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Abstract A numerical model is used to simulate rheome-

ter experiments at constant normal stress on dense sus-

pensions of spheres. The complete model includes sphere-

sphere contacts using a soft contact approach, short

range hydrodynamic interactions defined by frame-invariant
expressions of forces and torques in the lubrication ap-

proximation, and drag forces resulting from the porome-

chanical coupling computed with the DEM-PFV tech-

nique. Series of simulations in which some of the cou-
pling terms are neglected highlight the role of the porome-

chanical coupling in the transient regimes. They also re-

veal that the shear component of the lubrication forces,

though frequently neglected in the literature, has a dom-

inant effect in the volume changes. On the other hand,
the effects of lubrication torques are much less signifi-

cant.

The bulk shear stress is decomposed into contact

stress and hydrodynamic stress terms whose depen-
dency on a dimensionless shear rate - the so called vis-

cous number Iv - are examined. Both contributions are

increasing functions of Iv, contacts contribution domi-

nates at low viscous number (Iv <0.15) whereas lubri-

cation contributions are dominant for Iv > 0.15, consis-
tently with a phenomenological law infered by other au-

thors. Statistics of microstructural variables highlight

a complex interplay between solid contacts and hydro-

dynamic interactions. In contrast with a popular idea,
the results suggest that lubrication may not necessarily

reduce the contribution of contact forces to the bulk

shear stress. The proposed model is general and applies

directly to sheared immersed granular media in which

pore pressure feedback plays a key role (triggering of
avalanches, liquefaction).

Keywords granular suspension · rheology · lu-

brication · shear flow · discrete element method ·

hydromechanical coupling
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1 Introduction

Dense suspensions of particles immersed in a viscous
fluid are ubiquitous in natural phenomenon, such as

sediment transport or debris flows, and in numerous in-

dustrial applications such as form filling with fluid, con-

crete in civil engineering or slurry transport in petroleum
industries. The understanding of dense suspension rhe-

ology has lead to an important research effort over the

past decades [2,16,7]. The complexity of this problem

arises from its two-phase nature involving a fluid phase

(continuous) and a particulate phase (discrete) for which
particle-particle interactions and fluid-particle interac-

tions contribute to the behavior of the system in the

dense limit.

Classical rheometer experiments impose simple shear
of the suspensions at constant volume (type I). In such

case, the interpretation of the shear stress in terms of

effective viscosity ηe suggests that ηe diverges at high

solid fraction (φ ≈ 0.6 for spheres) [31]. Rheometer ex-

periments at constant normal stress P have been per-
formed only recently [5] (type II). Under such condi-

tions the volume of the suspension is free to change

as a response to the imposed shearing. On this basis,
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a description of dense suspensions has been proposed,
which unifies classical suspension rheology, described

in terms of a shear and normal effective viscosity which

depend on the solid fraction, and the dense granular

flow rheology, described in terms of shear to normal

stress ratio (µ) and solid fraction (φ). For this purpose
a dimensionless shear rate was introduced, the so called

viscous number (Iv), controlling both frictional and vis-

cous contributions to the shear stress. An advantage of

such a visco-plastic vision is that the behaviour of the
suspension in the very dense limit is not associated with

a divergence of the viscosity. Instead, the shear to nor-

mal stress ratio reaches a constant value corresponding

to a Coulomb-type bulk friction.

From an analytical point of view, the rheology of
suspensions has been studied since the beginning of the

20st century. Einstein in 1905 [15] derived the effective

viscosity of a dilute suspension based on long range hy-

drodynamic interactions. Frankel and Acrivos [16] pro-
posed another derivation in the limit of dense packings.

The later was based on the so-called lubrication ap-

proximation of the hydrodynamic interactions between

nearly touching spheres. The lubrication terms are sin-

gular, they appear as pair interactions between particles
and they diverge at the approach of contact.

The first discrete numerical simulations of parti-

cle suspension has been proposed in the framework of

Stokesian Dynamics (SD) [4,6] using resistance and

mobility matrices [18]. This technique is able to quanti-
tatively reproduce the divergence of effective viscosity

for solid fraction approaching close packing. In the gen-

eral framework of SD, the hydrodynamic forces include

both long range and short range interactions which are
defined independently, the later are the diverging terms

as found in the lubrication approximations. In addition

the forces depend on fluid velocities and particle veloci-



Microscopic origins of shear stress in dense fluid-grain mixtures 3

ties as independent variables. Practical implementation

of this general framework in computer codes for many

particles is still a great challenge, however. Commonly,

the fluid velocity unknowns are eliminated by assum-

ing that the fluid comoves with the particles at large
scales [4,6,14,19,20,10,3]. This assumption also entails

that the pair drag forces must be frame invariant [3],

which exclude many components of the full resistance

matrices. In fact, all the long range interactions must
be removed, and only the lubrication terms are left.

The assumption of co-movement is acceptable for

shear flow at constant volume (type I), but it is oth-

erwise a severe limitation of the numerical technique.

One consequence of this assumption is that the solid
fraction must be constant over space and time. It is

not uncommon in practical applications to violate this

condition. This is the case namely in sedimentation, or

when the flow of a suspension has a free surface (e.g.
debris flow or sheet flow), or when the shear occurs at

imposed confining stress (type II experiments). In such

case, the divergence of the large scale velocity fields of

both phases balance each other, giving rise to long range

hydromechanical coupling, also known as poromechani-

cal couplings in porous media theory and soil mechanics

[11]. This strong coupling governs a range of phenomena

such as liquefaction of loose materials or, conversely, de-

lays in the solid-fluid transition in dense materials [25].
Note also that, even if both phases comove at large

scales, the implicit fluid velocity field corresponding to

the lubrication terms is not divergence free, and there-

fore not fully consistent.

Beside Stokesian Dynamics, numerical methods solv-
ing the Stokes or Navier-Stokes equations directly for

the interstitial fluid have been introduced [21,36]. In all

cases, the so-called lubrication terms are singular and

can not be solved explicitly by computational fluid dy-
namics (CFD). Capturing the divergence of these terms

when particles approach contact would need to shrink

the mesh to unrealistically small element sizes around

the contact region. A practical approach is to let CFD

compute the non-singular terms and to add the lubri-
cation terms directly using analytical expressions [24,

13].

In the present work, dense suspensions are simu-

lated, using a particle-based method and accounting

for three effects: contact interactions, drag forces result-
ing from the poromechanical coupling, and lubrication

forces. The contact forces and the motion of the par-

ticles are computed using a Discrete Element Method

(DEM). The poromechanical coupling is accounted for
using the pore-scale coupling DEM-PFV (Pore Finite

Volume) developed recently [9,8]. The DEM-PVF code

has been extended to periodic boundary problems for

the purpose of the present study. And finally the lu-

brication forces are introduced using frame invariant

expressions.

One question that we will examine in this paper is
whether accounting for the divergence free nature of

fluid velocity field at the local scale can significantly af-

fect the rheology of dense suspensions at constant vol-

ume. The poromechanical coupling will be exhibited as
a transient effect during volume changes. Another ques-

tion of interest concerns the definition of the lubrica-

tion forces and torques. As particles move one relative

to one another, normal, tangential, rolling and twist-

ing motions generate different effects. These effects are
sometimes introduced selectively in numerical models,

considering that some of them must have negligible ef-

fects, a priori. Typically, only normal and shear forces

are computed [27,24,33], and sometimes even the shear
force is neglected [22,1,30]. Hereafter, we introduce all

possible terms in order to evaluate, a posteriori, which

ones can be neglected. Finally, the contributions of -

respectively - the solid contacts, the lubrication forces,

and the poromechanical coupling will be investigated.

2 Numerical model

2.1 Discrete Element Model

An explicit finite difference scheme is employed for up-

dating the position of each particle in a time-marching
algorithm. The particles move according to the New-

ton’s second law. In the absence of gravitational effects,

the motion is driven by elastic-frictional contact forces

defined using a soft contact approach classical in the

DEM [12]. The contact parameters are the normal and
shear stiffnesses kn and ks, and the angle of contact

friction φ. The contact forces are supplemented here-

after with forces coming from the interstitial fluid. A

three-dimensional implementation of the DEM as found
in the open source software YADE is used herein. For

more details about the implementation, please refer to

[35].

2.2 DEM-PFV coupled model

The DEM-PFV method is used to solve a pore-scale
version of the mass balance equation which appears in

the continuous theory of porous media and leads to the

so-called poromechanical coupling. Only the main steps

of the method are outlined hereafter since the details
can be found in previous papers. Here, we assume in-

compressible phases as in [9,8] (for compressible phases

see [29]). A tetrahedral decomposition of the pore space
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is introduced based on regular triangulation (figure 1),

where that part of a tetrahedron occupied by the fluid

is called a pore. From now on Vi denotes the volume of

pore i. It is uniquely defined by the positions xi and

sizes of the solid particles, while the rate of change V̇i

also depends on their velocities ẋi.

An exchange of fluid between adjacent pores i and

j is represented by the interface flux qij . The volume

balance equation for one one pore leads to

V̇i =

j=4
∑

j=1

qij . (1)

Assuming a Stokes regime entails a linear relation be-

tween qij and the local pressure gradient (pi − pj)/lij
between two pores, where lij is a reference length (see

[9]). It leads to the following relationship between pres-

sure and rate of volume change:

V̇i =

j=4
∑

j=1

kij (pj − pi)/lij =

j=4
∑

j=1

Kij (pj − pi). (2)

In this equation Kij is the local hydraulic conductivity.

It must reflects the small scale geometry of the pack-

ing. In details, the proposed expression of Kij depends

on a local hydraulic radius Rh
ij (area of the fluid-solid

interface divided by the fluid volume - again see [9]) as

Kij = α
Sf
ijR

h
ij

2

2η lij
(3)

where Sf
ij is the cross-sectional area of the pore-throat,

η is the viscosity of the fluid, and α can be interpreted
as a calibration parameter. α = 1 is known to give

good estimates of the actual permeability of glass beads

[32] but we used α < 1 in this study. This is further

discussed in section 3.
Substituting V̇i by its expression in terms of parti-

cles velocity and writing equation 2 for every element

gives a system of linear equations. In a matrix form and

including boundary conditions, the sytem reads

KP = E ẋ+Qq +Qp, (4)

whereK is the conductivity matrix containing the terms

Kij , P the column vector of pressure unknowns, and E

is the matrix defining the rates of volume change of the

elements such that V̇i = (E ẋ)i. Qq and Qp are flux
vectors reflecting the boundary conditions, respectively

source terms (imposed fluxes) in Qq and imposed pres-

sures in Qp. Solved at each time step, equation 4 gives

the discrete field of fluid pressure P as function of the
particles velocity.

The drag forces can be deduced from the pressure

field. They are the integrals of the pressure p and the

viscous stress τ on the surface of the particle (for a

non-inertial fluid, the second integral can be evaluated

based on P using momentum balance):

F f
k =

∫

∂Γk

pnds+

∫

∂Γk

τnds (5)

The forces F f
k are linearly dependant of P, hence a

matrix form giving the drag forces for all particles

Ff = IfP (6)

The F f
k are introduced in Newton’s second law to-

gether with the forces coming from solid contacts (Fc)

and lubrication effects (FL defined in the next section).

I.e.

Mẍ = Fc + FL + IfP, (7)

The strong two-way coupling defined by equations

4 and 7 is the poromechanical coupling. It is integrated
with an explicit scheme whose accuracy has been veri-

fied in [8].

Fig. 1 Regular triangulation in 2D.

2.3 Lubrication

We assume that lubrication reflects the dominant dis-

sipation process locally in the sheared pore fluid. The

lubrication effects are computed between particle pairs

as soon as they share an edge in the triangulation (fig-
ure 1) (the triangulation is updated dynamically during

the simulation). They are defined for all the elementary

motions described in figure 2. We consider particles k

and k′ with radii ak and ak′ , linear velocities vk and vk′

and angular velocities ωk and ωk′ , respectively. Their
average radius is defined as a = (ak + ak′)/2 and h de-

notes the inter-particle distance (surface to surface). An

arbitrary relative motion between two particles can be

decomposed in four elementary motions corresponding
to normal displacement (subscript n), shear displace-

ment (s), rolling (r) and twisting (t). This decomposi-

tion is illustrated in figure 2. In addition, we introduce
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the angular velocity of the local frame attached to the

interacting pair: ωn = (vk′ − vk) × n/(ak + ak′ + h).

Lubrication forces and torques induced by these ele-

mentary motions are defined as follow:

F
L
n =

3

2
π η

a2

h
vn (8)

F
L
s =

πη

2

[

−2a + (2a+ h) ln

(

2a+ h

h

)]

vt (9)

C
L
r = π η a3

(

3

2
ln

a

h
+

63

500

h

a
ln

a

h

)

[(ωk − ωk′)× n]

(10)

C
L
t = π η a2

h

a
ln

a

h
[(ωk − ωk′) · n] n (11)

where vn = ((vk′ − vk) · n) n is the normal relative

velocity and vt = (ak(ωk−ωn)+ak′ (ωk′−ωn))×n is an

objective expression of the tangential relative velocity.

In this set of equations, the normal and shear forces, Fn

and Fs, are based on Frankel & Acrivos [16,34] whereas
Cr and Ct are based on Jeffrey & Onishi [18,17] - the

reason of this choice will be discussed later. The total

lubrication force F
L
k (resp. FL

k′ ) applied by particle k′

on particle k (resp. by particle k on particle k′) and the
total torque C

L
k (resp. CL

k′) applied by particle k′ on

particle k (resp. by particle k on particle k′) relative to

the particle center read:

F
L
k = −F

L
k′ = Fn + Fs, (12)

C
L
k = (ak +

h

2
) Fs + Cr + Ct, (13)

C
L
k′ = (ak′ +

h

2
) Fs − Cr − Ct. (14)

Note that Fs contributes to the total torques.

In order to check the validity of the different lu-
brication approximations for different interparticle dis-

tance h 3D Finite Element Method (FEM) simulations

of Stokes flow have been carried out. Periodic bound-

ary conditions were used to represent an infinite array

of identical spheres, fixed in space but all rotating at
the same velocity (inset of figure 3). Figure 3 presents

the comparison of the FEM results with that of equa-

tion (9), where FL
s is determined alternatively using the

expression from Jeffrey & Onishi [18]:

Fs = π η a ln
a

h
vt,

= + + +h

Normal motion

Shear motion

Rolling motion

Twist motion

Fig. 2 Relative motion between particles.

or from Frankel & Acrivos [16]:

Fs =
π η

2

(

−2 a + (2a+ h) ln
2a+ h

h

)

vt.

Both expressions are asymptotically equivalent for

h → 0. However, our results show that the second one

is in much better agreement with the FEM result for
small but finite distances (h/2a < 0.1). Both expres-

sions underestimate the FEM result for h/2a > 0.1,

which is not surprising keeping in mind that they have

been obtained from asymptotic expansions. However,

an additional defect of the former is that it leads to
negative torques (i.e. torques with the same sign as the

angular velocity) for large h. This feature is unphysical

as it leads to a net creation of energy and can severely

alter the stability of the numerical scheme. It was thus
concluded that the expressions of Frankel & Acrivos

were more suitable for implementation.

We account for the deformability of the particles

near the contact region by combining the above nor-

mal lubrication model with a linear elastic model via
a Maxwell-type visco-elastic scheme ([23], partly in-

spired by [26]) (figure 4). The parameters are kn the

contact stiffness and νn(h) is the instantaneous viscos-

ity of the interaction as defined in eq. (3), such that

FL
n = νn(h)vn. The real velocity of approach between

the two surfaces is ḣ = vn − u̇e
n, where ue

n is the elastic

deformation given by ue
n = FL

n /kn. Hence, the evolu-

tion of the normal lubrication force obeys the differen-

tial equation

FL
n = νn(h)

(

vn −
˙FL
n

kn

)

, (15)

that we have to integrate over time-steps using the form

ḞL
n = kn

(

vn −
FL
n

νn(h)

)

. (16)
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Fig. 3 Comparaison of viscous shear torques for the case of
rotating sphere in a regular assembly of identical particles. h
is the surface-to-surface distance and a is the particle’s radius.

The same stiffness kn is used for both the DEM contact

model and the visco-elastic lubrication model.

Lastly, when the particles approach each other, the

pressure in the gap tends to infinity and the normal
lubrication force would theoretically prevent contact.

Like many others (see e.g. [27]), we assume that contact

will actually occur when h is of the order of the particle

roughness ε (figure 5). Thus the solid contact model

will generate a repulsive interaction even before h = 0.
As a result of this combination between a visco-elastic

model and roughness at contact, h will never reach 0

practically in numerical simulations.

Fig. 4 Visco-elastic scheme of the interaction between two
elastic-like particles.

Fig. 5 Evolution of the contact force and of the normalized
lubrication force in the normal direction as a function of the
gap between two particles. ε defines the roughess of the par-
ticles surfaces.

3 Numerical simulations

3.1 Simulation setup

The suspension is represented by a bi-periodic packing

made of N = 1000 frictional spheres of average radius
a = 0.025 ± 0.01 m. The physical properties are (un-

less stated otherwise for sensitivity analysis) roughness

ε = 0.035 a, density ρ = 2500 kg/m3, normal contact

stiffness kn/a = 5 × 105 Pa, shear stiffness ks = kn/2,
and contact friction angle ϕ = 30◦. There is no gravity.

The numerical sample is H = 18a high, L = 12a long

and l = 12a wide (figure 6). It is first confined between

two parallel plates then sheared by moving the top and

the bottom plates at constant velocity ±V/2 = 1.5 m/s.
The boundary conditions for the top plate are the veloc-

ities vx = V/2, vz = 0, the total vertical stress Ty = 750

Pa and the fluid pressure p = 0. At the bottom plate,

vx = −V/2, vz = 0 and the fluid velocity along the y
axis vfy = 0 (impermeable boundary). Periodic bound-

ary conditions are defined along the horizontal axis for

both the particles and the fluid. For the latest we im-

pose a null pressure gradient at the macro-scale, i.e.

▽px = ▽pz = 0 (see [23]). In order to avoid preferen-
tial slip zones near the plates, the first layer of spheres

in contact with a plate is fixed to the plates by highly

cohesive contacts. We introduce the boundary stress

vector T = F /S where F is the total force on the top
plate and S is the horizontal cross sectional area. Ty is

constant during the deformation, while Tx is a result of

the imposed shear.
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Fig. 6 Simulation cell.

3.2 Transient vs. steady state

Figure 7 shows the evolution of the shear stress Tx, the

pressure p and the solid fraction φ function of the defor-

mation γ(T ) =
∫ T

0
γ̇(t)dt where γ̇(t) = V/H(t) is the

shear rate. The numerical results are presented for two
cases: a first case where the poromechanical coupling

is considered and a second one without it (i.e. ignoring

the last term in equation 7). When the shear velocity is

applied, a transient regime is observed, characterized by

an increase followed by a decrease of the shear stress, a
decrease of the solid fraction and a negative pressure of

the fluid in the coupled case. This later effect entails a

higher effective stress in the coupled problem, explain-

ing why the shear stress reaches higher values. The sys-
tem evolves toward a steady state for large deforma-

tions, in which the shear stress and the solid fraction

are approximately constant and the pressure is nearly

zero. The poromechanical coupling has no visible effect

at steady state: the shear stress and the solid fraction
reach similar values for both cases.

It is to be noted that the poromechanical coupling

entails long range effects in the system and, ultimately,

a dependency on the problem size (H in our case). It
is known since Terzaghi that the characteristic time of

such process scales with ηH2/κ where κ is the intrin-

sic permeability. Since κ scales with a2, the relaxation

time of the transient regime is proportional to η(H/a)2.

A consequence is that the peak pore pressure in fig-
ure 7 scales with (H/a)2, pressure gradients scale with

H/a2, and finally drag forces scale with H . Important

consequences of this feature are that the drag forces

and the lubrication forces are not comensurable, and
that poromechanical effects cannot be reflected as rhe-

ological properties of the bulk material - it is always

necessary to solve a coupled problem.

Since our main focus in this study was the bulk vis-

cosity of suspensions (a rheological property), we did

not seek a fully realistic combination of drag forces and

lubrication forces. Practically, it let us reduce the com-

putation times tremendeously by setting α = 100 in
equation 3, while it should be close to 1 for more real-

istic simulations. The duration of the transient regime

would have been multiplied by 100 approximately, and

the timesteps of the time marching algorithm would
have been reduced by 100, leading to an increase of the

total simulation time by a factor 104. Though qualita-

tively correct, the trends seen in fig. 7 are thus quan-

titatively wrong (and remember that in any case they

are only relevant for a specific value H).

3.3 Stress decomposition

Besides T , a tensor representing the average stress in

the suspension can be calculated as

σ = σ
C + σ

L + pI+ σ
I (17)

σ
C = 1

V

∑

ij F
C
ij ⊗ lij is the contact stress applied

on particles in contact where lij denotes the branch
vector between the centers of the particles i and j.

Similarly, σ
L = 1

V

∑

ij F
L
ij ⊗ lij is the contribution

from lubrication forces [1], which will be further de-

composed hereafter by considering separately the nor-

mal and shear components of the lubrication force. p is
the pressure associated to the poromechanical coupling

[8]. σI =
∑

k mkvk ⊗ vk reflect the inertial effects as

defined in [28] where mk is the mass of particle k and

vk is its velocity. It can be verified in figure 7 - where
both Tx and σxy are plotted - that the two expressions

compare consistently. Hereafter, eq. (17) will be used

to assess the microscale origins of the shear stress and

their rate dependency.

4 Results and Discussion

4.1 Typical results

Figure 8 includes the evolution of different terms of

equation (17) (component xy) as the suspension is sheared

at Iv = 0.21. The inertial stress σI
xy (not represented

here) is negligible compared with the total stress (σI
xy <

2.5% Tx), which indicates that the suspension is domi-

nated by contacts and viscous interactions in this case

(further discussion in the next paragraph). Second, the

contact stress contributes to approximately half of the
total stress (σC

xy ≈ 50% Tx) whereas the other half is

due to the normal and shear lubrication forces (σLN
xy ≈

30%Tx and σLS
xy ≈ 20%Tx). The different contributions
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Fig. 7 (top): The evolution of the shear stress and the solid
fraction as a function of the deformation for two cases: with
poromechanical coupling and without poromechanical cou-
pling. (bottom): Zoom on the transient regime.

will be further investigated for different values of the

viscous number Iv in the following.

4.2 Viscous number

Iv is a dimensionless form of the shear rate [5], reflecting

the magnitude of viscous effects, and is defined as:

Iv =
η
∣

∣γ̇
∣

∣

Ty

, (18)

The key idea here is that, in the viscous regime and
at steady state the stress ratio µ = Tx/Ty and the

solid fraction φ are entirely controlled by this unique

parameter. In other words, all possible combinations of

0.40
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xy

σLS
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φ

Fig. 8 Decomposition of the total shear stress in contact
stress, normal lubrication stress and shear lubrication stress.

confining pressure, fluid viscosity, and shear rate corre-

sponding to a given value of Iv should give the same

result. In order to confirm this property, three series

of simulations were conducted in which the control pa-
rameters were changed independently in each series to

produce different values of Iv. The results are plotted

in fig. 9 versus the corresponding values of Iv. µ and Φ

are nearly the same whatever the method to change Iv.

This result offers a numerical confirmation of the con-
clusion of Boyer et al. [5]. This property holds only in

the viscous regime, i.e. as long as the inertial effects can

be neglected. As suggested in [33], this condition may

be characterized by the ratio I/Iv, where I =
√

ργ̇2/Ty

is the so called inertial number. Here the ratio is at most

I/Iv = 5, and it is much smaller in most cases, while

[33] suggest I/Iv ≃ 10 for the transition from the vis-

cous to the inertial regime. For the rest of this study it

was decided to keep I constant and equal to 0.14, which
leaves η as the only free parameter. An exception is the

dry case (Iv = 0) where I = 0.005.

4.3 Dropping terms of the hydrodynamic model

The consequences of neglecting some of the terms de-
fined by eqs. (5)-(11) will be examined, in terms of

stress ratio µ and of solid fraction φ. This question is of

interest for the developpers of numerical models, since

many models found in the literature are not includ-
ing all terms. As we have seen before, neglecting the

poromechanical coupling (eq. 5) has a detrimental ef-

fect on the transient state but has no strong effect at
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Fig. 9 Normalized shear stress and solid fraction at steady
state versus Iv . In each series the change of Iv is obtained
by changing a different parameter: confining pressure (�),
viscosity (⋆), or shear rate (H).

steady state. We now focus on the different lubrication

terms and how they affect the result at steady state.

Figure 10 presents the comparison of the numer-
ical results with the phenomenological laws proposed

by Boyer et al [5] on the basis of experiments. The val-

ues reported in this figure have been obtained at steady

state by increasing the fluid viscosity while keeping the

shear rate γ̇ and the normal stress Ty constant. Typical
results for Tx vs. γ are shown in the inset of the fig-

ure for different values of η. Series of simulations have

been carried out including different combinations of the

hydrodynamic effects. Starting with the simplest case
where only solid contacts and normal lubrication forces

are present, the other hydrodynamic terms are added

one by one: shear lubrication force, rolling torque, twist

torque and drag forces due to the poromechanical cou-

pling.

The result for Iv = 0 corresponds to vanishing hy-

drodynamic forces. It is obviously independent of the
hydrodynamic assumptions, and practically it is the

result of a simulation for a dry material. The friction

coefficient and the solid fraction obtained in this case

closely match the values measured experimentally by
Boyer et al. The results obtained with normal lubrica-

tion forces only (blue squares) match at least qualita-

tively the empirical evolution of shear stress with Iv. It

is to be noted however that the solid fraction obtained

with this model is almost constant for Iv > 0.02, while
the experiments suggest a monotonic decrease. As soon

as the shear lubrication forces are included, the results

(red circles) get closer to the phenomenological law for

both µ(Iv) and φ(Iv). It can be concluded that shear
lubrication forces play a key role in the rate depen-

dent dilatancy, and they contribute significantly to the

shear stress. The normal lubrication alone lead to a sat-

isfactory stress ratio but significantly overestimate the

solid fraction. Considering this result, one may expect

that simulations at imposed volume (called type I in

the introduction) and including only normal lubrica-

tion forces would underestimate the shear stress even
more than in our case.

Further sophisticating the hydrodynamic model does

not yield other significant changes. The rolling torques

(yellow stars), the twist torques (green diamond) and
the poromechanical coupling (cyan triangles) have only

marginal effects. We recall that this conclusion holds

at the steady state only. As discussed previously, the

poromechanical coupling can significantly interfere in

the transient regimes.

4.4 Contact stress versus hydrodynamic stress

From now on, the results that will be analyzed are ob-

tained with the full model including all possible hydro-
dynamic interactions. Figure 11 shows the contribution

to the total stress of the different terms in eq. (17). The

contact forces play a significant role for all the values

of Iv investigated. The contact stress slightly increases
for 0 < Iv < 0.1 and saturates to an almost constant

value for larger values of Iv. Lubrication stresses, both

normal and shear components, increase almost linearly,

and the shear stress due to the shear components is ap-

proximately twice smaller than the stress coming from
the normal components. For values of Iv ≥ 0.15 the

sum of the two lubrication stresses exceeds the contact

stress. This result highlights the fact that depending on

the value of Iv two regimes are observed. At low Iv the
contact interactions are dominant whereas for Iv ≥ 0.15

the lubrication interactions dominate. This result con-

firms a constitutive property inferred by Boyer et al [5].

Herein, the shear stress in dense suspensions is split into

two contributions, one coming from the contacts and
represented by the same phenomenological law as in dry

granular flow, the other one coming from hydrodynamic

interactions similar to a Krieger-Dougherty viscosity.

However Boyer et al inferred this stress partition from
macroscopic measurements. The present results allow

to further assess the respective contributions of con-

tacts and hydrodynamic interactions. Also, the choice

of a frictional rheology for the contact stress which sat-

urates for high values of Iv is predicted by our discrete
numerical simulations. We believe that this property

is not trivial. Based on solid fraction at the largest Iv
indeed (φ ≃ 0.38, far below any values that can be

reached in dry quasi-static granular systems), one could
expect that no solid contacts persist. Nevertheless, the

numerical simulations confirm the proposal of Boyer et

al. on this aspect.
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Fig. 10 Stress ratio µ (top) and the solid fraction φ (bottom)
at steady state versus Iv. Each symbol represents a different
combination of lubrication terms. The solid line is the phe-
nomenological law of Boyer et al. [5]. Inset: the total shear
stress for different values of fluid viscosity.

4.5 Roughness

The particles roughness ǫ appears as a key parameter in

the lubrication model since the surface-to-surface dis-

tance h may vanish as ǫ → 0, a situation in wich the lu-
brication terms diverge. This situation is peculiar from

a physical point of view but it also causes major trou-

bles from a numerical point of view. Arguably perfectly
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Fig. 11 The stress ratio µ and the decomposition in contact
stress, the normal lubrication stress and the shear lubrication
stress. The solid line is the phenomenological law of [5].

smooth surfaces are rare and this parameter can be jus-

tified on a physical ground. It is not always clear how
this should be accounted for in models however, and

in our case we don’t have a precise knowledge of what

value of ǫ would be relevant for the spheres used by

Boyer et al. In order to evaluate the role of this param-
eter simulations were reproduced for three different val-

ues of ǫ. They are reported in figure 12, which includes

the total stress and the contributions from contacts and

lubrication forces.

The lesser the roughness, the larger the contribution

of lubrication, as one could expect. A less expected re-
sult is that the contribution of contacts is not strongly

modified. No clear trend can be distinguished, as the

points corresponding to the smallest ǫ may be below or

above the others depending on the value Iv. This sug-
gests that the different values are simply due to impre-

cisions in the evaluation of the steady state, and that

the contribution of contacts could be independent of

roughness. Overall, the difference on the total stress is

of the order of 10% or less, showing a relatively moder-
ate effect. An effect on dilatancy is visible, the smoother

particles dilate more, but again moderate. All three val-

ues seem to reflect the main features of the behaviour

in spite of quantitative differences. Roughness does not
appear as a key parameter here. The limit ǫ → 0 re-

mains as an open question, which can’t be studied eas-

ily with our method due to numerical difficulties.
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Fig. 12 Stress ratio µ and solid fraction φ at steady state
for different values of the roughness parameter ǫ.

4.6 Microstructure

In order to link averaged quantities to micro-scale vari-

ables, we examine how various quantities depends on
the orientation of the particle pairs (figure 13). Based

on the orientation of the unit normal, every interaction

corresponds to a position on the unit sphere. For an

arbitrary point M on the unit sphere it is possible to

compute averages of interaction variables. For instance,
the average distance between the spheres is defined as:

h(M) =
∑

nk∈dS h(k)/NM where dS is a small angular

sector centered on M and NM is the number of interac-

tions associated to dS. In figure 13 this value is normal-
ized by the particle diameter (2a). We define similarly

the average normal velocity and average shear velocity

normalized by 2aγ̇.

The other plots of figure 13 are density functions.

The density of contacts is obtained by counting the
number N c of interactions with h < ǫ in dS, and divid-

ing by the total number of spheres Ns, so that P (M) =

N c(M)/(dS Ns). The densities of the lubrication stress

term σ
L(M) and of the contact stress term σ

C(M) are

obtained by restricting the sums defined for eq. (17)
to the subset of interactions associated to M . For in-

stance σ
L(M) = 1

V dS

∑

nij∈dS F
L
ij ⊗ lij . On figure 13

are the component xy of both stress tensors, normal-

ized by the confining pressure. The lubrication stress is
further decomposed into one part due to normal forces

and another part due to shear forces.

Despite the fact that all the functions introduced

above define surfaces in the 3D space, in figure 13 only

the values for M in the (Oxy) plane are plotted. The
results are given for three different values of Iv: Iv = 0

(i.e. a dry medium - green line in the figure), Iv = 0.025

(red line) and Iv = 0.2 (blue line). All distributions are

π-periodic, the comments hereafter refer to the interval

[0, π].

Figure 13.a shows that there is a minimum in the
density of contacts near θ = π/4 for all cases. Con-

versely, the higher density is observed for orientations

between 3π/4 and π. A noticeable effect of increasing

Iv is that the number of contacts near θ = π/4 vanish.
This peculiar effect makes a clear difference between

the viscous regime and the dry regime as P (θ = π/4)

is always strictly positive in the latest.

The average distance (figure 13.b) is increasing with

Iv on overall. Since increasing Iv corresponds to a de-

crease of solid fraction, this trend is not surprising. The

average distance is anisotropic and takes larger values

near θ = π/4, consistently with the lower density of
contacts in this region.

The normal component of normalized relative ve-

locity (figure 13.c) is positive on [0, π/2] and negative
on [π/2, π]. The extrema are of the same order in both

cases, although it can be noted that the velocity of ap-

proaching particles ([π/2, π]) is slightly lower. The shear

component (figure 13.d) is positive on - approximately
- [π/4, 3π/4] and negative on [0, π/4]∪ [3π/4, π]. In this

case the extrema are clearly different, with the largest

relative velocities near θ = π/2. We note that the graph

of the shear velocity is not exactly symmetric as the

maximum values are in fact a bit before θ = π/2. It
can be explained by smaller h and more solid contacts

preventing sliding when θ > π/2.

The magnitude of the normalized relative velocity is

increasing slightly with Iv. This is observed for both the

normal and the shear components. This trend can be

explained by considering the growing average distance

between particles. If all particles were simply following
the mean field velocity, then the relative velocity would

obviously grow with h. Since the local fluctuations of

velocity with respect to the mean field are not modi-

fying the relative velocities in average, this correlation
holds.

The lubrication forces for a given relative velocity

are decreasing functions of h. Thus, it could be antici-
pated from figure 13.b that the contribution of viscous

interactions to the bulk stress is dominated by interac-

tions oriented along θ = 3π/4, which have in average

smaller values of h but nearly similar values of normal

velocity. The results of figure 13.e show a quite different
picture. The density of stress due to the normal lubri-

cation forces is actually slightly larger on [0, π/2] and it

matches the shape of the normal velocity closely (with

the difference that the sign is always positive due to
the branch l in the diadic product FL

n ⊗ l). This feature

may be explained by the strong correlations between h

and vn.
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The contribution of the shear lubrication forces to

the bulk stress is dominated by the interactions near

θ = π/2, consistently with the evolution of average

shear velocity (the fact that the contribution vanishes

when θ = 0 is an effect of the product FL
s ⊗ l with l

nearly horizontal). Like vs, the density of stress reaches

a pick slightly before θ = π/2.

Considering the cumulated contributions σL = σ
L
n+

σ
L
s , the non-symmetry of the density of stress becomes

even more visible. The larger contribution is due to in-

teractions in the range [π/4, π/2]. This is also the range
in which there are nearly no solid contacts between the

particles. Thus the non-symmetry may be due to a com-

plex interplay between the solid contacts and the vis-

cous interactions.

The density of contact stress (figure 13.f) is strongly
anisotropic, as expected from the lack of contacts on

[0, π/2]. When Iv = 0 some contacts in [0, π/2] con-

tribute negatively, but the contribution is small. For

Iv > 0 this contribution becomes negligible. On over-

all, the contacts contribute to the bulk stress mainly via
repulsive forces in the direction near θ = 3π/4. The con-

tribution of contacts to the bulk stress increases with

Iv. This feature was already observed in figure 10 on

the macroscopic variables.

5 Conclusion

We described a complete modeling framework for the

numerical simulation of dense suspensions. The model

includes solid contacts between particles using a soft

contact approach, short range hydrodynamic interac-
tions defined by frame-invariant expressions of forces

and torques in the lubrication approximation, and the

poromechanical coupling solved using the DEM-PFV

technique.

Numerical experiments of simple shear at imposed
confining normal stress have been conducted in an at-

tempt to reproduce recent rheometer experiments on

beads. The simulations are in excellent agreement with

the empirical data in terms of bulk shear stress and

solid fraction at the steady state, for a range of dimen-
sionless shear rate corresponding to 0 ≤ Iv < 0.45.

The poromechanical coupling was shown to have a

significant effect in the transient regime when the de-

formation starts. However, no significant effects of this

coupling have been exhibited at steady state.

The results obtained by neglecting some of the lubri-

cation terms leads to the following conclusions. First,
the normal lubrication term has the larger contribu-

tion to the bulk stress. However, considering this term

alone leads to underestimate the shear stress, and with

such simplification the model is unable to reflect the

change of solid fraction for increasing Iv. Combining

both normal and shear lubrication terms gives much

better results in terms of stress and solid fraction. Fur-

ther sophistication of the model by including the terms
associated with rolling and twisting gives only marginal

improvements.

The analysis of the various contributions to the bulk

stress: contact forces, hydrodynamic forces and fluid
pressure, has lead to the following conclusions. The con-

tribution of contacts to the bulk shear stress in the

permanent regime increases with Iv. This result may

be seen as counter-intuitive. First, as higher Iv leads to

lower solid fraction, one would expect contacts contri-
bution to decrease progressively with Iv and ultimately

vanish. Second, the assumption that the lubrication ef-

fects would prevent solid contacts in suspensions has

been the cornerstone of many theoretical and numerical
models in the past. Instead, the simulations reported in

the present paper suggest that both the contact stress

and the lubrication stress increase monotonically in the

range of Iv investigated.

As roughness of particules is decreased, the contri-
bution of lubrication forces is increased to some extent.

However, it does not lead to a decrease of contact forces,

which remain nearly unchanged. Again, it is against the

idea that lubrication is preventing solid contacts. The
reasoning leading to this idea may be simply flawn due

to conceptual mistakes. Namely, lubrication forces are

often perceived as repulsive force wereas they are neu-

tral overall, inhibiting the opening and the closure of

contacts almost equally as revealed by microstructural
variables.

The distribution of micro-structural variables re-

vealed a complex interplay between the contact fabric

and the hydrodynamic interactions. The anisotropy of
contact orientation appears to be more pronounced in

suspensions as compared to dry granular materials, due

to the effect of the hydrodynamic interactions. This can

explain at least partly why the contribution of contacts

to the bulk shear stress is increasing.
This contact stress may reach a maximum and ul-

timately vanish for larger Iv. When does it happen re-

mains an open question. Capturing this transition in

numerical simulations is a great challenge for numerical
models since the lubrication terms do not reflect appro-

priately all hydrodynamic interactions in more dilute

regimes.
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