
+ ubj

∂ω

∂xj
= C1ω

ω

k
Rbtij

∂ubi

∂xj
+

∂

∂xj

[(
νb+

νbt
σω

)
∂ω

∂xj

]
−C2ωω

2
−C3ω

2K(1− tmf )αω
ρb

−C4ωSUS
ω

kβ
νtb
∂α

∂xj

(
ρa

ρb
− 1

)
gj . (23)

The different coefficient values can be found in Table 4. Sim-
ilar to the two-phase k− ε model, the coefficients are equal
to the clear fluid model. Only C3ω and C4ω need to be deter-
mined. According to the numerical experiments described in
Sect. 4, the coefficient C3ω is chosen to be equal to 0.35 and
C4ω = 0 is used in stably stratified situations, while it is set
to 1 for unstably stratified situations. Due to different model
configurations in k− ε and k−ω models, the coefficient B
may be different. However, a similar sensitivity in the B co-
efficient (see Eq. 19) to the model results is observed, and it
is left as the only free model calibration parameter.

The turbulence model can be selected using the RASModel
keywords in the file constant/RASProperties and specific pa-
rameters of the two-phase turbulence models are set in the
file constant/twophaseRASProperties (see Table 5).

Note that Tables 3 and 4 present the default coeffi-
cient values used in our implementation, which has been
validated extensively with measured sediment transport
data. However, they can be changed by setting the key-
word and values in the files constant/RASProperties and
constant/twophaseRASProperties (see notations list in Ap-
pendix A).

2.3 Particle-phase stress

In sediment transport applications, the particle stresses
are important mechanisms to support a particle’s im-
mersed weight in concentrated regions of sediment transport

(Hsu et al., 2004; Cheng et al., 2017a). In these regions, the
momentum exchanges due to particle collisions and/or en-
during contacts exert dispersive stresses on a collection of
particles. The particle-phase stress tensor can be split into
the normal and off-diagonal components that correspond to
the particle pressure p̃a and the particle shear stress τ̃ aij .
Although details vary with the model selection, the parti-
cle normal stresses (or pressure) can be generally classified
into two contributions: a shear-induced or collisional compo-
nent (super-script “a”) and a permanent contact component
(super-script “ff ”) (Johnson and Jackson, 1987):

p̃a = pff +pa . (24)

The first term of the particle pressure is due to enduring con-
tact in the highly concentrated region, where sediment bed
is quasi-static or immobile. This normal pressure increases
rapidly when the sediment concentration is close to its max-
imum packing limit and prevents unphysical sediment con-
centration in the sediment bed. Thus, this element is impor-
tant to model a full transport profile including the quasi-static
sediment bed. The permanent contact component pff is cal-
culated as

pff =


0, α < αFric

min

Fr
(α−αFric

min )
η0

(αmax−α)η1
, α ≥ αFric

min ,
(25)

where αFric
min = 0.57, αmax = 0.635 for spheres and Fr,

η0, and η1 are empirical coefficients. Following Cheng
et al. (2017a), the values are set to Fr= 0.05,η0 = 3,
and η1 = 5. Again, these coefficients can be re-
set in file constant/kineticTheoryProperties or con-
stant/granularRheologyProperties by specifying the
keywords and values (see notations list in Appendix A).

In the modern sediment transport modeling frame-
work, two major threads of modeling approach for shear-
induced/collisional particle normal stress and shear stress are
kinetic theory of granular flows and dense granular flow rhe-
ology. They are implemented in this version of SedFoam-2.0
(see Sect. 2.3.1 and 2.3.2). As a result of different closures
for particle normal stresses pa , the closure for the total par-
ticle shear stress τ̃ aij also varies, and they are described in the
next two sections.

2.3.1 Kinetic theory of granular flows

In the kinetic theory model, intergranular interactions are as-
sumed to be dominated by binary collisions for low to moder-
ate sediment concentration, and the collisional shear stresses

www.geosci-model-dev.net/10/4367/2017/ Geosci. Model Dev., 10, 4367–4392, 2017



4374 J. Chauchat et al.: SedFoam-2.0: two-phase flow sediment transport model

Table 4. Default coefficient values for k−ω model.

Coefficients Cµ C1ω C2ω C3ω C4ω σk σω SUS

Default values 0.09 5/9 3/40 0.35 0 or 1 2.0 2.0 1.0

Table 5. List of the turbulence models that can be selected through the keyword RASModel.

Keyword name Keyword value

RASModel laminar twophaseMixingLength twophasekEpsilon twophasekOmega

Parameters none κ Cµ , C1ε , C2ε , C3ε , C4ε , σk , σε , SUS Cµ, C1ω, C2ω , C3ω , C4ω, σk , σω, SUS
(Eq. 15) (see Table 3) (see Table 4)

are quantified by particle velocity fluctuations represented by
the granular temperature 2. The model is originally devel-
oped for dry granular flow and consists of smooth, slightly
inelastic, spherical particles (Jenkins and Savage, 1983; Lun
and Savage, 1987; Lun, 1991). Here, we adopt the model
suggested by Ding and Gidaspow (1990), which takes into
account the fluid phase. The balance equation for granular
temperature is written as

3
2

[∂αρa2
∂t

+
∂αρauaj2

∂xj

]
=
(
−paδij + τ

a
ij

)∂uai
∂xj

−
∂qj

∂xj
− γ + Jint, (26)

where the first term on the RHS is the production of granular
temperature, qj is the flux of granular temperature, γ is the
energy dissipation rate due to inelastic collision, and Jint is
the production (or dissipation) due to the interaction with the
carrier fluid phase.

In the 1980s, dense-phase kinetic theory of gases (Chap-
man and Cowling, 1970) was applied to granular flow by
many researchers (Chepurniy, 1984; Jenkins and Savage,
1983; Savage, 1988). Here, we adopt the closure of particle
pressure proposed by Ding and Gidaspow (1990):

pa = ρaα[1+ 2(1+ e)αgs0]2, (27)

where e is the coefficient of restitution during the collision.
With the binary collision assumption adopted in the kinetic
theory of granular flow, the radial distribution function gs0 is
introduced to describe the crowdedness of a particle. In this
study, we use the radial distribution function for dense rigid
spherical particle gases of Carnahan and Starling (1969):

gs0 =
2−α

2(1−α)3
. (28)

Following Gidaspow (1994), the particle collisional stress
is calculated as

τ aij = 2µa Saij + λ
∂uak

∂xk
δij , (29)

where Saij is the deviatoric part of sediment-phase strain rate
tensor:

Saij =
1
2

(
∂uai

∂xj
+
∂uaj

∂xi

)
−

1
3
∂uak

∂xk
δij . (30)

Through the kinetic theory, the particle shear viscosity is
calculated as a function of granular temperature and radial
distribution function:

µa = ρad
√
2

[
4
5
α2gs0(1+ e)
√
π

+

√
πgs0(1+ e)(3e− 1)α2

15(3− e)

+

√
πα

6(3− e)

]
. (31)

Similarly, the bulk viscosity is calculated as

λ=
4
3
α2ρadgs0(1+ e)

√
2

π
. (32)

The closure of granular temperature flux is assumed to be
analogous to Fourier’s law of conduction:

qj =−D2
∂2

∂xj
, (33)

whereD2 is the conductivity of granular temperature, calcu-
lated as

D2 = ρ
ad
√
2

[
2α2gs0(1+ e)
√
π

+
9
√
πgs0(1+ e)2(2e− 1)α2

2(49− 33e)

+
5
√
πα

2(49− 33e)

]
. (34)

The dissipation rate due to inelastic collisions is calculated
based on that proposed by Ding and Gidaspow (1990):

γ = 3(1− e2)α2ρags02
[ 4
d

(2
π

)1/2
−
∂uaj

∂xj

]
. (35)

Due to the presence of the carrier fluid phase, carrier-flow
turbulence can also induce particle fluctuations. Following
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Hsu et al. (2004), the fluid–particle interaction term can be
expressed as

Jint = αK(2tmf k− 32). (36)

In order to extend the model capability to resolve the
quasi-static or immobile sediment bed, the shear stress due
to frictional contact is modeled as

τ
ff
ij = 2ρaνaFrS

a
ij , (37)

where νaFr is the frictional viscosity. By following Srivastava
and Sundaresan (2003), which combined the frictional nor-
mal stress from Johnson and Jackson’s model (Eq. 25) and
the frictional viscosity from the Schaeffer (1987) model, the
friction viscosity is calculated by

νaFr =
pff sin(θf )

ρa
(
‖Sa‖2+D2

small
)1/2 , (38)

where a constant friction angle θf is used. This frictional
shear viscosity model has the capability to capture the transi-
tion from solid-like behavior to fluid-like behavior of the sed-
iment bed. A small number ofDsmall = 10−10s−1 is added in
the denominator to ensure numerical stability when shear rate
in the sediment bed becomes zero. In sediment transport, the
frictional component of particle pressure and particle shear
stress play a definite role to ensure the existence of an im-
mobile sediment bed and a low mobility layer of enduring
contact can be modeled (Hsu et al., 2004).

The total shear stress τ̃ aij can be calculated as a sum of the
collisional-kinetic component (τ aij ) and a frictional compo-

nent (τffij ):

τ̃ aij = τ
a
ij + τ

ff
ij . (39)

All the simulations presented in this paper have been ob-
tained using the closures summarized in Table 6. Other mod-
els are available in OpenFOAM and it would be very easy to
implement new ones.

2.3.2 Dense granular-flow rheology

The other alternative for modeling the particle-phase stress
proposed in SedFoam-2.0 consists of the dense granular-flow
rheology or the so-called µ(I) rheology (GDRmidi, 2004;
Forterre and Pouliquen, 2008). Such an approach has been
used with some success by Revil-Baudard and Chauchat
(2013) and Chauchat (2017) to model turbulent sheet flows.
Contrary to the kinetic theory of granular flows, the dense
granular-flow rheology is phenomenological, and it is based
on dimensional analysis. Instead of separating the collisional
shear stress and frictional shear stress, the total particle-phase
shear stress is related to total particle pressure p̃a by a dy-
namic friction coefficient µ (Jop et al., 2006):

τ̃ aij = µ(I) p̃
a

Saij√
2 Saij · S

a
ij

. (40)

Table 6. List of the kinetic theory closures that can be selected
through the different keywords listed in the table together with
model equation references.

Keyword name Keyword value Equation

granularPressureModel Lun Eq. (27)
radialModel CarnahanStarling Eq. (28)
viscosityModel Syamlal Eq. (31)
conductivityModel Syamlal Eq. (34)
frictionalStressModel SrivastavaSundaresan Eq. (38)

The dynamic friction coefficient µ depends on the dimen-
sionless controlling number “I”. Depending on the local
Stokes and particulate Reynolds numbers, the regime of the
granular-flow rheology can change from free fall or grain
inertia regime to viscous and turbulent regimes (Andreotti
et al., 2013), and the definition of the controlling parameter
“I” is different accordingly. In SedFoam-2.0, the grain in-
ertia and viscous regimes have been implemented and can
be selected using the keywords “MuI” and “MuIv”, respec-
tively. To be consistent with the definitions used in the ki-
netic theory, we still introduce the particle shear viscosity µa

and frictional shear viscosity νaFr. However, we simply set
µa = 0, and then define the frictional shear viscosity alone
as (Chauchat and Médale, 2014)

νaFr =
µ(I) p̃a

ρa
(
‖Sa‖2+D2

small
)1/2 , (41)

where ‖ Sa ‖ is the norm of the shear rate tensor (Eq. 30).
Dsmall is the regularization parameter, which is introduced to
avoid singularity. It is set so that Dsmall = 10−6 s−1 for all
the simulations of granular rheology presented herein except
stated otherwise.

Viscous regime

In the viscous regime, the friction coefficient µ depends on
the viscous number Iv =‖∇u

a
‖ νb/(ρbp̃a) and is calcu-

lated as

µ(Iv)= µs+
µ2−µs

I0/Iv+ 1
. (42)

For neutrally buoyant beads, the typical values are as fol-
lows: µs = 0.32, µ2 = 0.7, and I0 = 0.005 (Boyer et al.,
2011). The viscous regime occurs when the Stokes number,
St= d

√
ρa pa/(ρbνb) as defined by Cassar et al. (2005), is

lower than unity.
Concerning the shear-induced contribution to the particle

pressure, Boyer et al. (2011) proposed the following empiri-
cal formula for the dependance of sediment concentration α
on the viscous number Iv:

α(Iv)=
αmax

1+BφI
1/2
v
, (43)
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where Bφ = 1 is a parameter of the dilatancy law
(Boyer et al., 2011). Inverting Eq. (43) and substituting the
definition of the inertial number Iv gives the following ex-
pression for the shear-induced pressure:

pa =

(
Bφ α

αmax−α

)2

νb ‖ Sa ‖ . (44)

With Eq. (44), the total particle pressure p̃a can be calculated
by Eq. (24). The frictional viscosity is defined by Eq. (41)
with µ(I) substituted by the µ(Iv) as shown in Eq. (42).

Grain inertia regime

In the grain inertia regime, the friction coefficient depends on
the inertial number I =‖∇ua ‖ d

√
ρa/p̃a and is calculated

as

µ(I)= µs+
µ2−µs

I0/I + 1
, (45)

with d the particle diameter, µs the static friction coefficient,
µ2 an empirical dynamical coefficient, and I0 an empirical
constant of the rheology. For glass beads in air the typical val-
ues are as follows: µs = 0.38, µ2 = 0.64, and I0 = 0.3 (Jop
et al., 2006).

Concerning the shear-induced contribution to the particle
pressure, it can be obtained from the dilatancy law α(I) as
proposed by Boyer et al. (2011) for the viscous regime of the
granular-flow rheology. The adaptation to the inertial regime
leads to the expression suggested by Maurin et al. (2016):

α(I)=
αmax

1+BφI
. (46)

According to Maurin et al. (2016), Bφ = 0.31 in turbulent
bed-load transport of spherical particles and Chauchat (2017)
have proposed a value of Bφ = 2/3 for sheet flows of non-
spherical particles.

Inverting Eq. (46) and substituting the definition of the in-
ertial number I gives the following expression for the shear-
induced pressure (Chauchat, 2017):

pa =

(
Bφ α

αmax−α

)2

ρad2
‖ Sa‖2. (47)

Similar to those in the viscous regime, the total particle
pressure p̃a can be calculated by Eq. (24) and the frictional
viscosity is defined by Eq. (41) with µ(I) substituted by the
µ(I) as Eq. (45).

The rheology has been originally stated for steady uni-
form granular flows and this shear-induced pressure term in-
duces a very strong coupling between the wall normal and
the streamwise components of the particle-phase momentum
balance equation. The granular-flow rheology has been used
to simulate with success the transient flows such as the gran-
ular column collapse configuration (Lagrée et al., 2011) but

Table 7. List of the dense granular-flow rheology models that can be
selected through the keyword FrictionModel and PPressureModel
together with model equation references.

Keyword name Keyword value

none Coulomb MuI MuIv

FrictionModel µ= 0 µs Eq. (45) Eq. (42)
PPressureModel pa = 0 0 Eq. (47) Eq. (44)

the simulations have been performed at fixed volume con-
centration meaning that the shear-induced pressure term was
neglected. In order to stabilize the model, a relaxation is
added: panew = relaxPapa + (1− relaxPa)paold with a relax-
ation factor relaxPa that can be modified from the file con-
stant/granularRheologyProperties. This is equivalent to as-
suming a relaxation in time for the dilatancy effect and the
granular material does not dilate instantaneously to an im-
posed shear rate, which is physically justified.

The different closure laws implemented in SedFoam for
the dense granular-flow rheology are summarized in Table 7.

3 Numerical implementation

The numerical implementation of the present Eulerian two-
phase flow sediment transport model is based on an open-
source finite volume CFD library called OpenFOAM. Tak-
ing advantage of the numerical discretization schemes and
framework of finite volume solvers in OpenFOAM, the two-
phase flow governing equations are implemented by modify-
ing the solver twoPhaseEulerFoam (Rusche, 2002; Weller,
2002; Peltola, 2009). OpenFOAM uses the finite volume
method over a collocated grid arrangement. The collocated
arrangement stores all dependent variables at the cell center
and the same control volume (CV) is used for all variables
to minimize the computational effort. The advantage of the
finite volume method is that the system of partial differential
equations can be discretized on arbitrary three-dimensional
structured or unstructured meshes. Thus, complex geome-
tries can be easily handled. The Gauss theorem is applied
to the convection and diffusion terms leading to conservative
schemes.

To illustrate the numerical discretization, the fluid-phase
momentum equation is taken as an example. Rearranging the
fluid-phase momentum equation (Eq. 4) by dividing βρb, the
resulting equation can be written as

∂ub

∂t
+∇ · (ubub)− (∇ ·ub)ub =−

1
ρb
∇p−

αK

ρb
(ub−ua)

+
K

ρb

1
σc
νbt∇α+g+

f

ρb
+

1
β
∇ · τ b. (48)

The last term in the above equation, the gradient of fluid-
phase shear stress, can be written according to Eq. (7) and
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expanded as follows:

1
β
∇ · τ b =∇ ·

(
νbEff∇u

b
)
+ νbEff

∇β

β
∇ub+

1
β
∇

·

{
β νbEff

[
∇ubT −

2
3
∇ ·ub

]}
. (49)

In the above equation, the first two terms on the RHS are
treated implicitly while the last two terms are treated explic-
itly. By substituting the expanded shear stress formulation in
the momentum equation, the following equation is obtained:

∂ub

∂t
+∇ · (ubub)− (∇ ·ub)ub−∇ ·

(
νbEff∇u

b
)

− νbEff
∇β

β
∇ub+

αK

ρb
ub =−

1
ρb
∇p

+
αK

ρb
ua +

1
σc

Kνbt

ρb
∇α+g+

f

ρb
+

1
β
∇

·

{
β νbEff

[
∇ubT −

2
3
∇ ·ub

]}
. (50)

It is more convenient to rewrite the above equation into a
matrix form:[
Ab
]
·ub =Hb

+Rb−
1
ρb
∇p. (51)

The matrix
[
Ab
]

is composed of the diagonal terms of the
algebraic system associated with Eq. (50), whereas Hb in-
cludes the off-diagonal terms and the source terms. Rb is
composed of the explicit drag term, the turbulent suspension
term, the gravity term, and the explicit diffusion terms:

Rb =
αK

ρb
ua +g+

f

ρb
+

1
β
∇ ·

{
β νbEff

[
∇ubT −

2
3
∇ ·ub

]}
+

1
σc

K νbt

ρb
∇α. (52)

The same process can be carried out for the solid-phase
momentum Eq. (3) that leads to the following:

∂ua

∂t
+∇ · (uaua)− (∇ ·ua)ua −

1
α̃
∇ ·
(
νaFr∇u

a
)

−∇ ·
(
νaEff∇u

a
)
− νaEff

∇α

α̃
∇ua +

βK

ρa
ua

=−
1
α̃ρa
∇pff −

1
ρa
∇p+

βK

ρa
ub−

1
σc

βK νbt

α̃ρa
∇α

+g+
f

ρa
−

1
α̃ρa
∇pa +

1
α̃

{
∇ ·

[
(ανaEff+ ν

a
Fr)∇u

a T
]

+∇

[(
λ−

2
3
(ανaEff+ ν

a
Fr)

)
∇ ·ua

]}
, (53)

where α at the denominator is substituted by α̃ = α+αSmall to
avoid dividing by zero when the solid-phase volume concen-
tration vanishes. This partial differential system of equations

can also be written as a matrix equation as follows:

[
Aa
]
·ua =Ha

+Ra −
1
ρa
∇p, (54)

where the source term Ra contains the following terms:

Ra =
βK

ρa
ub−

1
σc

βK νbt

α̃ρa
∇α+g+

f

ρa
−

1
α̃ρa
∇pa

+
1
α̃

{
∇ ·

[
(ανaEff+ ν

a
Fr)∇u

a T
]

+∇

[(
λ−

2
3
(ανaEff+ ν

a
Fr)

)
∇ ·ua

]}
. (55)

Following Rusche (2002) the terms involving the ratio of
particle-phase volume gradient to the volume concentration
are treated on the cell face level in the predictor–corrector
algorithm. However, we noted the exception of the particle-
phase normal stress pff gradient for which a reconstruction
of the surface normal gradient at the cell center allows us to
get more stable solutions.

The advantage of separating the RHS of the momentum
equations as the sum of two terms, R and H, is for writing the
velocity–pressure algorithm. A similar method as the Rhie
and Chow (1983) one can be applied for the gradient terms.
The details of the velocity–pressure algorithm are presented
in the next section.

3.1 Velocity–pressure algorithm

The velocity–pressure coupling and the consequent oscilla-
tions in the pressure fields are resolved by using the Rhie
and Chow method (Rhie and Chow, 1983). The PISO (Pres-
sure Implicit with Splitting of Operator) algorithm is used
to solve fluid and particle velocities (Rusche, 2002; Weller,
2002; Peltola, 2009).

First, the intermediate velocities (ua∗, ub∗) are computed
using the corresponding momentum equations (equations
without the pressure gradient term):

ua∗ =
[
Aa
]−1Ha,

ub∗ =
[
Ab
]−1Hb, (56)

where
[
Aa
]−1 and

[
Ab
]−1 represent the inverse matrices of[

Aa
]

and
[
Ab
]
, respectively. These intermediate velocities do

not satisfy the mass conservation Eqs. (2) and (1). To enforce
mass conservation for each phase, the pressure equation is
constructed by considering the continuity equations for the
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mixture obtained as the summation of Eqs. (2) and (1):

∫
Vp

∇ ·

[
αua +βub

]
dV

=

∮
S

[
αf u

a
|f +βf u

b
|f

]
·n dS = 0, (57)

where the subscript f denotes variables interpolated at the
cell faces. The two expressions shown above are equivalent
by using the Gauss theorem. At the discrete level, this equa-
tion is written as

∑
f

[
αf8

a
f +βf8

b
f

]
= 0, (58)

where 8af = u
a
|f .n|f Sf and 8bf = u

b
|f .n|f Sf denote the

fluid- and particle-phase velocity fluxes at the cell faces, re-
spectively, and Sf is the cell face area associated with face f .
In the present model, the method of Rhie and Chow (1983) is
adopted in order to avoid velocity–pressure decoupling and
oscillations. The velocity correction equations are written as

ua = ua∗+
Ra[
Aa
] − ∇p

ρa
[
Aa
] at the cell centre

or 8af =8
a∗
f +

8Raf[
Aa
]
f

−
∇
⊥p|f

ρa
[
Aa
]
f

at the cell faces, and

ub = ub∗+
Rb[
Ab
] − ∇p

ρb
[
Ab
] at the cell centre

or 8bf =8
b∗
f +

8Rbf[
Ab
]
f

−
∇
⊥p|f

ρb
[
Ab
]
f

at the cell faces. (59)

In order to simplify the notations, the intermediate velocity
and face fluxes are denoted as ũa/b and 8̃a/bf , respectively,
corresponding to the first two terms on the RHS of Eq. (59).
The volume-averaged velocity, U∗, and the corresponding
averaged flux, 8∗f , at the predictor step are defined as

U∗ = αũa +βũb∗ or 8∗ = αf 8̃
a
f +βf 8̃

b
f .

Taking the divergence of the volume-averaged mixture ve-
locity given by the velocity correction Eq. (59) and imposing
the incompressibility constraint,∇·U=∇·(αua+βub)= 0,
one can build the pressure equation as a function of the pre-

dicted velocity or predicted face fluxes:∫
Vp

∇ ·

[(
α

ρa
[
Aa
] + β

ρb
[
Ab
])∇p]dV =

∫
Vp

∇ ·U∗dV

or
∮
S

(
αf

ρa
[
Aa
]
f

+
βf

ρb
[
Ab
]
f

)
∇
⊥p|f n|f dS

=

∮
S

U∗|f n|f dS. (60)

The Poisson equation for the pressure is then written in dis-
cretized form at the cell face level as∑
f

(
αf

ρa
[
Aa
]
f

+
βf

ρb
[
Ab
]
f

)
∇
⊥p|f n|f Sf =

∑
f

8∗f . (61)

This equation leads to a matrix system written at the cell
faces. The resulting algebraic system is usually solved using
a multigrid solver (GAMG). The resulting pressure field p∗

is used for the correction step in which the fluid- and particle-
phase velocities and face fluxes are corrected using Eq. (59):

8
a/b∗∗
f = 8̃

a/b
f −

∇⊥p∗|f

ρa/b
[
Aa/b

]
f

and

ua/b∗∗ = ũa/b−
∇p∗

ρa/b
[
Aa/b

] . (62)

The volume-averaged flux is also corrected according to

8∗∗f =8
∗

f −

(
αf

ρa
[
Aa
]
f

+
βf

ρb
[
Ab
]
f

)
∇
⊥p∗|f n|f Sf .

(63)

In order to ensure the mass conservation an iterative pro-
cedure of N cycles is sometimes required. From our experi-
ence, three iterations (N = 3) is usually enough for a conver-
gence. The finite volume discretization of the equations has
not been shown here but all the details can be found in Jasak
(1996) and Rusche (2002).

3.2 Summary of the solution procedure

The numerical solution procedure for the proposed two-
phase flow model is outlined as follows:

1. solve for sediment concentration α, i.e., Eq. (1);

2. update the volume concentration of fluid: β = 1−α;

3. update the drag parameter K in the drag term, e.g.,
Eq. (5);

4. solve for the fluid turbulence closure, update k, ε, or ω
(depends on the turbulence closure k− ε or k−ω), and
then calculate the eddy viscosity and effective fluid total
viscosity;
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5. solve for the particle-phase stress (kinetic theory model
or the dense granular rheology);

6. PISO-loop, solving velocity–pressure coupling for N
loops:

a. construct the coefficient matrices
[
Aa
]

and
[
Ab
]

and explicit arrays Ha and Hb using Eqs. (54) and
(51);

b. update the other explicit source terms Ra and Rb,
Eqs. (55) and (52);

c. calculate ua∗ and ub∗ using Eq. (56) without fluid
pressure gradient term;

d. construct and solve the pressure Eq. (61);

e. correct fluid and particle velocities after solving
pressure and update fluxes Eqs. (62)–(63);

f. go to (a–e) if the number of loops is smaller than N
(no tolerance criteria).

7. advance to the next time step.

In the above solution procedure, the velocity–pressure cou-
pling steps are looped forN times. The advantage of this loop
is to avoid velocity–pressure decoupling caused by the direct
solving method. From our numerical practices, the loop num-
ber N = 1 to 3 is usually enough to give reasonably accurate
results, and shows good convergence, especially for steady
flows.

The time step, 1t , can be set to a constant value or
adjusted automatically based on two Courant numbers,
one related to the local flow velocity and the local grid
size Co= 1/2

∑
f8f1t/Vp (the same as for single-phase

problems) and one related to the relative velocity Cor =

1/2
∑
f

∣∣∣8af −8bf ∣∣∣1t/Vp which is specific to the coupling
of the fluid and sediment-phase momentum equations in the
two-phase flow model. The most limiting time step is used as
the criterion for setting the adjustable time step. Our practice
is to set these two Courant numbers to 0.3 and 0.1, respec-
tively.

4 Model verification and benchmarking

In this section, four benchmarking cases are presented to val-
idate and verify the numerical implementation of the model.
The first one concerns the pure sedimentation of a suspension
of non-cohesive spherical particles for which experimental
data are available. The second one concerns the laminar bed-
load problem for which an analytical solution exists. The
third case is unidirectional turbulent sheet flow and the fourth
one is about the scour at an apron. For each case, an analyti-
cal solution, experimental data, or empirical formula is used
to validate the model. All the input files for the four cases
described in the paper are available in the tutorial folder of
the distribution and Python scripts based on an open-source

postprocessing toolbox are available as well for facilitating
the training on using SedFoam-2.0.

4.1 Pure sedimentation

The first test case corresponds to a pure sedimentation of
non-cohesive particles; this test case allows us to validate the
implementation of the pressure–velocity coupling algorithm
when the flow is induced by the sediment phase. The other
component that is tested here is the permanent contact pres-
sure model (Eq. 25) for pff that allows us to predict a sta-
ble deposited sediment bed. The experimental dataset from
Pham Van Bang et al. (2008) is used for this validation. The
suspension consists of mono-dispersed spherical polystyrene
beads of diameter d = 0.29± 0.03 mm, and of density ρa =
1050 kg m−3 in Rhodorsil silicone oil of viscosity νb =

2.01× 10−5 m2 s−1 and of density ρb = 950 kg m−3. The
suspension is initially well-mixed in a cylindrical container
(base diameter 50 mm, height 100 mm) with an initial solid
volume concentration (α0

= 0.5). The averaged concentra-
tion profiles are measured using a proton MRI device (Ecole
de Ponts ParisTech, Champs-sur-Marne, France) with a ver-
tical resolution of about 1 mm and a temporal frequency of
0.16 Hz (see Pham Van Bang et al., 2008, for details). This
test case has been used by Chauchat et al. (2013) to validate
a 1-D vertical two-phase flow model. A script for computing
the solution is provided in the tutorial folder coming with the
release 2.0 of SedFoam-2.0.

The mesh is composed of 200 cells in the vertical direction
with a uniform distribution over a height h0 = 0.06 m and
the time step, 1t , is set to 10−3 s. The numerical schemes
for temporal and spatial derivatives are listed in Table 8, and
details of these numerical schemes can be found in the user
guide of OpenFOAM. The lateral boundaries are set to cyclic
while the front and back boundaries are set to empty (i.e., 2-
D problem). At the top boundary, the pressure is fixed with a
zero value, and a zero gradient (i.e., Neumann boundary con-
ditions) is imposed on all the other quantities. At the bottom,
the velocity of both phases are set to zero while a fixedFlux-
Pressure condition is imposed for the pressure. As mentioned
by Lee et al. (2016), the fixedFluxPressure boundary condi-
tion must be used to avoid spurious oscillation on the wall
normal pressure gradient close to the boundary. The granular
rheology is turned on and an effective fluid viscosity model
from Boyer et al. (2011) is used.

Figure 1 shows the comparison of the numerical re-
sults with the experimental data in terms of settling curves
(panel a) and sediment concentration profiles (panel b). The
settling curves show the time evolution of the vertical po-
sition of the upper Y up

i and lower Y low
i sediment interfaces.

The upper one represents the transition between the suspen-
sion at the initial volume concentration and the clear water
above it, while the lower one denotes the interface between
the suspension and the granular bed at maximum packing
fraction. They are defined as follows: Y up

i =max{y | α ≥

www.geosci-model-dev.net/10/4367/2017/ Geosci. Model Dev., 10, 4367–4392, 2017



4380 J. Chauchat et al.: SedFoam-2.0: two-phase flow sediment transport model

Table 8. Numerical schemes for each term in the momentum and mass conservation equations used in the validation test Sect. 4.1. ξ denotes
a dummy variable for illustration purposes.

Description Keyword name Keyword value Formulation

time derivative ddtSchemes Euler implicit ∂ξ/∂t

spatial gradient operation gradSchemes Gauss linear ∇ξ

divergence operators divSchemes Gauss limitedLinear ∇ · ξ

laplacian operators laplacianSchemes Gauss linear corrected ∇ · (∇ξ)

0.5α0
} and Y low

i =max{y | α ≥ 0.5 (αmax+α
0)}. The agree-

ment between the numerical simulation results and the ex-
periments is very good, suggesting that the closures for the
drag and the particle pressure allows us to reproduce a pure
sedimentation problem. This is the most basic test case for a
two-phase flow sediment transport model.

4.2 Laminar bed load

The second test case is inspired by Chauchat and Médale
(2010) in which the analytical solution for laminar bed load
driven by a Poiseuille flow from Ouriemi et al. (2009) has
been used to verify a three-dimensional numerical model.
The goal of this test case is to verify the numerical imple-
mentation of the granular rheology in SedFoam-2.0 against
an analytical solution. The analytical solution can be derived
only when using the Coulomb rheology (see Table 7) and the
Einstein mixture fluid viscosity model (see Table 2). Those
parameterizations will be used first for verification, then the
numerical solution using theµ(I) rheology will be compared
with the previous numerical solution. The novelty compared
with Chauchat and Médale (2010) is that the solid-phase con-
centration is obtained as a result of the model in SedFoam-
2.0; however, it was imposed as constant in our earlier work.
The details concerning the analytical solution can be found in
Ouriemi et al. (2009) and will not be further detailed herein.
A script for computing the solution is provided in the tutorial
folder included with the release of SedFoam-2.0.

The numerical domain setup is based on the experimental
configuration of Aussillous et al. (2013). The channel height
is h0 = 0.065 m and the particles are made of PMMA with a
density ρa = 1190 kg m−3 and a diameter d = 2× 10−3 m.
The fluid density is ρb = 1070 kg m−3 and the kinematic
viscosity is νb = 2.52× 10−4 m2 s−1. The pressure gradient
is fixed to fx = 100 kg m−2 s−2 using the parameter gradP-
MEAN in the file constant/forceProperties. The vertical do-
main is discretized into 200 uniform cells, and the time step
is 1t = 10−3 s. The numerical schemes are identical to the
pure sedimentation case in Sect. 4.1 (see Table 8). The lateral
boundaries are set to cyclic while the front and back bound-
aries are set to empty (i.e., 2-D problem). The velocity of
both phases is set to zero at the top and bottom boundaries
while the pressure is fixed to zero at the top boundary and a
fixedFluxPressure condition is imposed at the bottom bound-
ary.

(a)

(b)

Figure 1. Comparison of two-phase flow model results with exper-
iments of Pham Van Bang et al. (2008) (a) settling curves: time
evolution of the lower and upper interface positions (circles: ex-
periments; lines: model) and (b) profiles of sediment concentration
(dashed blue lines: experiment; solid red lines: model).

Figure 2a, b, c show the comparison of the above-
mentioned analytical solution with the numerical solution in
terms of sediment concentration (panels a, d), velocity (pan-
els b, e), and particle pressure profiles (panels c, f). In the an-
alytical solution, the sediment concentration profile is a step
function with no particles in the upper half of the domain
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(a) (b) (c)

(d) (e) (f)

Figure 2. (a–c) Comparison of the streamwise velocity profiles for the flow of a Newtonian fluid over a granular bed having a Coulomb
rheology between two infinite parallel planes obtained by numerical simulations with the analytical solution of Ouriemi et al. (2009) in terms
of sediment concentration (a, d), velocity profiles (b, e), and particle pressure (c, f) profiles. In panels (d–f) the same flow conditions are
used but the granular rheology is the µ(Iv) rheology and the results are compared with a one-dimensional numerical solution presented in
Aussillous et al. (2013).

and with the maximum packing concentration in the lower
half. The two-phase numerical model, based on continuous
assumptions, is not able to reproduce exactly this sharp sed-
iment concentration transition; this is because the sediment
concentration profile is obtained using the momentum bal-
ance between gravity and the permanent contact contribution
to the particle pressure (Eq. 25). Despite this slight discrep-
ancy, the numerical solution in terms of velocity profiles is
in very good agreement with the analytical solution. Because
the granular-phase viscosity is directly related to the parti-
cle pressure (Eq. 40), the key issue for the granular rheology
model is in the accurate prediction of the particle pressure
profile. The comparison presented in the right panel shows
that even if the agreement in sediment concentration profile
is not perfect, the particle pressure profile is very close to
the analytic solution. This explains the very good numerical
prediction of the velocity profile.

In Fig. 2d–f, the exact same problem is solved using the
non-linear dense granular-flow rheology µ(I) (see Table 7).
This solution is compared with the solution of the 1-D code
described in Aussillous et al. (2013). The very good agree-
ment between the two numerical solutions allows us to val-
idate the implementation of the µ(I) rheology in SedFoam-
2.0. It should be pointed out that, for this problem, the shear
induced pressure contribution is not turned on, explaining

why the sediment concentration and the particle pressure pro-
files are not affected by the change in the granular rheology.

4.3 Turbulent sheet flows

In this subsection the model results are compared with exper-
imental results from Revil-Baudard et al. (2015) and Sumer
et al. (1996) for turbulent sheet flows; the goal of these test
cases is to validate the numerical implementation of different
turbulence models (mixing length and k−ω) and to calibrate
the free parameter B.

The first case is based on the experimental configu-
ration of Revil-Baudard et al. (2015) for unidirectional
sheet flows. The particles are non-spherical lightweight
PMMA particles with density ρa = 1190 kg m−3 and di-
ameter d = 3± 0.5 mm. The measured settling velocity is
Wfall = 0.056 m s−1. The fluid is water with density ρb =
1000 kg m−3 and kinematic viscosity νb = 10−6 m2 s−1. The
water depth is hf = 0.17 m, the energy slope is Sf = 0.19 %,
and the mean velocity is U = 0.52 m s−1.

In the numerical configuration, the flow is driven by a pres-
sure gradient (fx = 18.639 kg m−2 s−2). The mesh is com-
posed of 400 cells in the vertical direction with a uniform
distribution and the time step is set to1t = 2×10−4 s. Again,
the numerical schemes are identical to the ones listed in Ta-
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Figure 3. Comparison of two-phase numerical results with experiments of Revil-Baudard et al. (2015) (black symbols) in terms of volume-
averaged velocity profiles (black lines) in the left column of panels, sediment concentration (red lines) in the center column of panels, and
Reynolds shear stress (blue lines) and granular stress (red lines) in the right column of panels, using the dense granular-flow rheology (µ(I))
with the three turbulence models (mixing length, ML; k−ω; and k− ε) in (a, b, c) and the kinetic theory of granular flows (KT) with the
three turbulence models (mixing length, ML, k−ω, and k− ε) in (d, e, f). The values of the different numerical and physical parameters are
reported in Table 9.

ble 8. The lateral boundaries are set to cyclic while the front
and back boundaries are set to empty (i.e., 2-D problem). At
the top boundary, the pressure boundary condition is fixed-
Value or homogeneous Dirichlet and a zeroGradient or ho-
mogeneous Neumann is imposed on all the other quantities.
At the bottom, the velocity of both phases are fixedValue or
homogeneous Dirichlet, a fixedFluxPressure condition is im-
posed for the pressure and a zeroGradient or homogeneous
Neumann boundary condition is used for the TKE and the
TKE dissipation (ε and ω). The fixedFluxPressure is equiva-
lent to set the second-order derivative of the pressure in the
wall normal direction to zero.

The results are presented in Fig. 3 for volume-averaged
velocity profiles (panels a, d), defined as u= αua +

βub, sediment concentration profile (panels b, e), and
Reynolds shear stress profile (panels c, f). The numerical
results are compared with the measurements reported in
Revil-Baudard et al. (2015). Different combinations of gran-
ular stress model and turbulence model are presented. In pan-
els (a, b, c) the µ(I) rheology is used in combination with
the mixing length (ML), k−ω, and k− ε models, while in
panels (d, e, f) the kinetic theory model (KT) is used in con-
junction with the k−ω and k−ε turbulence models. Note that

the mixing length model has not been used with the kinetic
theory as Eq. (36) requires an estimation of the TKE which is
not straightforward to estimate when using a mixing length
model. Amongst these different configurations, the µ(I) rhe-
ology coupled with the mixing length model (panels a, b,
c) corresponds to the model proposed by Revil-Baudard and
Chauchat (2013) and Chauchat (2017), and the kinetic the-
ory coupled with the k− ε (panels d, e, f) corresponds to
the model proposed by Hsu et al. (2004) and Cheng et al.
(2017a). The mixing length model has been calibrated based
on Revil-Baudard et al. (2015) data using the µ(I) rheology
(Chauchat, 2017) and the von Karman constant is reduced
to κ = 0.225 to model a significant turbulence damping un-
der sheet-flow conditions. Also, the rheological parameters
of the µ(I) rheology are identical to the ones proposed by
Chauchat (2017) and they are summarized in Table 9.

In the k, ε, and ω equations, the turbulence damping is
related to the drag term that is controlled by tmf , which pa-
rameterize the correlation between particles and fluid fluctu-
ating motions tmf = e−B St (tmf = 1 at low Stokes numbers
and tmf = 0 at high Stokes numbers). Based on Cheng et al.
(2017b) large eddy simulations, the parameter B should be
taken at 0.25 when using the kinetic theory. The same value
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Table 9. Physical parameters for the numerical simulations of Sumer et al. (1996) experiments.

Case Sf h0 z0
int θ Wfall/u∗ SUS µs µ2 I0 Bφ αmax

(–) (m) (m) (–) (–) (–) (–) (–) (–) (–) (–)

Revil-Baudard et al. (2015) 0.0019 0.17 0.0211 0.44 1.0 2.2727 0.52 0.96 0.6 0.66 0.55
SUM A 0.0079 0.104 0.0526 1.38 1.04 2.2727 0.38 0.82 0.6 0.66 0.6
SUM B 0.0091 0.104 0.0521 1.63 0.95 2.2727 0.38 0.82 0.6 0.66 0.6
SUM C 0.0105 0.104 0.0516 2.18 0.84 2.2727 0.38 0.82 0.6 0.66 0.6

Figure 4. Comparison of two-phase numerical results with experiments of Sumer et al. (1996) (black symbols) in terms of volume-averaged
velocity profiles (black lines) in the left column of panels, sediment concentration (red lines) in the center column of panels, and Reynolds
shear stress (blue lines) and granular stress (red lines) in the right column of panels, using the dense granular-flow rheology (µ(I)) with the
three turbulence models (mixing length, ML; k−ω; and k− ε) and the kinetic theory of granular flows with the k− ε turbulence model. The
upper row of panels corresponds to the SUM A case, the middle row of panels corresponds to the SUM B case, and the bottom row of panels
corresponds to the SUM C case. The values of the different numerical and physical parameters are reported in Table 9.

has been obtained by calibrating this coefficient based on
Revil-Baudard et al. (2015) data using the kinetic theory of
granular flows and the k− ε model. The results are shown in

Fig. 3b. For the k−ω model, the additional damping terms
are similar and the B value has been kept the same as for
the k− ε model. However, the C3ω value has been tuned to
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recover almost the same velocity profile in the dense sheet-
flow layer as with the k−ε model. A value of C3ω = 0.35 has
been obtained, which is very close to the value of C3ω = 0.4
reported by Amoudry (2014).

After this calibration of the turbulence models, the results
obtained with the different combinations of granular stress
and turbulence models are discussed. In terms of velocity
profiles, both the µ(I) rheology and the kinetic theory are
able to reproduce reasonably well the measurements pro-
vided that the turbulence model is adequately tuned. How-
ever, when using the k−ω or k−εmodel with theµ(I) rheol-
ogy, the velocity profiles are underestimated suggesting that
the dissipation in the sheet-flow layer is too strong and the
velocity gradients are too small. The B value could be recal-
ibrated to give a better result but this is not the purpose of the
present contribution. A general conclusion is that the numer-
ical solution does not depend too much on the choice of the
turbulence model in between the k−ω and k−εmodels. Con-
cerning the sediment concentration profile, none of the two
granular stress models are able to recover the measurements
in the denser part of the sheet-flow layer. According to Revil-
Baudard et al. (2015), this discrepancy might be related to
the very strong near-bed intermittency and the assumptions
used in the present turbulence-averaged formulation may be
too simple. It may require a 3-D turbulence-resolving numer-
ical simulation approach to capture this feature (Cheng et al.,
2017b).

In order to further assess the model, the same combina-
tions of granular stress and turbulence models are applied
to Sumer et al. (1996) experimental configurations corre-
sponding to Shields numbers in the range θ ∈ [1.38; 2.1].
For this configuration, the particles are made of acrylic, den-
sity ρa = 1140 kg m−3, and are of cylindrical shape with a
mean diameter d = 2.6 mm. The measured settling veloc-
ity is Wfall = 0.073 m s−1. The fluid is water, density ρb =
1000 kg m−3 and kinematic viscosity νb = 10−6 m2 s−1. The
physical parameter for the three cases SUM A, SUM B, and
SUM C are summarized in Table 9.

The results in term of volume-averaged velocity profiles,
defined as U = αua +βub, concentration, and shear stress
profiles are presented in Fig. 4. Using the µ(I) rheology with
the mixing length model leads to an underestimation of the
velocities and the velocity gradient in the sheet layer, at least
for the first two cases. This could be explained by a smaller
von Karman constant. The results obtained using the µ(I)
rheology with the k−ω and k− ε turbulence models again
give very similar results that are in quite good agreement with
the measured profiles. When using the kinetic theory and the
k− ε model, the velocity profiles and the velocity gradients
are overestimated in the sheet layer. Concerning the concen-
tration profiles, they are all very similar and the results are
not very sensitive to the different combinations of granular
stress and turbulence models. For the shear stress profiles, it
is observed that using the µ(I) rheology, all the profiles are
very close to one another. However, when using the kinetic

Figure 5. Sketch of the scour downstream of an apron.

theory, the Reynolds shear stress penetrates deeper into the
sheet layer than when using the µ(I) rheology. This is prob-
ably due to the presence of the fluid–particle interaction term
in the granular temperature equation (Eq. 36).

Different hypotheses can be proposed to explain the dis-
crepancies presented above. According to Maurin et al.
(2016), the µ(I) rheology is able to describe accurately the
dense granular-flow regime in turbulent sheet flows but it
fails to predict the granular shear stress in the more dilute
suspended layer at intermediate concentrations (α ≤ 0.3). It
is therefore possible that the turbulence model is tuned in a
way that the turbulent stress is overestimated leading to an
underestimate of the streamwise velocity. Concerning the ki-
netic theory, it is well-known that it only applies when parti-
cle collisions are binary (Jenkins, 2006), i.e., when the con-
centration is not too high (α ≤ 0.3). For higher concentration,
the particle–particle collisions involve more than two parti-
cles and the particle–particle contacts become “chattering”.
Jenkins (2006) proposed an extended kinetic theory that can
tackle this problem. Moreover, the theory proposed by Berzi
(2011) and Berzi and Fraccarollo (2013) has been applied
with success to study turbulent sheet flows. Furthermore, we
believe that the frictional stress model used with the kinetic
theory is too simple and can not reproduce the granular be-
havior in the denser part of the sheet layer whereas the µ(I)
rheology is better suited. This is also supported by experi-
mental observations from Capart and Fraccarollo (2011), the
authors showed that the thickness of the dense frictional layer
increases with the Shields number. A way to improve the
kinetic theory would be to incorporate the latest theoretical
developments proposed by Jenkins (2006) as done by Berzi
(2011) and Berzi and Fraccarollo (2013) but this is beyond
the scope of the present contribution.

4.4 Scour at an apron

In order to demonstrate the multidimensional capability of
SedFoam-2.0, the fourth test case corresponding to the devel-
opment of the scour downstream of an apron was examined.
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Figure 6. Sediment concentration contour at different times during the scour process using k− ε and kinetic theory (left column of panels)
and k−ω and µ(I) granular rheology (right column of panels).

Following the numerical studies of Amoudry et al. (2008)
and Cheng et al. (2017a), the problem is simplified as pre-
sented in Fig. 5.

The sediment bed is made of sand, density ρa =

2650 kg m−3 and diameter d = 0.25× 10−3 m. The fluid is
water with density ρb = 1000 kg m−3 and kinematic viscos-
ity νb = 10−6 m2 s−1. The flow depth is fixed to h0 = 0.15 m,
and the initial bed depth is hb = 0.05 m. The length of the
domain downstream of the apron is Lx = 1 m. A uniform
grid is used in the streamwise direction (1x = 10−3 m) while
the mesh is refined vertically at the bed interface (1y ∈
[1.15×10−4

−1.15×10−2
]m in the water column and1y ∈

[1.15× 10−4
− 4.66× 10−4

]m in the sediment bed).
The bottom boundary, the lower part of the inlet (form-

ing the step) and of the outlet are set as wall boundaries.
The upper part of the inlet is an inlet boundary where the
velocity profile is imposed according to the rough wall log
law (Eq. 64) and turbulent quantities are imposed as con-

stant values following recommendation from the ESI group1.
At the outlet, a directionMixed boundary condition is used
for the velocities of both phases (zeroGradient or Neumann
boundary condition for the streamwise component and fixed-
Value or homogeneous Dirichlet boundary condition for the
vertical component) and the hydrostatic pressure is imposed.
The top boundary is set as a symmetry plane. In all the sim-
ulations in this case, the numerical schemes are also simi-
lar to the ones in Table 8, except that “Gauss limitedLinear
1” is used for the divergence operators. As initial condition,
the velocity of both phases, the sediment concentration, the
TKE, and the TKE dissipation variables (ε or ω) are set based
on one-dimensional simulation results using funkySetFields.
The details of the boundary conditions are summarized in
Table 10. The rough wall log-law is written as

u

u∗
=

1
κ

ln
(

30y
ks

)
, (64)

1https://myesi.esi-group.com/tipstricks/guidelines-
specification-turbulence-inflow-boundaries, requires a login.
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Table 10. Summary of the boundary conditions implemented in the 2-D scour downstream of an apron configuration. The following abbrevia-
tions are used: zG is zeroGradient for Neumann boundary condition, fV is fixedValue for Dirichlet boundary conditions, dM is directionMixed
for mixed Dirichlet–Neumann boundary conditions, fFP is fixedFluxPressure corresponds to a Neumann boundary condition for the pressure
gradient, and hp for Dirichlet boundary condition using the hydrostatic pressure.

Boundary Type α k ε or ω ua ub p 2 (for kinetic theory)

top patch zG zG zG zG zG zG zG
bottom wall zG zG zG fV, ua=0 fV, ub=0 fFP zG
inlet (fluid) patch 1-D profile fV, k = 1× 10−4 zG 1-D profile 1-D profile zG fV, θ = 1× 10−6

inlet (sed) wall zG fV, k = 1× 10−12 zG fV, ua=0 fV, ub=0 zG zG
outlet (fluid) patch zG zG zG dM dM hp zG
outlet (sed) wall zG fV, k = 1× 10−12 zG fV, ua=0 fV, ub=0 hp zG

Figure 7. Numerical results for the temporal evolution of the normalized maximum scour depth and upstream bed angle. Different lines
represent the best-fit curves for each run for which the parameters are given in Table 11.

where u∗ = 3.69 cm s−1 is the bed friction velocity, κ = 0.41
is the von Karman constant, and ks = 2.5 d is the Nikuradse
roughness length.

Four combinations of fluid turbulence models (k− ε and
k−ω) and granular stress models (KT and µ(I)) have been
used (see Table 11 for reference). Figure 6 shows three snap-
shots of sediment concentration contours at different instants
during the scour process, using k− ε and kinetic theory (left
panels) and k−ω and µ(I) granular rheology (right panels).
At t = 10 s, the development of a scour hole near the inlet
can be identified (see Fig. 6; top panels). As time elapses, the
maximum scour depth increases and the scour perturbation
is propagating downward. The snapshots presented in Fig. 6
show that results are qualitatively in agreement with one an-
other using the different closures. According to experimental
studies (e.g., Breusers, 1967; Breusers and Raudkivi, 1991),
the development of the scour hole is rapid at the initial stage,
and eventually reaches an equilibrium state. Breusers (1967)

has suggested an empirical law to describe the rapid initial
development of the scour hole:

δs

h0
=

(
t

Ts

)ns

, (65)

where Ts is a characteristic timescale, and the exponent ns
characterizes the speed of the scour development. Notice that
Eq. (65) only describes the initial development of the scour
depth, and the equilibrium scour depth can not be determined
from this empirical formula. As the scour depth increases,
the flow velocity reduces near the sediment bed, when the
flow becomes weak enough; thus when it is below the criteria
for sediment motion, an equilibrium scour depth can be ob-
tained. The equilibrium scour shape is generally independent
of the flow velocity and grain size if the Shields parameter
is sufficiently large compared with the critical Shields pa-
rameter (Laursen, 1952; Chane, 1984). The development of
the upstream bed angle, ζs0, can reach an equilibrium more
rapidly. Breusers (1967) proposed the following empirical
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Table 11. Summary of the numerical results obtained for the scour at an apron using the different combinations of turbulence and granular
stress models and comparison with existing two-phase numerical results on this configuration.

Case max(δs/h0) ns Ts (s) ζ∞s0 (degrees) Tζs0 (s)

Amoudry et al. (2008) 0.2 0.56 600 −11.4 4
Cheng et al. (2017a) 0.16 0.54 1100 −14.55 15.2
k− ε+KT 0.111 0.530 3896 −19.18 9.42
k− ε+µ(I) 0.089 0.472 11 006 −11.23 3.89
k−ω+KT 0.105 0.51 5572 −18.16 9.45
k−ω+µ(I) 0.089 0.436 16 224 −10.79 2.9

formula:

ζs0

ζ∞s0
=

(
1− e−t/Tζs0

)
, (66)

where Tζs0 is the equilibrium timescale for upstream bed an-
gle and ζ∞s0 is the upstream bed angle at equilibrium.

In Fig. 7, the numerical results for the four simulations
presented above are shown in terms of these two quantities
together with a best fit of the two empirical formula Eqs. (65)
and (66). A summary of the fitted parameters is given in Ta-
ble 11. First, the model is able to reproduce the power law
for the initial development of the scour depth with values of
ns in the range reported by other studies with higher Ts val-
ues. The fitted values for the upstream bed angle are also in
agreement with former studies.

In conclusion, this test case shows good capability of the
proposed two-phase flow model to deal with multidimen-
sional flow configurations. Further work is needed to im-
prove the model validation and the model sensitivity to flow
turbulence and rheological parameters. This requires more
detailed experimental data that, to the best of our knowledge,
are not available at present.

5 Conclusions

In this paper, a comprehensive two-phase flow model for
sediment transport applications has been presented and the
details concerning its implementation in OpenFOAM have
been given. The proposed model provides different options
for the modeling of flow turbulence (mixing length, k− ε,
or k−ω) and intergranular stress (kinetic theory of granu-
lar flows or dense granular-flow rheology). The first valida-
tion test case presented on sedimentation of monodispersive
spherical suspension allows us to validate the numerical im-
plementation of the pressure velocity coupling and the mod-
eling of the permanent contact contribution to the particulate
pressure. The implementation of the dense granular-flow rhe-
ology, the mixing length and the two-phase k−ω models are
original contributions. The dense granular-flow rheology is
implemented using a regularization technique and is verified
against an analytical solution for the laminar bed-load prob-
lem. The application of the model to turbulent sheet flows

allows us to discuss the sensitivity of the model results to
different combinations of intergranular stress and turbulence
models. A first set of tuning coefficient values is provided,
and the results are in reasonable agreement with four dif-
ferent experimental configurations. The last application on
scour allows us to illustrate the multidimensional capabili-
ties of the solver. The scaling laws proposed by earlier works
are recovered by the model but the results are also sensitive to
the modeling choices on the granular and turbulence models.
In light of these model applications, some questions remain
on the optimum values of the turbulence model coefficients,
which will need more high-resolution measurements, for a
wide range of flow conditions. The open-source numerical
model presented here is expected to facilitate this endeavor
in the future.

As a general conclusion, the aim of this contribution is to
provide a comprehensive two-phase flow sediment transport
modeling framework to the scientific community. Intense ef-
forts have been made to ensure its reliability and numerical
robustness. This numerical tool is suitable to address various
physical problems for which the classical sediment transport
approach is not working very well or requires more model
assumptions. However, the readers are reminded that two-
phase flow simulations are still relatively time-consuming
and require finer spatial resolution and smaller time steps
than classical sediment transport models.

Code availability. The code is distributed under a GNU General
Public License v2.0 (GNU GPL v2.0) and is available at https:
//github.com/SedFoam/sedfoam/releases/tag/v2.0 or on Zenodo at
https://zenodo.org/record/836643#.Wc47Yoo690s with the follow-
ing DOI https://doi.org/10.5281/zenodo.836643 (Chauchat et al.,
2017). The source code has been compiled and extensively tested
with OpenFOAM 2.4.0. The input files for all the four test cases pre-
sented in the paper are available in the tutorial folder of the distribu-
tion together with Python scripts for post-processing of the tutorials.
The Python scripts require the fluidfoam package to be installed and
it is freely available at http://bitbucket.org/sedfoam/fluidfoam.
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Appendix A: Notations

Table A1. Table of notations.

Symbols Description

Cd drag coefficient (–)
deff effective particle diameter (m)
Dsmall regularization parameter for the rheology (s−1)
D2 conductivity of granular temperature (kg m−1 s−1)
fi external force that drives the flow (kg m−2 s−2)
gs0 radial distribution function for dense rigid spherical particle gases (–)
hb seabed height (m)
h0 water column height (m)
I inertial number (–)
Iv viscous number (–)
I0 empirical parameter of the granular rheology (–)
Jint energy dissipation (or production) due to the interaction with the carrier fluid phase (–)
k turbulent kinetic energy (m2 s−2)
ks Nikuradse roughness length (m)
K drag parameter (kg m−3 s−1)
ns characteristic exponent (–)
p fluid pressure (Pa)
p̃a particle normal stress (Pa)
pa collisional component of the particle pressure (Pa)
pff permanent contact component of the particle pressure (Pa)
qj flux of granular temperature (kg s−1)
Rbt
ij

Reynolds stress (Pa)
Rep particulate Reynolds number (–)
rb
ij

viscous stress (Pa)
Sf energy slope (%)
Sk
ij

deviatoric part of the phase k strain rate tensor (Pa)
St Stokes number (–)
t time (s)
Ts scour characteristic timescale (s)
Tαs0 equilibrium timescale for upstream bed angle (s)
tmf turbulent drag parameter (–)
tl characteristic timescale of energetic eddies (s)
tp particle response time (s)
uk
i

phase k velocity, i = 1; 2; 3 represents streamwise, spanwise, and vertical components, respectively (m s−1)
u∗ bed friction velocity (m s−1)
U mean velocity (m s−1)
Wfall settling velocity (m s−1)
Y low
i

position of the lower sediment interface for pure sedimentation test case (m)
Y

up
i

position of the upper sediment interface for pure sedimentation test case (m)
α solid-phase sediment concentration (–)
α0 initial solid sediment concentration (–)
α∞s0 upstream bed angle at equilibrium in the scour at an apron case (degrees)
β fluid-phase volume concentration (–)
δs scour depth (m)
1t time step (s)
ε turbulent kinetic energy dissipation rate (m2 s−3)
γ energy dissipation rate due to inelastic collision (kg m−1 s−3)
κ von Karman constant (–)
λ bulk viscosity (kg m−1 s−1)
µ friction coefficient
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Table A1. Continued.

Symbols Description

µac particle shear viscosity (kg m−1 s−1)
µs static friction coefficient for the rheology (–)
µ2 dynamic friction coefficient for the rheology (–)
νaFr frictional viscosity (m2 s−1)
νkEff phase k effective viscosity (m2 s−1)
νbt turbulent viscosity (m2 s−1)
νb fluid viscosity (m2 s−1)
νmix mixture viscosity (m2 s−1)
ω turbulent kinetic energy specific dissipation rate (s−1)
σk turbulent coefficient (–)
σω turbulent coefficient (–)
2 granular temperature (m2 s−2)
τb
ij

fluid stress (Pa)
τa
ij

particle shear stress (Pa)
τac
ij

collisional stress (Pa)

τ
af
ij

frictional stress (Pa)
ζs0 upstream bed angle in the scour at an apron case (degrees)

Table A2. List of the main model input parameters together with their default values when relevant.

symbols keywords default value description

αFric
min alphaMinFriction – minimum friction packing volume concentration (–)
αmax alphaMax − maximum packing volume concentration (–)
αsmall alphaSmall 1× 10−4 minimum packing volume concentration (–)
B B 0.25 empirical coefficient (–)
Bφ Bphi 1/3 parameter of the dilatancy law (–)
Cµ Cmu 0.09 turbulent coefficient (–)
C3ε C3ep 1.2 k− ε turbulent coefficient (–)
C4ε C4ep 0 k− ε turbulent coefficient (–)
C3ω C3om 0.2 k−ω turbulent coefficient (–)
C4ω C4om 0 k−ω turbulent coefficient (–)
d d – sediment particle diameter (m)
e e – coefficient of restitution during the collision (–)
η0 eta – particle-phase stress empirical coefficient (–)
η1 p – particle-phase stress empirical coefficient (–)
Fr Fr – particle-phase stress empirical coefficient (–)
gi g – gravitational acceleration (m s−2)
hExp hExp 1.0 hindrance exponent (–)
κ kappaLM 0.4 von Karman constant (–)
ρa rho – density of phase k (kg m−3)
ρb rho – density of phase k (kg m−3)
SUS SUS 1.0 inverse Schmidt number (–)
θf phi – sediment angle of repose (degrees)
ψ sF 1.0 grain shape factor (–)
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