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A minimal Lagrangian two-phase model to study turbulent bedload transport focus-
ing on the granular phase is presented and validated with experiments. The model
intends to describe bedload transport of massive particles in fully rough flows at
relatively low Shields numbers, for which no suspension occurs. A discrete element
method for the granular phase is coupled with a one dimensional volume-averaged
two-phase momentum equation for the fluid phase. The coupling between the discrete
granular phase and the continuous fluid phase is discussed, and a consistent averaging
formulation adapted to bedload transport is introduced. An original simple discrete
random walk model is proposed to account for the fluid velocity fluctuations. The
model is compared with experiments considering both classical sediment transport
rate as a function of the Shields number, and depth profiles of solid velocity, volume
fraction, and transport rate density, from existing bedload transport experiments in
inclined flume. The results successfully reproduce the classical 3/2 power law, and
more importantly describe well the depth profiles of the granular phase, showing
that the model is able to reproduce the particle scale mechanisms. From a sensitivity
analysis, it is shown that the fluctuation model allows to reproduce a realistic
critical Shields number, and that the influence of the granular parameters on the
macroscopic results is weak. Nevertheless, the analysis of the corresponding depth
profiles reveals an evolution of the depth structure of the granular phase with varying
restitution and friction coefficients, which denotes the non-trivial underlying physical
mechanisms. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4935703]

I. INTRODUCTION

Historically studied by hydraulic engineers in relation to the management of river water-
ways,1 bedload represents the main contribution of sediment transport to the evolution of riverbeds.
As such, it has major implications for environmental flows and associated risks like floods, for
example. In contrast to suspension, bedload transport is characterized by sediment transport for
which the vertical gravity force is on average stronger than the upward fluid force, i.e., sediments
rolling, sliding, or in saltation over the bed. The paper focuses on bedload transport in turbulent flow
conditions, which is the most common case in nature.

In this phenomenon, one of the main challenges is to link the sediment transport rate to the
fluid flow rate. By making the problem dimensionless, it is equivalent to linking the dimensionless
sediment transport rate Q∗s =

Qs

d
√

(ρp/ρ f−1)gd
, to the Shields number which compares the fluid bed

shear stress τ f

b
to the buoyant weight θ =

τ
f
b

(ρp−ρ f )gd ; where Qs is the sediment transport rate per unit

a)Electronic mail: raphael.maurin@irstea.fr
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width, d is the particle diameter, ρp and ρf are, respectively, the particle and fluid density, and g is
the acceleration of gravity. The usual semi-empirical formulas established in this framework, such
as in the work of Meyer-Peter and Müller2 one, can differ by two orders of magnitude from what
is observed in the field.3 This difference is usually explained by the difficulty of measurements, the
complexity of the physical processes, and the great variability of the situations encountered in the
field (e.g., grain size segregation, particle shape, and channel geometry).4

Bedload transport can be viewed as a granular medium in interaction with a fluid flow. Follow-
ing this two-phase decomposition, there are two major possibilities for numerical modelling: a
continuous description for the two phases (Euler/Euler) or a continuous description for the fluid
phase and a discrete one for the granular phase (Euler/Lagrange). The former considers the mo-
mentum conservation of the two phases viewed as two continua in interaction and is based on the
two-phase Reynolds Averaged Navier-Stokes (RANS) equations.5,6 The averaged equations require
different closures, and the main differences between the models pertain to the Reynolds stress tensor
and the constitutive law for the intergranular stress. The Reynolds stress tensor models the effect
of turbulence on the mean fluid flow and ranges from simple descriptions such as mixing length
formulations to more complex ones such as k − ϵ . In the case of intense bedload transport, also
termed sheet flow, a substantial number of particle layers are in motion. The Euler/Euler description
has therefore been mainly used for this regime, with closures for the granular stress tensor according
to the main theories for granular media, i.e., Bagnold formulation,7 the µ(I) rheology,8,9 or the
kinetic theory.10,11

The continuous approximation breaks down for the granular phase when considering bedload
transport closer to the threshold of motion which is the common situation in mountain streams
and the focus of this paper. Moreover, the constitutive equation for granular media is still a matter
of debate and thus limits the analysis of the results of such models. Euler/Lagrange models over-
come these two limitations by resolving the motion of each grain. For bedload transport, the high
concentration of particles inside the bed requires modelling the contact between grains, this is today
commonly handled with the Discrete Element Method (DEM). The different scales of fluid descrip-
tion range from large scale average description to Direct Numerical Simulation (DNS) resolving
the fluid locally around the particles down to the smallest turbulence length scale. Euler/Lagrange
approaches have been intensively developed in recent years for problems with particles in fluids
such as fluidized bed,12,13 particle suspension,14 or sheet flow.15–20 Focusing on bedload transport,
up to now, only a few contributions have taken advantage of the Eulerian/Lagrangian approach. The
work of Duran et al.21 used a simple average description of the fluid with a two dimensional discrete
element method for the particles to numerically study the dependence of sediment transport on the
solid-fluid density ratio. Bedload transport was considered in this paper as an extreme case of low
density ratio, the closures of the model being more adapted to aeolian transport. Using a DNS/DEM
model, Ji et al.22 focused on the influence of particle transport on the turbulence. With a similar
model, Fukuoka et al.23 studied particle shape influence and size-segregation effects.

Bedload transport has mainly been studied focusing on the fluid phase. It is however clear that
the granular behavior is important in this phenomenon and should be studied further.24,25 The idea
is therefore to analyze bedload transport at the particle scale in order to understand the behavior
of the bed as a granular medium. Considering the complexity of the experimental technique for
particle-scale three dimensional (3D) bedload transport analysis (e.g., index matching9 or mag-
netic resonance imaging26), there are interests in developing a numerical approach of the problem.
Focusing on the granular phase, the paper presents a model for bedload transport using a DEM
Lagrangian description of the granular phase coupled with a one dimensional volume-averaged
two-phase momentum equation for the fluid phase. Although this type of model is common, to our
knowledge, no previous contribution focused on bedload transport at relatively low Shields number.
Moreover, the usual experimental validations are limited to the classical macroscopic results of
dimensionless transport rate as a function of the Shields number. In this paper, we present a model
adapted to subaqueous bedload transport (Section II) and perform a new particle-scale experimental
comparison with solid depth profiles in quasi-2D bedload transport cases27 (Section III). In addition,
the classical experimental comparison of the sediment transport rate as a function of the Shields
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number is considered in a more general 3D framework (Section IV). The influence of the different
model contributions is considered in terms of sediment transport rate and solid depth profiles.

II. NUMERICAL MODEL FORMULATION

The proposed model is based on a DEM Lagrangian description for the solid phase and an
Eulerian description for the fluid phase. In the present approach, the fluid flow is not solved at
the particle scale and the momentum coupling is ensured in an averaged sense via semi-empirical
correlations. After presenting briefly the Discrete Element Method (Section II A) and the fluid
phase description (Section II B), the coupling between both phases is discussed by detailing in
particular the averaging procedure and the coupling forces in the framework of bedload transport
(Section II C).

A. Solid phase

The DEM, originally introduced by Cundall and Strack28 for granular media, is based on the
explicit resolution of Newton’s equation of motion for each individual particle considering nearest
neighbor contact forces f⃗ p

c . For each particle p at position x⃗p, the equation of motion reads

m
d2x⃗p

dt2 = f⃗ p
c + f⃗ p

g + f⃗ p
f
, (1)

where f⃗ p
g is the force due to gravity and f⃗ p

f
represents the forces applied by the fluid on particle

p. This last term arises from the DEM-fluid coupling and will be detailed in Section II C. The
application of the gravity force is straightforward. The contact forces are determined from the
relative displacement of the neighboring particles using a defined contact law. In bedload transport,
there is a sharp transition between rapidly sheared particles at the interface with the fluid and almost
quasi-static motion inside the bed. The so-called spring-dashpot contact law used in this paper
allows description of these two types of behavior and is classical in granular flows modelling. The
contact law is based on a spring of stiffness kn in parallel with a viscous damper of coefficient
cn for the normal contact, coupled with a spring of stiffness ks associated with a slider of friction
coefficient µ for the tangential contact. For normal contact, the linear elastic spring and viscous
damping define a constant restitution coefficient en characteristic of the energy loss at collision,
which can be evaluated experimentally.

B. Fluid phase

The fluid phase model is based on spatially averaged two-phase Navier-Stokes equations,5 and
inspired from the one-dimensional Euler-Euler model proposed by Revil-Baudard and Chauchat8

to deal with turbulent unidirectional sheet-flows. The simplifications of the general fluid phase
equations5 due to the incompressible and unidirectional character of the present bulk flow lead to
the resolution of the same fluid phase momentum equation

ϵ ρf ∂⟨ux⟩ f
∂t

=
d (ϵ⟨τxz⟩ f )

dz
+

dR f
xz

dz
+ ϵ ρf g sin α − n⟨ f x⟩s, (2)

where ϵ is the fluid phase volume fraction, ρf is the fluid density, ⟨ux⟩ f is the averaged fluid
velocity, ⟨τxz⟩ f is the averaged fluid viscous shear stress, R f

xz is the Reynolds shear stress, α is
the channel inclination angle, and n⟨ f x⟩s is the averaged fluid-particle general interaction term. A
schematic picture representing the main fluid model variables is shown in Figure 1.

The operator ⟨.⟩s denotes a spatial averaging over the solid phase while the operator ⟨.⟩ f de-
notes a spatial averaging over the fluid phase. The major difference with the continuous two-phase
model proposed by Revil-Baudard and Chauchat8 and with Euler/Euler models in general, stands
in the average fluid-particle interaction n⟨ f x⟩s and solid volume fraction φ = 1 − ϵ , obtained in the
present model from a spatial averaging of the DEM solution, whereas otherwise obtained by solving
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FIG. 1. Sketch of the problem representing the axes and the variables used in the model: the water free-surface position h,
the water depth wd, the slope S0= tanα, the gravity vector g⃗ , as well as the profiles of average streamwise fluid and solid
velocities (respectively, ⟨ux⟩ f and



v
p
x

�s), and solid volume fraction φ. Streamwise periodic boundary conditions (BC) are
used for the solid phase DEM description as indicated on the scheme.

a continuous momentum balance equation. All the details concerning the averaging process and the
fluid-particle interaction term will be given in Subsection II C.

In Equation (2), omitting the fluid-particle interaction term, closure laws for the viscous shear
stress ⟨τxz⟩ f and the Reynolds shear stress R f

xz need to be prescribed. In the present model, the fluid
is considered as Newtonian, so that

⟨τxz⟩ f = ρf ν f d⟨ux⟩ f
dz

, (3)

where ν f is the clear fluid kinematic viscosity.
The Reynolds shear stress, representing the vertical turbulent mixing of horizontal momentum,

is modeled based on the eddy viscosity concept (νt) with a mixing length formulation,

R f
xz = ρf νt

d⟨ux⟩ f
dz

with νt = ϵ l2
m

�����
d⟨ux⟩ f

dz

�����
, (4)

in which the mixing length lm formulation proposed by Li and Sawamoto29 is used,

lm(z) = κ

 z

0

φmax − φ(ζ)
φmax dζ, (5)

where κ = 0.41 represents the von Karman constant. This simple formulation allows recovery of the
two expected asymptotic behaviors: the mixing length is linear with z when the solid phase volume
fraction vanishes (i.e., clear fluid), as in the law of the wall,30 and the mixing length is zero when the
solid phase is at its maximum packing fraction, i.e., the turbulence is fully damped inside the dense
sediment bed. As explained in the work of Revil-Baudard and Chauchat,8 this formulation is well
adapted for boundary layer flow above mobile rough beds. Indeed, the integral of the solid volume
fraction predicts a nonzero mixing length at the transition between the granular dominated and turbu-
lent dominated layers. Also, with this formulation, no virtual origin for the mixing length has to be
prescribed.

C. DEM-fluid coupling

The key point in continuous-discrete models consists in the coupling of the two phases, which
involves an averaging procedure and a parametrization of the fluid forces applied on the particles.

1. Averaging procedure

For this purpose, the spatial averaging operator for the solid phase needs to be defined consis-
tently with the spatial averaging operator for the fluid phase.5,31 According to Jackson,5 the solid
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phase volume fraction φ(x⃗1) at a given position x⃗1 is defined as

φ(x⃗1) =

p


Vp

G(| x⃗1 − x⃗ |)dV, (6)

where the sum is over all the particles, Vp is the volume of particle p, and G(x⃗) is a weighting func-
tion that must be normalized on the whole physical domain. Providing that the weighting function G
is defined, the solid phase spatial average of a scalar quantity γ at a given position x⃗1 is defined as

⟨γ⟩s = 1
φ(x⃗1)


p


Vp

γ(x⃗)G(| x⃗1 − x⃗ |)dV. (7)

In the general case, Jackson5 uses a radial weighting function G. However in the present case,
to match the discretization of the fluid resolution, it is more convenient to define a cuboid weighting
function. To fulfill the normalization property, a three-dimensional step function is chosen for the
weighting function,

G(x⃗) =



1
lx ly lz

for |x | ≤ lx/2, |y | ≤ ly/2, |z | ≤ lz/2

0 otherwise
. (8)

In order to properly define the spatial averaging, the average should be independent from the
length scales chosen for the weighting function: lx, ly, and lz.5,31 This is only possible if a sepa-
ration of scales exists between the macroscopic length scale of the problem L, the length scales
associated with the weighting function lx, ly, lz and the particle diameter d, i.e., L ≫ lx, ly, lz ≫ d.

Due to the sharp transition occurring at the sediment bed interface in the wall-normal direction,
the wall-normal macroscopic length scale of the problem L is lower than the particle diameter d.
Therefore, the vertical length scale of the weighting function lz should be lower than the particle
diameter in order to accurately resolve the vertical gradients of the averaged solid phase variables.
We postulate that this limited vertical length scale lz can be compensated statistically by larger
complementary horizontal length scales, lx and ly. The convergence analysis of the numerical
results on the length scale lx presented in Appendix A lends credibility to this hypothesis.

2. Fluid forces

The force applied by the fluid on a single particle f⃗ p
f

introduced in Equation (1) is defined as
the integral of the total fluid stress, pressure, and shear stress, acting on the particle surface.5 In the
present model, the fluid flow is not resolved at the particle scale so that the hydrodynamic forces
cannot be computed explicitly and need to be prescribed through semi-empirical formulas based
on average fluid variables. The main hydrodynamic forces in bedload transport reduce to the buoy-
ancy, the drag, and the shear-induced lift. Numerical results of Ji et al.22 exhibit a non-negligible
importance of the lift force with respect to the other two. However, Schmeeckle et al.32 showed
experimentally that the usual formulation of the lift,33 derived using the inviscid flow assumption, is
not valid close to the threshold of motion. Based on this observation and the absence of alternative
formulation, it has been decided not to include the lift force at this stage.

Therefore, the force f⃗ p
f

induced by the fluid on a particle p appearing in the DEM model

(Equation (1)) reduces to buoyancy f⃗ p

b
and drag f⃗ p

D,

f⃗ p
f
= f⃗ p

b
+ f⃗ p

D. (9)

According to Jackson,5 the generalized buoyancy force is defined as

f⃗ p

b
= V p

(
−∇⃗⟨P⟩ f + ∇⃗.


τ f

)
, (10)
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where ⟨P⟩ f is the average fluid pressure and

τ
 f

is the average viscous shear stress tensor taken
at a larger scale than the particle scale. This definition generalizes the so-called Archimedes buoy-
ancy force for hydrostatic problems to cases where the fluid volume is submitted to a macroscopic
deformation at a scale much larger than the particle scale, i.e., the fluid deformation viewed by the
particles can be considered as constant. Similar to the work of Revil-Baudard and Chauchat,8 we
found that the viscous stress tensor contribution is however negligible with respect to the pressure
contribution in bedload transport. The force applied on each particle can then be approximated
by the usual buoyancy expression, which is equivalent to apply the buoyant weight in the vertical
direction.

The drag force exerted by the fluid flow on a single particle is classically expressed as

f⃗ p
D =

1
2
ρf πd2

4
CD

����
����⟨u⃗⟩

f

x⃗p
− v⃗ p

����
����

(
⟨u⃗⟩ f

x⃗p
− v⃗ p

)
, (11)

where CD is the drag coefficient, and ⟨u⃗⟩ f
x⃗p
− v⃗ p is the relative velocity between the particle and

the average fluid velocity taken at the position of the particle center. The Dallavalle formulation34

together with a Richardson-Zaki correction35 is used in the present model for the drag coefficient,

CD =

(
0.4 +

24.4
Rep

)
(1 − φ)−ζ, (12)

where Rep = ∥ ⟨u⃗⟩ f
x⃗p
− v⃗ p∥d/ν f is the particulate Reynolds number for particle p. This simple

formulation has been used in different two-phase flow models for sediment transport applica-
tions.8,10,11 The Richardson-Zaki correction (1 − φ)−ζ accounts for the hindrance effect induced by
the local particle concentration and allows to recover realistic fluid velocity in the particle bed. The
exponent has been set to ζ = 3.1 in reference to the work of Jenkins and Hanes.10 Equations (11)
and (12) are used to compute the drag force on each individual particles in the DEM model
(Equation (1)), while the effect of buoyancy is taken into account through the vertical buoyant
weight.

The average effect of the particles on the fluid momentum balance does not simply consist in
the solid averaging of the momentum transfer associated with the hydrodynamic forces. It also in-
cludes higher-order correlations which appear in the averaging process, and are due to perturbations
of the flow by the presence of the particles. For the case of Stokesian particles at low concentration,
Jackson showed analytically36 that these higher-order correlations lead to a modification of the
viscosity in the average viscous fluid stress tensor formulation, which takes the form of Einstein’s
effective viscosity.37 In the model, the clear fluid viscosity in Equation (3) has been replaced by
Einstein’s effective viscosity νe to take this effect into account,

νe = ν f

(
1 +

5
2
φ

)
. (13)

The phase interaction term in the fluid momentum balance (Eq. (2)) reduces then to the mo-
mentum transfer associated with the hydrodynamic forces. In the present 1D fluid resolution, it
is expressed as the average number of particles n = φ/Vp = 6φ/πd3 multiplied by the solid-phase
average streamwise associated force. For drag force, it gives

n



fDx

�s
=

3
4
φ ρf

d


CD

����
����(u⃗ ⟩

f

x⃗p
− v⃗ p

����
����

(⟨ux⟩ f − v px
)s

. (14)

The drag coefficient CD depends on the relative velocity through the particle Reynolds number, so
that it should be included in the spatial averaging.

3. Velocity fluctuation model

The proposed average model for the fluid phase does not account for the fluid turbulent ve-
locity fluctuations, which are known in particular to influence the particle threshold of motion. In
order to account for these turbulent processes in the average fluid model, a Discrete Random Walk
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(DRW) model for the fluid velocity fluctuations inspired from the work of Zannetti38 is therefore
introduced. It consists in associating a random velocity fluctuation with each particle for a given
duration, as a function of the local turbulent intensity and turbulent time scale. The fluctuations
are not correlated in space, nor in time, and the model is built so that the Reynolds shear stress
definition is consistent between the average fluid model and the DRW model,

u f
x

′
u f
z

′
= −

R f
xz

ρf ϵ
, (15)

where the • represents an averaging operator in time.
From experimental measurements in open-channel flows,39,40 it has been observed that the

magnitude of the fluctuations in the streamwise direction is roughly two times larger than in the ver-
tical direction. With this constraint, the following DRW model for the streamwise component (u f

x

′)p
and the normal component (u f

z

′)p of the fluid velocity fluctuation associated with each particle p is
proposed,

(u f
z

′)p = λ1, (16a)

(u f
x

′)p = −(u f
z

′)p + λ2, (16b)

where λ1 and λ2 are two Gaussian random numbers of zero mean and of standard deviation σ.
This standard deviation is obtained from the local value of the Reynolds shear stress at the position

of the particle center σ =


R
f
xz

ρ f ϵ
(x⃗p). The velocity fluctuations are updated every τt, defined as

the turbulent eddy turn over time, which can be estimated as τt = wd/U f where wd is the water
depth, and U f is the average fluid velocity. These velocity fluctuations are added to the average fluid
velocity in the drag force expression (Equation (11)).

D. Numerical resolution strategy

The resolution of the fluid equation still needs to be clarified. For numerical reasons, it is
necessary to express Equation (2) linearly as a function of the average fluid velocity. The numerical
treatment of the drag force is then handled as follows:

n



fDx

�
= β

(⟨ux⟩ f − 
v px
�s)

, (17)

where β is computed according to Equation (14) as

β =
3
4
φ ρf

d


CD

����
����(u⃗⟩

f

x⃗p
− v⃗ p

����
����

(
⟨ux⟩ f

x⃗p
− v px

)s
⟨ux⟩ f x⃗p −



v
p
x

�s . (18)

This formulation allows strictly the same average momentum transfer in the discrete solid phase
problem and the continuous fluid phase one. With this definition, the fluid phase momentum equa-
tion to be solved can be rewritten as

ϵ ρf ∂⟨ux⟩ f
∂t

= ρf ∂

∂z

�
ϵ νe + νt

� ∂⟨ux⟩ f
∂z


+ ϵ ρf g sin α − β

(⟨ux⟩ f − 
v px
�s)

. (19)

This equation is discretized using implicit finite differences for the diffusion and the drag terms.
The resulting tridiagonal system is solved using a double-sweep algorithm.41 The fluid phase reso-
lution period τf should be small enough compared with the particle relaxation time τD = β−1. This
characteristic time corresponds to the time needed by a particle initially at rest to reach its steady
state velocity in a constant fluid flow.

The DEM solid phase model is solved using the open-source code Yade.42 The time integration
is explicit with a second order centered scheme43 to ensure energy conservation. The time step has
been estimated with a method similar to Catalano44 (p. 84, see also Ref. 45), considering the rigidity
of the system of springs46 and dampers as decoupled.
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III. EXPERIMENTAL COMPARISON

The model is to be compared against experimental data. The declared aim of the present model
is to focus on the granular phase behavior. We therefore reproduce the quasi-2D experiments of
Frey,27 in which particle tracking allowed to obtain average solid depth profiles of bedload transport.
After a brief presentation of the experiment, the numerical setup and the comparison with the
experimental results will be presented.

A. Description of the experiment

The experiment of Frey27 consisted in a quasi-2D ideal case of mountain stream bedload trans-
port on a steep slope. The setup is depicted in Figure 2; it is composed of a 2 m long inclined chan-
nel of slope S0 = 0.1 and width 6.5d/6. Water (ρf = 1000 kg/m3) flows inside the open-channel
and entrains the spherical glass particles (ρp = 2500 kg/m3) of diameter d = 6 mm. Particles are
introduced at the inlet and create an erodible bed thanks, to the obstacle placed at the outlet. The
number of particle layers is controlled by the height of this obstacle. The channel bottom is made
of metal half-cylinders of diameter d, fixed at a random elevation between −2.75 mm and 2.75 mm
with steps of 0.5 mm to break clusterization. The particle feeding rate is controlled, and the flow
rate is adjusted in order to reach transport equilibrium, i.e., feeding rate equal to the sediment
transport rate at the outlet without having aggradation and degradation of the bed. The free-surface
fluid flow is turbulent (Re = U fwd/ν

f ∼ 104), hydraulically rough (Rep ∼ 103), and supercritical
(Fr = U f /

√
gwd & 1). The particle settling velocity (ws = 0.54 m/s) and the suspension number

S∗ = ws/u∗ are high, meaning that the particles are weakly influenced by the turbulent structures. A
camera is placed perpendicular to the sidewall, filming a window of 25 × 8 cm2 at 131.2 frames per
second. Due to the one particle diameter width of the channel, image processing47 enables particle
trajectories to be followed inside the measurement window, and the average free-surface elevation
to be evaluated. In each experiment, once bedload transport is at equilibrium, data acquisition time
lasted 60 s. Experimental data are averaged in the same way as in the model using the definition of
Section II C. For more details on the experimental setup, refer to the original experimental article of
Frey.27 The order of magnitude of the main dimensionless numbers associated with the experiment
is shown in Table I. The Stokes number comparing the inertia of the particle and the viscosity of the
fluid is given by St = ρpv pd/(9η f ).

B. Application to the model

To compare the model with the experiments, the simulation needs to match the experimental
set-up. To focus on the bulk equilibrium properties of bedload transport, periodic boundary conditions
(BC) are considered in the streamwise direction for the present 2D case. The periodic characteristic
of the granular phase does not enable us to impose a feeding rate. To have a situation equivalent to the

FIG. 2. Experimental setup scheme, modified from the work of Böhm et al.47 and Hergault et al.48 The inclined channel
width of 6.5d/6 implies a quasi-2D bead flow, permitting particle tracking of each spherical bead in the observation window
filmed by the camera placed perpendicularly.
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TABLE I. Characteristic values of the main dimensionless numbers.

θ Re Rep Fr ρp/ρ f St S∗

0.05-0.1 104 103 &1 2.5 102–103 2–10

experiment, the density of beads per unit length (equivalent to the number of layers of particle Nl) and
the free-surface position h are instead imposed. Indeed, there is a unique couple, slope-water depth,
corresponding to the transport equilibrium and it can be reproduced by fixing h, Nl and the slope
S0 for a periodic sample. In the simulation, for the solid phase, the number of particles is therefore
imposed as a function of the length of the periodic cell lx, which has been fixed to lx = 1000 d to
define a consistent and convergent averaging (see Appendix A). The bottom made of fixed particles is
randomly generated with the experimental characteristics described in Subsection III A. The boundary
conditions for the fluid resolution are imposed considering a fixed boundary at the channel bottom,
and forcing the derivative of the fluid velocity to zero at the fixed free-surface elevation measured in
the experiment. The other experimental parameters such as the bead size, density and material, or the
width of the channel are set in the simulation at their known experimental values.

In the experiment, the width to depth ratio is low, and we expect in consequence the fluid flow
to have a complex 3D structure. However, experimental flow measurements in this particular chan-
nel showed that it still has a typical logarithmic profile.49 This, together with the stated aim of the
model to focus on the granular phase, made us consider only a correction for the fluid dissipation
at the smooth lateral walls. The correction was included as a source term in the fluid averaged
momentum balance resolution (Eq. (19)), taking the form of a dissipation term evaluated from the
classical Einstein method with a Graf and Altinakar friction factor.50 The method description can be
found in the work of Frey et al.51

For each run, the channel bottom is newly generated randomly, and particles are deposited
under gravity. Once the system with fluid resolution is at equilibrium, the simulations last 100 s
and measurements are made each 0.1 s. The latter corresponds to the particle relaxation time to the
fluid velocity τD = β−1 (Eq. (18)) and is representative of the granular evolution time scale. For
the post-processing of both experimental and numerical results, the averaging definition is taken
consistently with the numerical resolution from Equation (A1).

To study the stability of the coupling, we performed a sensitivity analysis on the fluid resolution
period, shown in Appendix B, and set it to τf = 10−2 s regarding the results obtained. In agreement
with Revil-Baudard and Chauchat,8 it has been found that the fluid effective rheology does not
influence the fluid behavior as it is dominated by the turbulent shear stress. We therefore used a clear
fluid viscosity. The restitution coefficient was set to en = 0.5 based on measurements previously
made in the experimental channel considered.52 In the present situation, the limited particle pressure
allows artificial softening of the spheres stiffness in order to reduce computational costs. kn was set
to 5 × 103 N/m which leads to an acceptable average overlap of the order of 10−4d and allows to be
in the rigid grain limit.53 The tangential stiffness was set as a function of the normal one ks = kn/2.
The friction coefficient was taken as the classical value for glass in the dry case µ = 0.4. The main
parameters values of the simulation are summarized in Table II. The simulation results correspond
to the application of the experimental conditions and are not fitted with any parameter afterwards.
A summary of the main characteristics of the experimental (Exp) and numerical (Sim) runs is
shown in Table III with, respectively, the positions of the free-surface h and the number of layers
of particle Nl (both measured in the experiments and imposed in the simulation), the measured
sediment transport rate expressed in beads per second (b/s) ṅ, and the measured Shields numbers θ
and θ∗. The latter is defined based on the turbulent shear stress tensor, and can be evaluated only in
the simulation; we will come back on the different definition in Subsection III C.

C. Results

In bedload transport, one of the main challenges lies in the prediction of the integrated transport
rate as a function of the flow rate. The experiment of Frey27 was designed to give more insight into
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TABLE II. Model input parameters for the contact law and the fluid
resolution. kn and ks are respectively the normal and tangential contact
stiffness, en and µ denote the restitution and friction coefficient, κ is the
Von Karman constant, ζ the Richardson-Zaki exponent, φmax the bed solid
volume fraction, and τ f the fluid resolution period.

kn (N/m) ks (N/m) en µ κ ζ φmax τ f (s)

5×103 2.5×103 0.5 0.4 0.41 3.1 0.51 (2D)/0.61 (3D) 10−2

the granular behavior and to focus on the depth profile of bedload transport at the particle scale. It
has been noted previously27,54 that the integrated transport rate per unit width Qs can be expressed
as a function of the average transport rate density qs, the product of the average solid velocity



vp
�
,

and solid volume fraction φ,p

Qs =


⟨qs⟩sdz =


⟨v p⟩sφdz. (20)

Considering bulk equilibrium properties of bedload transport, ⟨v p⟩s, φ, and ⟨qs⟩s depend only on
the depth z. The experimental comparison will then focus on the depth profiles of the solid volume
fraction, the average solid velocity, and the transport rate density, which will be called for simplicity
transport rate in the following. To complete this decomposition, we evaluated also the Shields
number for each case. This was done with two different methods: from macroscopic parameters
following the work of Frey,27 θ = ρf RhbS0/[(ρp − ρf )d], with Rhb the corrected water depth, and
from the fluid bottom shear stress defined by the friction velocity u∗: θ∗ = ρfu2

∗/[(ρp − ρf )gd],
where u∗ is given by the maximum turbulent shear stress u∗ = max(R f

xz(z)). θ∗ was evaluated only
in the simulation. This formulation avoids use of the macroscopic determination of the Shields
numbers, which is sensitive to the water depth evaluation and the type of wall correction used.

In Subsections III A and III B, we did not introduce any experimental or numerical error. It ap-
pears that the dispersion is dominated by the limited measurement window length of the experiment
(40 d). The order of magnitude of this dispersion has been evaluated numerically. Figure 3 exhibits
the depth profiles of the solid volume fraction, the solid streamwise velocity, and the solid transport
rate for a single simulation with different post-processing averaging properties. The fluid mechanics
convention is used, where the depth is represented on the y-axis while the quantities of interest are
represented on the x-axis. The simulation corresponds to the case Sim20 in Table III, considering
a periodic length cell of lx = 1000d. The figure shows the variability of the results when the aver-
aging cell length is taken equal to the experimental one at different positions in the channel. This
dispersion is much greater than the evaluated experimental dispersion and the numerical variability

TABLE III. Experimental and numerical run characteristics. The free sur-
face position h and the number of bead layers Nl are both measured in
the experiment and imposed in the simulation. ṅ is the measured transport
rate, θ and θ∗ the Shields numbers respectively based on macroscopic
flow parameters and turbulent shear stress profile. The latter has only been
determined in the simulations.

Run h (cm) Nl ṅ (b/s) θ θ∗

Exp6 5.3 7.08 6.67 0.076 . . .
Sim6 5.3 7.08 10.15 0.083 0.031
Exp14 5.7 7.37 13.68 0.100 . . .
Sim14 5.7 7.37 18.13 0.120 0.048
Exp20 5.9 7.30 19.74 0.106 . . .
Sim20 5.9 7.30 26.38 0.130 0.061
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FIG. 3. Depth profiles of average solid velocity (m/s), volume fraction, and sediment transport rate density (m/s) for the
case Sim20 with a periodic length cell of 1000 d. The different black lines correspond to different post-processing averaging
performed in the experimental condition, i.e., over boxes of streamwise length 40 d and time-averaged over 60 s. The
full red dots correspond to the averaging as performed for the simulation in general, with a period of averaging of 100 s
and a streamwise length of the size of the periodic cell. The figure shows the order of magnitude of the variability of the
experimental results due to the limited spatio-temporal window of averaging.

due to the size of the periodic cell simulated. These latter two will be consequently ignored in the
comparison, and the variability observed will be taken as error bars.

The three different experiments detailed in Table III are considered for experimental compar-
ison. The slope is the same and equilibrium transport rate ranges from 6 to 20 beads/s. The
differences in the input parameters between the runs lie in the water surface position h and the
number of layers of particle Nl. The different experimental cases represent a good test to evaluate
the sensitivity to the parameters and the ability of the model to reproduce different experimental
conditions. The macroscopic results presented in Table III show that the integrated transport rates ṅ
are in good agreement with the experiment even if slightly overestimated. Considering the Shields
number, the two different methods of evaluation lead to an over-estimation using the macroscopic
formulation θ and an under-estimation using the formulation based on the turbulent shear stress θ∗.
This underlines the complexity to measure the Shields number in the present case, especially when
using the macroscopic formulation which is very sensitive to the small water depth. The trends
observed with both formulations are good, and the values have the same order of magnitude than the
experiment. In the following, we will use θ∗ in order to avoid the somehow arbitrary determination
of the water depth. Using this definition, the value observed for case 6 is below the classical critical
Shields number. It should however be kept in mind that the present quasi-2D mono-disperse bed is
less resistant, and the value of the critical Shields number is accordingly lowered. To summarize, the
general trends observed for the macroscopic parameters are good and these results show that we are
able to reproduce the experimental sensitivity to the free surface position and the number of bead
layers.

To go further, Figure 4 shows the solid depth profiles of velocity, volume fraction, and trans-
port rate density, for the three experimental comparisons. The global trends from one case to the
other are well reproduced, and the shape of the simulated curves are close to the experimental
ones. Focusing on the transport rate density profile, for each case, the value of the peak is slightly
overestimated, while the rest of the curve is in very good agreement with experiments. We note an
overestimation of the exponential decrease in the bed in a part weakly affecting the total sediment
transport rate density. The oscillations present in each experimental solid volume fraction profile
are representative of the limited size of the experimental averaging window and impact the sedi-
ment transport rate density profile. They are therefore not reproduced in the simulation, and the
comparison should be considered with respect to the average value around which it is oscillating.
For the solid volume fraction profile, the agreement between simulation and experiments is excel-
lent for case 6 and 20, while we note a slight discrepancy for case 14 at the interface. The solid
velocity profiles show a good estimation of the maximal velocity, and of the depth structure. The
underestimation of the sediment transport rate peak is shown to correspond to an overestimation of
the solid volume fraction in case 14, and of solid velocity in case 6 and 20. For completeness, the
fluid velocity profiles are presented in Figure 5. No experimental data are available for comparison
so that the simulated solid velocity profiles have been added for reference. In the fixed bed, the fluid
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FIG. 4. Experimental comparison for the different cases presented in Table III: (a) Case 20, (b) case 14, and (c) case 6.
The figure shows for each case the depth profiles of the average streamwise solid velocity (m/s), solid volume fraction,
and sediment transport rate density (m/s). The full symbol (filled red circle, filled blue diamond, and filled green square)
represents the experimental results from the work of Frey27 while the empty linked one represents the simulation (red plus,
blue cross, and the green dot). The black line represents the imposed free surface position. The error bars show the variability
of the experimental results as evaluated from Figure 3. The results show a good general agreement for the three profiles with
well-reproduced trends in each case.

velocity exhibits some oscillations around a finite constant value and the solid velocity is negligible.
The oscillations are due to the layering observed in the solid volume fraction profile (Figure 4)
that makes the drag coefficient oscillate accordingly (Eqs. (12)-(14)). In the upper part, the velocity
difference between the solid and the fluid phases is of the order of an isolated particle settling
velocity ws ∼ 0.54 m/s. The results are consistent with the drag coefficient formulation adopted and
cannot be interpreted further in the absence of experimental data.

Considering the comparison for the three different cases, with respect to the simplicity of the
fluid description and the goal of describing the average solid behavior, the agreement with the
experiments is good. The values of the integrated transport rate are close to the experimental ones
and the sensitivity to the experimental parameters such as the free-surface position or the number

FIG. 5. Simulated solid and fluid (–) velocity profiles for the three cases presented in Table III.

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  128.175.167.39 On: Thu, 19 Nov 2015 16:49:32



113302-13 Maurin et al. Phys. Fluids 27, 113302 (2015)

of bead layers has been well reproduced. The comparison of the averaged depth profile of the solid
velocity, the solid volume fraction, and the transport rate showed that the model is able to reproduce
the particle-scale trends observed experimentally and the variation between the three different runs.

IV. DISCUSSION

The experimental comparison gives credits to the model presented and shows that the depth struc-
ture of the phenomenon is well reproduced. Starting from this point, the effect of the grains parameters
(restitution and friction coefficients) and the fluid velocity fluctuations model are analyzed over a
wide range of Shields numbers, in terms of dimensionless sediment transport rate versus Shields
number, completed by solid depth profiles. The analysis aims at characterizing the influence of these
parameters, in order to both study the influence of the different terms on the phenomenon, and the
robustness of the experimental comparison. To extend the generality, a 3D bi-periodic (streamwise,
spanwise) situation is considered. The random fixed bottom is generated from a gravity deposition,
fixing all the particles contained in a slice of height d at a given elevation in the granular bed. The size
of the periodic cell has been chosen from a convergence analysis similar to the one undertaken for
the 2D case (see Appendix A) and a cell size of lx = ly = 30d has been chosen to ensure statistical
convergence and numerical stability. For each run, the DEM results are averaged over 100 s.

A. Macroscopic considerations

The dimensionless sediment transport rate as a function of the Shields number is presented in
Figure 6. The model results are compared with experimental data from the work of Meyer-Peter and

FIG. 6. Dimensionless sediment transport rate Q∗s as a function of Shields number θ for different configuration. Classical
runs (■) with en = 0.5 and µ = 0.4 are shown together with the exact same runs without turbulent fluctuation model (�)
for different Shields number. Triangle symbols represent the change in restitution coefficient with en = 0.01 (▽), en = 0.25
( ), en = 0.75 ( ), and en = 1 (▼). Variations of the particle friction coefficient are represented by bullet points: µ = 0.2 (◦),
µ = 0.6 ( ), and µ = 0.8 (•). The experimental data of Meyer-Peter and Müller2 (+) and Wilson55 (×) synthesized in the
work of Yalin56 show the experimental trend in power law 3/2, with the dispersion of the data. The gray line corresponds to
Q∗s = 11.8(θ∗−θ∗c)3/2 as found asymptotically by Wilson.57 The inset in linear scale shows the behavior near the threshold
of motion.
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Müller2 (+), and Wilson55 (×). Simulation parameters for the reference configuration, represented
as black squares (■), are the same as the one used for the experimental comparison (see Table II).
The 3/2 power law is recovered by the numerical simulations and the results show a good agreement
with experimental data for Shields number θ > 0.1. Near the threshold of motion, the model results
differ from experimental measurements. The linear inset shows that the transition around the critical
Shields number, characteristic of the onset of motion, is sharper in the numerical simulation results
than in the experimental measurements. Also, the critical Shields number is slightly lower: around
0.04 in the model, against 0.047 for Meyer-Peter and Müller2 data. The underestimation is consis-
tent with the use of spheres in the numerical simulations, which present smaller imbrication, and
consequently smaller resistance to entrainment than the natural sediment used in the experiments. It
is also worth noting that the scatter of the experimental data is usually very important close to the
threshold of motion due to different definitions of the onset of motion and difficulties in shear stress
measurements.58 In particular, the present choice, based on the maximum turbulent shear stress, is
less arbitrary than classical momentum balance estimates based on the water depth measurement,
but most probably underestimates the Shields number. Considering the whole range of Shields
number investigated, the results are in good agreement with literature data, and this shows that the
numerical model is able to reproduce almost quantitatively the sediment transport rate.

The results of the model without the fluid velocity fluctuations are shown in Figure 6 as empty
squares (�). At high Shields number, negligible differences are observed, while the influence is impor-
tant close to the threshold of motion. It is consistent with the present conditions, where the suspension
number is relatively high (S∗ = ws/u∗ ∈ [1.7; 10]) and the fluid velocity fluctuations are expected to
mostly play a role close to the threshold of motion. Focusing on the linear plot, it is observed that
the critical Shields number is changed from around 0.04 to around 0.09 in the case without fluid
velocity fluctuations. The former is in the range of observed values under turbulent flow conditions,58

while the latter is close to the value observed under laminar flow conditions.59 The influence of the
fluctuations on the critical Shields number can be associated with turbulent coherent structures (e.g.,
Refs. 60 and 61). However, the present simple fluid velocity fluctuation model does not account for the
space-time correlations induced by turbulent boundary layer coherent structures. This partly explains
that the fluctuations model does not allow to describe well the evolution of the sediment transport rate
with Shields number close to the threshold of motion (Figure 6). Nevertheless, it permits to success-
fully reproduce the onset of sediment transport motion in the turbulent regime, resulting in a good
comparison with experimental depth profiles (Section III C).

In the rigid grains limit, the granular interactions are characterized by the restitution and the
friction coefficients. The restitution coefficient is representative of the energy loss during collisions
and has been shown experimentally to decrease with the impact velocity following a power law
exponent lower than 1/4.62 For a limited range of impact velocity and in a first approximation,
it can be considered as constant. As the fluid flow model does not allow to resolve the fluid at
the particle scale, the local lubrication effect is included in the effective restitution coefficient en.
Following the work of Gondret et al.,62 the effective restitution coefficient depends on the local
Stokes number comparing the grain inertia to fluid viscous forces: St = ρpvd/(9η f ) where η f is the
fluid dynamic viscosity, and v is the impact velocity. In the region where the collisions are domi-
nant, the Stokes number is of order 102–103, corresponding to effective restitution coefficient in the
range en ∈ [0.6edn − 0.9edn], respectively, where edn is the restitution coefficient for dry grains.62 In
our model, a constant restitution coefficient is adopted, taking into account the lubrication effect
globally. It is therefore a characteristic of the material and of the lubrication effect.

The influence of the restitution coefficient is shown in Figure 6 for two different Shields
numbers, by keeping the free-surface position and number of particle layers constant. The resti-
tution coefficient has been varied in the range en ∈ [0.01,1]. It corresponds to a realistic range
en ∈ [0.25,0.75], complemented by two extreme cases: no rebounds (en = 0.01) and no dissipation
at contact (en = 1). Focusing on the realistic range at high Shields number (θ ∼ 0.45), the effect on
the sediment transport rate is negligible. A slight trend is observed, the sediment transport rate and
the Shields number being, respectively, increasing and decreasing function of the restitution coeffi-
cient. The extreme case without dissipation at contact (en = 1) follows the same trend but exhibits a
more important transport rate increase. Quite surprisingly, the case en = 0.01 shows an increase in

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  128.175.167.39 On: Thu, 19 Nov 2015 16:49:32



113302-15 Maurin et al. Phys. Fluids 27, 113302 (2015)

transport rate with respect to case en = 0.25. For the lower Shields number value (θ ∼ 0.1), while
the dependency in restitution coefficient is limited in the realistic range, there is no associated clear
trend. The non-monotonous dependencies observed show non-trivial coupling between the granular
phase characteristics and the sediment transport rate. The global weak dependency on the restitu-
tion coefficient is consistent with results obtained by Drake and Calantoni17 under oscillatory flow
conditions and show that there is no need to include a lubrication model in the present condition.
However, the relatively low importance of the restitution coefficient at such a high Shields number
value is surprising. It is usually thought that collisional interactions are the dominant mechanism of
momentum diffusion for such inertial particles.10,63

The effect of the particle friction coefficient is also shown in Figure 6, represented by circles:
µ = 0.2 ( ), µ = 0.6 ( ), and µ = 0.8 (•). Unlike for the restitution coefficient, the trend observed
is monotonous for all values, and similar at low (θ ∼ 0.09) and high Shields number (θ ∼ 0.35).
The sediment transport rate and the Shields number decrease with increasing friction coefficient.
The effect appears to be non-linear as the observed influence for a variation from µ = 0.2 to 0.4 is
much greater than the one observed for a variation from µ = 0.4 and 0.8. This type of dependency is
characteristic of dry dense granular flows.64

As a partial conclusion, the present analysis shows that (i) the 3/2 power law for the sediment
transport versus Shields number relationship is well captured by the proposed model, (ii) the fluid
velocity fluctuations model is essential to capture a realistic value for the critical Shields number
under turbulent flow conditions, and (iii) the influence of the granular interaction parameters is low,
when taken in a realistic range. These results underline the robustness of the model and strengthen
the experimental validation. Extreme value of particle friction and restitution coefficient affects the
results and show complex behaviors. In order to understand better the mechanisms at work, the
sensitivity to granular interaction parameters will be further discussed by analyzing the results in
terms of depth profiles.

B. Depth profiles analysis

Figure 7(a) shows the solid depth profiles for a Shields number value θ ∼ 0.45, and for the
different restitution coefficient values. Such a high Shields number value enhances the effect of

FIG. 7. Effect of the restitution (a) and friction coefficient (b) on the average solid depth profiles for a Shields number
θ ∼ 0.45. The solid velocity



v
p
x

�
and sediment transport rate density ⟨qs⟩ are given in m/s, while the solid volume fraction

φ is dimensionless. To give a global picture of the trend, the color of the lines are representative of the friction and restitution
coefficient values. The position of the free surface in both case is situated at 20d. The curve are plotted only for values of
solid volume fraction larger than 10−3.
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restitution coefficient. From the profile, a clear trend appears and the sediment transport rate density
profile is broader with increasing restitution coefficient. Excepting case en = 0.01, this is associated
with an overall increase of particle velocity throughout the depth, the velocity profile being shifted
with almost the same shape. The solid volume fraction profile shows an increase of the mobile layer
thickness when the restitution coefficient is increased: the solid volume fraction is lowered close
to the quasi-static bed while it is increased in the upper part of the flow. This can be explained by
considering predictions of the kinetic theory of granular flows, where particle phase normal stress
is an increasing function of the restitution coefficient.10 The increase in particle normal stress is
logically associated with a decompaction of the bed, which is submitted only to gravity. The case
en = 0.01 is peculiar, and the global trend is observed in the lower part of the flow while a higher
particle velocity is predicted in the upper part. This reflects the coupling with the fluid phase and
features the complex mechanisms at work.

Figure 7(b) shows the influence at high Shields number θ ∼ 0.45 of the friction coefficient over
the range µ ∈ [0.2; 0.8] with 0.2 steps. Interestingly, the solid volume fraction profile is not affected
by the variation in friction coefficient. On the contrary, the particle velocity and thus the sediment
transport rate density profiles are increasing when the friction coefficient is decreased. The increase
of the velocity throughout the depth is mainly affecting the lower part of the sediment transport rate
density profile, where the solid volume fraction is maximum. It corresponds to the denser part of the
granular flow, for which the frictional interactions are dominant.

This analysis shows that, while affecting weakly the macroscopical results, the friction and
restitution coefficient impact the depth structure of the granular flow differently. In addition, the
non-monotonous behavior observed suggests the presence of non-trivial coupling between the solid
and the fluid phases.

V. CONCLUSIONS

The model presented is a step toward a description of the granular processes of steady bedload
transport. By adapting the closures to this particular case, it has been shown that the model is able
to reproduce the classical macroscopic validation in term of sediment transport rate and Shields
number. In addition, an original detailed validation with existing bedload transport experiments
has been performed, comparing simultaneous measurements of average solid velocity and volume
fraction. The good agreement with experiments together with the rather low sensitivity of the results
to the granular parameters shows the relevancy and the robustness of the proposed model, which
reproduces not only the evolution of the sediment transport rate as a function of the Shields number
but also the depth structure of the granular phase.

The influence of the different model contributions has been studied. In particular, the discrete
random walk fluid velocity fluctuations model has been shown to be sufficient to reproduce the
reduction of the critical Shields number due to turbulent fluctuations. A weak impact of the resti-
tution and friction coefficients variations has been observed on the macroscopic sediment transport
rate versus Shields number curve. The analysis of the depth profiles variations shows however that
the granular parameters influence the depth structure of the granular flows and induce non-trivial
coupling with the fluid phase.

The rigorous development of the model and the experimental validations demonstrate the
potential of this modeling approach to deal with granular processes in bedload transport. Future
work will take advantage of the description of the depth structure to analyze the effective granular
rheology under bedload transport conditions.
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APPENDIX A: AVERAGING EXPRESSION AND CONVERGENCE ANALYSIS

The averaging of the solid phase takes a central part in the coupling between the Lagrangian
solid phase and the Eulerian fluid phase. The important wall-normal gradient requires the length
scale of the weighting function in this direction to be lower than particle diameter (lz ≃ d/30
for the lowest Shields number) in order to define a rigorous averaging. We postulated that the
complementary length scales lx and ly can statistically compensate the limited lz.

In the present model, the average fluid description is 1D so that it depends only on the
wall-normal component, z. The solid averaging can therefore be performed on the full width and
length cell. With the cuboidal formulation of the weighting function defined previously (Eq. (8)),
the solid averaging of a scalar particle quantity γ at a wall-normal position z can be rewritten as

⟨γ⟩s(z) = 1
φ(z)


{p |zp∈[z−lz/2;z+lz/2]}

Ṽ pγp, (A1)

where lz is the defined wall-normal weighting function length scale and Ṽ p is the fraction of the
particle volume contained in the slice of height lz at elevation z. We recover here the averaging
formulation of Hill et al.,65 which is convenient to compute since the volume of a slice of spheres
can be evaluated analytically. The averaging box height lz is imposed by the vertical grid size of the
fluid problem and no overlapping between the different slices is allowed.

For each fluid resolution, so at each given time step, the statistical representativity of the
averages is a requirement for a consistent definition of the averaging process (Section II C 1). The
spatial convergence of the averages with increasing complementary length scales lx and ly includes
the effect of the bottom boundary conditions and particles arrangement, in addition to the statistical
representativity. The results are required to be independent from the three effects, and consequently
the spatial convergence of the results with respect to lx and ly is analyzed in the present appendix.

There are two different convergence scale in the problem. The first one is associated to the
spatial convergence at each given time step, and the second one is associated to the temporal
convergence of a simulation with a given cell size. In the present analysis, as the paper focus on
steady equilibrium results, we consider time-averaged results which are converged in time. The
convergence analysis is conducted with respect to a large reference cell size for which we consider
that the results at each fluid resolution are spatially converged. Indeed, a convergence with respect to
this case ensures that the error made in the spatial averaging along the simulation are compensating
each other. The analysis focuses on the transport rate depth profile. For both 2D and 3D cases, lz is
taken at its minimal value in the problem lz = d/30.

1. Quasi-2D convergence analysis

We present here the results of the time-averaged spatial convergence analysis for the quasi-2D
case Sim20 detailed in Section III B. In this configuration, ly is fixed at the channel width, and the
problem is considered only as a function of the streamwise length lx which determines the size of
the averaging cells. The convergence analysis is made with respect to the reference state chosen as
lx = 10 000d, corresponding to a periodic length cell of 60 m for particles of 6 mm and about 80 000
particles in the simulation. We performed different simulations with a periodic streamwise length
cell lx of, respectively, 50, 100, 200, 300, 500, 1000, 2500, and 5000 d.

To quantitatively analyze the transport rate profile differences, an indicator representative of the
deviation with respect to a reference case is defined. It is given as the root mean square (RMS) of the
difference between the considered transport rate profile and the reference one,

∆Qrms
i

⟨Qref⟩ =


1
N

N
z=0(⟨Q⟩iz − ⟨Q⟩ref

z )2
1
N

N
z=0 ⟨Q⟩ref

z

, (A2)

where the RMS ∆Qrms
i is normalized by the average transport rate of the reference configuration

⟨Q⟩ref , N is the number of averaging cell in the depth, and ⟨Q⟩iz and ⟨Q⟩ref
z are the values of
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FIG. 8. Convergence of the average sediment transport rate profile as a function of the periodic cell size considered for the
quasi-2D case. The vertical axis represents the deviation with respect to the reference configuration (lx = 10 000d) as defined
in Equation (A2). The inset shows that the convergence is slightly superior to l−0.5

x (the magenta line).

transport rate in the cell z for the considered case and the reference case, respectively. This variable
effectively measures how close the results considered is from the reference case.

Figure 8 shows the normalized deviation with respect to the reference configuration defined by
Equation (A2) as a function of the streamwise periodic cell length of the simulation considered. The

time-averaged results show a convergence as a function of cell length lx of the order of l
− 1

2
x . The size

of the periodic cell used for the simulations presented in the experimental comparison of the paper
was chosen as lx = 1000 d, as it gives the best trade-off between computational time and deviation
observed.

2. 3D convergence analysis

A similar analysis has been undertaken for the three dimensional bi-periodic configuration
at a Shields number around 0.1. The reference case has been chosen as lx = ly = 100d, i.e., the
relative cell size V = lx ly lz being the same as the quasi-2D case. Different simulations have
been performed with a cell of lx = ly = 10 d, 20 d, 30 d, 50 d, and three cases with lx , ly:
(lx, ly) = (500 d,5 d), (300 d,5 d), and (10 d,100 d). It has not been possible to consider smaller
cell sizes, as the coupled model becomes unstable.

The main results are summarized in Figure 9, expressing the RMS deviation with respect to the
reference case as a function of the product lx ly/d2. The latter reflects the statistical representativity
as it directly determines the size of the averaging cell V = lx ly lz (lz = dz fixed). The figure shows
that cases with lx = ly give better convergence than the ones with lx , ly. There does not seem
to be a convergence with increasing cell area. To our opinion, this reflects the fact that the results
are already converged. Interestingly, the relative periodic cell size for convergence is less important

FIG. 9. Convergence of the sediment transport rate profile as a function of the periodic cell size considered for the 3D
case. The vertical axis represents the deviation with respect to the reference configuration (lx = ly = 100d) as defined in
Equation (A2). Cases with lx = ly are represented with “filled red circle,” while the triangles denote cases with lx , ly:
(lx, ly)= (500 d,5 d) (filled blue triangle), (300 d,5 d) (filled cyan triangle), and (10 d,100 d) (filled green down triangle).
The logarithmic scale inset shows that the results are already converged.
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TABLE IV. Results of the sensitivity analysis to the fluid resolution period
τ f , for the case Sim20. The measured Shields number θ∗, transport rate ṅ,

and RMS deviation with respect to the case reference ∆Qrms
i

⟨Qref⟩ , are given for

each case.

Case τ f (s) θ∗ ṅ (b/s) ∆Qrms
i

⟨Qref⟩
Reference 10−2 0.067 16.83 0.0
τ f = 10−3 10−3 0.067 16.74 0.06
τ f = 10−1 10−1 0.067 16.91 0.04
τ f = 1 1 0.066 17.26 0.13

in the 3D configuration, as a cell size of lx = ly = 10d (to compare with lx = 1000d and ly = 1d)
is almost already converged with respect to lx = ly = 100d. This can be explained by the better
randomness of the 3D packing and suggests that the statistical representativity was not the limiting
parameter in the quasi-2D convergence analysis. For 3D cases, a higher Shields number increases
the numerical instability of the coupling, so that it has been necessary to consider cell sizes up to
lx = ly = 50d for the highest Shields numbers simulations presented in the paper.

APPENDIX B: FLUID RESOLUTION PERIOD

The DEM time step needs to be particularly low and the evolution of the granular medium
over this time is limited. Consequently, the fluid resolution period τD does not need necessarily to
be equal to the solid time step. The stability of the coupling however depends on this period of
resolution and it is important to study this parameter in order to have a meaningful model. The fluid
resolution period should be defined to be smaller than the characteristic time of evolution of the
granular medium. The fluid resolution is 1D and the equation is influenced only by the streamwise
particle velocity and the wall-normal particle position (through, respectively,


f p
D,x


and φ). For a

single particle, the evolution of these properties depends on the collisions and the entrainment by
the fluid. As seen previously (Section IV), collisions do not significantly influence the phenomenon
so that we consider only the characteristic time of entrainment. As explained in Section II C, the
characteristic time of relaxation to accelerate a particle to the fluid velocity is given by τD = β−1,
with β expressed from Equation (18). In the present case it is of order τD ∼ 10−1 s. However, the
characteristic time associated with each independent particle is not in general representative of the
evolution of a complex many-body problem.

We therefore performed a sensitivity analysis on the period of fluid resolution. The results are
shown in Table IV in term of RMS deviation (as defined by Equation (A2)) with respect to the
reference configuration Sim20 for which τf = 10−2 s. It includes τf = 10−3 s, 10−1 s, and 1 s. The
results exhibit no dependence on the fluid period resolution in the range 10−3 s–1 s. The values of
the RMS deviation with respect to the reference configuration τf = 10−2 s is for all cases below
0.1, i.e., below the reproducibility deviation value. The fluid resolution period therefore does not
have an influence on the averaged equilibrium results within the range considered. This means that
the solid average quantities transmitted to the fluid do not vary importantly during the simulation
after reaching equilibrium. These results confirm that the simulations considered are at transport
equilibrium. The fluid resolution period could however be important for unsteady conditions.
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