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ABSTRACT
A one-dimensional vertical two-phase flow model for sedimentation–consolidation process is presented. The model is based on solving the continuity
and momentum equations for both fluid and solid phases. In the non-cohesive case, the momentum transfer between the two phases is reduced to the
drag force around a single particle modified to take the hindrance effects into account. In the cohesive case, Darcy–Gersevanov’s law is used for the
closure of the momentum transfer between the two phases and the concept of “effective stress” is introduced to take into account the bed structuring.
These closure laws are validated against high-resolution experimental data in terms of settling curves and concentration profiles. The reliability of
the model is illustrated from an analysis of the momentum balances at different stages during the process. Finally, the proposed closure laws and
numerical algorithms are shown to be able to quantitatively reproduce sedimentation of non-cohesive and sedimentation–consolidation of cohesive
sediments, including mud.

Keywords: Consolidation; numerical model; one-dimensional models; sedimentation; two-phase flow

1 Introduction

Sedimentation and consolidation are important physical pro-
cesses of the sediment transport in Estuarine and Coastal Zones
(ECZs). From a physical point of view, sedimentation is the
process of suspended particles settling, whereas consolidation
corresponds to the compaction of a soil skeleton under its own
weight (Toorman 1996). The latter is specific to cohesive sedi-
ment. The former is observed for both non-cohesive and cohesive
sediment particles though it strongly differs due to the presence
of particle–particle interactions and sediment heterogeneity in
the cohesive case (flocculation).

When a suspension of cohesive sediment particles settles in
quiescent water, its behaviour mainly depends on the sediment
concentration. Four different regimes are observed: flocculation,
hindered, permeability and effective-stress regimes. The first two
correspond to sedimentation and the last two correspond to con-
solidation (Dankers and Winterwerp 2007). In the present study,
only the last three regimes are considered. In the hindered regime,
corresponding to sediment concentration between three and tens
of grams per litre, the presence of neighbouring particles causes
the hindrance of suspension settling. The transition between sed-
imentation and consolidation is characterized by the gel point
(Buscall 1990) which usually lies between 30 and 150 g l−1
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(Merckelbach and Kranenburg 2004, Camenen and Pham Van
Bang 2011). From this critical concentration, particle–particle
interactions increase and a solid skeleton develops inside the
sediment bed. Under their own load, sediment-bed aggregates
break up and release their water content. From mass conserva-
tion, this released water flows upward through the forming solid
skeleton and leads to an excess pore pressure (Been and Sills
1981). The fluid flow relative to the porous network leads to an
increase in the drag force on the solid particles, which reduces
their settling velocity (Toorman 1999). This is the permeability
regime. The excess pore pressure slowly dissipates as the cohe-
sive sediment bed is compacting. When the excess pore pressure
has fully dissipated, the solid skeleton is well developed and sup-
ports the apparent sediment’s weight (Been and Sills 1981). The
slow settling observed in this regime is due to the compression
of the solid skeleton under its own weight that corresponds to the
effective stress regime.

In the case of a suspension of non-cohesive particles, only
two regimes are observed. The first one corresponds to the hin-
dered settling regime where particles settle to the bed with a
settling velocity that depends on the local particles’ concentra-
tion, i.e. hindrance effect (Richardson and Zaki 1954). When
the particles’ concentration reaches a given percolation value,
which corresponds to the loose packing fraction, the particles
form a loose bed.

In classical sediment transport models for ECZs, the sus-
pended sediment is viewed as a passive scalar, for which an
advection–diffusion equation is solved. Sedimentation is there-
fore modelled by introducing a settling velocity that is param-
eterized to account for the flocculation and hindered regimes.
The computational domain in these models is bounded by a
fictive bed, which is usually defined for the solid concentration
exceeding about 100 g l−1. Below the fictive bed, extra models
for solid-particle consolidating and settling bed (CSB) are intro-
duced (Gibson et al. 1967’s equation). The main limitation in
these models comes from the need to prescribe empirical rela-
tionships for both erosion and deposition flux between the two
models (suspended-sediment transport model and CSB) (Teisson
1991, Thiébot et al. 2011). In the two-phase approach, continu-
ity and momentum equations are derived for each phase, fluid
or solid, with the introduction of interaction terms between the
two phases. The two-phase approach has been applied to the
modelling of sediment-transport problems since the 1980s (Drew
1983, Teisson et al. 1992, Le Hir 1994, Greimann et al. 1999,
amongst others). More recently, the interest in this approach
has increased and led to numerous publications mainly for
non-cohesive sediment transport, i.e. sand (Barbry et al. 2000,
Greimann and Holly 2001, Dong and Zhang 2002, Hsu et al.
2003, Jiang et al. 2004, Longo 2005, Chauchat and Guillou
2008, Bakhtyar et al. 2009, Jha and Bombardelli 2010, amongst
others). These studies show encouraging results concerning the
suspended-load and bed-load transport mainly by integrating
the influence of the sediment particles on the fluid turbulence
and the collisions between particles (two-way and four-way

coupling). Concerning sedimentation–consolidation problems,
Toorman (1996) has presented a unifying theory derived from
the two-phase equations that allows the reconciliation of Kynch’s
sedimentation theory (Kynch 1952) at low sediment concen-
tration and Gibson’s consolidation theory (Gibson et al. 1967)
for higher sediment concentration (see Winterwerp and Van
Kesteren 2004 for details on these theories). However, no direct
application to sedimentation–consolidation of the two-phase
model has been presented in the literature. Recently, first appli-
cations of two-phase model for fine-sediment transport in ECZs
have been published (Hsu et al. 2007, Nguyen et al. 2009, Torres-
Freyermuth and Hsu 2010, Nguyen et al. 2012). The results
obtained in these studies have shown the potential of this mod-
elling approach and also the needs for process-oriented studies to
determine the adequate closure laws for cohesive sediments. In
all these papers, the mud sedimentation and consolidation pro-
cesses were not accounted for although they are essential in the
understanding of mud–flow interactions.

The most valuable validation of a sedimentation–consolidation
model is achieved by a comparison of calculated and mea-
sured concentration profiles (Toorman 1999). For this purpose,
recent original experimental data (Pham Van Bang et al. 2008)
obtained using the magnetic resonant imaging (MRI) technique
are used in this paper. This technique allows us to measure con-
centration profiles at high frequency, even in conditions where
initial concentrations are dilute. The aim of this paper is to
show the reliability of new developments in the two-phase flow
model (Chauchat and Guillou 2008, Nguyen et al. 2009) to
simulate sedimentation and consolidation processes of cohe-
sive and non-cohesive sediments based on a comparison with
the above-mentioned experimental data. The model presented
herein is one-dimensional vertical, but it can be straightforwardly
generalized to multidimensional situations.

2 Model formulation

The present two-phase flow model is based on averaged equa-
tions for each phase, fluid and sediment, inspired from the early
work presented in Barbry et al. (2000), Chauchat and Guillou
(2008) and Nguyen et al. (2009). The averaged equation for mass
conservation (1) and momentum conservation (2) for a phase k
reads (Drew and Lahey 1993)

∂αkρk

∂t
+ ∇ · (αkρkuk) = Dαkρk

Dt
= 0 (1)

Dαkρkuk

Dt
= ∇ · (−αkpkI + αkτk) + αkρkg + Mk (2)

where the subscript k can be either f for the fluid phase or s for
the solid phase. In these two equations, αk , uk and ρk are the
volume fraction, the velocity vector and the density of phase k;
pk is the pressure of phase k; I is the identity tensor; τk is the
deviatoric part of the viscous stress tensor of phase k; g is the
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acceleration due to gravity and Mk is the interfacial momentum
transfer between fluid and solid phases.

To be consistent with Jackson (2000)’s two-phase equations,
we assume that the shear stresses of the fluid and solid phases
τf and τs are equal to the mixture’s viscous shear stresses τv

expressed as

τv = μmix[∇um + (∇um)T] (3)

where μmix = μf (1 + βαs) is the mixture viscosity and β is the
amplification factor for viscosity. As shown by Jackson (2000)
for rigid particles, the fluid shear stress should be proportional
to the mixture shear rate where um = (1 − φ)uf + φup is the
volume-averaged mixture velocity. The parameter β accounts for
the non-Newtonian characteristics of the flow when the volume
fraction of the solid phase reaches high values. The formulation
from Graham (1981) is used

β = 5
2

+ 9
4

1

1 + d̃

(
1

2d̃
− 1

1 + 2d̃
− 1

(1 + 2d̃)2

)
1
αs

(4)

where d̃ is the inter-particle distance non-dimensionalized by the
particle diameter. From geometrical considerations, it is possible
to express this ratio as a function of the solid volume fraction:
d̃ = [1 − (αs/α

max
s )1/3]/(αs/α

max
s )1/3, where αmax

s is the solid
volume fraction for maximum packing of spheres. For a sim-
ple cubic packing of rigid spheres, this value is αmax

s = 0.625.
This formulation is consistent with the expression proposed by
Einstein (1906) in the dilute case: μmix = μf (1 + 2.5αs) and with
the expression proposed by Frankel and Acrivos (1967) for dense
suspension: μmix = μf 9/8 [(αmax

s /αs)
1/3 − 1]−1.

It is important to keep in mind that only one-dimensional
vertical problems are considered here. Therefore, only the normal
component of the viscous shear stresses are relevant in the present
model and not the tangential ones such as for debris flows or bed-
load transport where a horizontal motion is considered (Berzi and
Jenkins 2008, Chauchat and Médale 2010). In order to deal with
such flows, an additional term should be added to the solid-phase
stress tensor τpp, which represents the contribution of particle–
particle interactions to the tangential stresses.

The interfacial momentum transfer term is defined following
Drew and Lahey (1993) by

Mk = (pf I − τv).∇αk + M ′
k (5)

The first term represents the generalized buoyancy composed
of two contributions: one is related to the fluid pressure, the
so-called Archimedes’ buoyancy force and the second corre-
sponds to the local fluid shearing acting on the fluid–particle
interfaces. The second term in Eq. (5) represents all the remaining
contributions to the fluid–particle interactions (drag, lift, added
mass and Basset forces). Its closure depends both on the proper-
ties of the solid particles and the regime of fluid flows around the
particles. The specific closures for non-cohesive and cohesive
sediment particles will be discussed in the following sections.

The physical meaning of the fluid pressure is the same as for a
single-phase fluid flow. It represents the resistance of the fluid to
compression. For the solid-phase pressure, one has to consider
the total pressure or the mixture pressure

p̃ = αsps + αf pf (6)

that represents the resistance to compression of the mixture. Since
there are particles and fluid in the mixture, the resistance to com-
pression has two contributions: one comes from the fluid filling
the pores (pf ) and the other originates from the network of con-
tacts between particles for sufficiently high concentration (σe). In
the present study, σe will be denoted as particle pressure for non-
cohesive sediment and effective stress for cohesive ones. This is
the effective stress principle as proposed by Terzaghi (1923)

p̃ = pf + σe (7)

When the solid volume fraction exceeds a percolation value, a
solid skeleton appears and the effective stress or particle pressure
develops. It should vanish rapidly when αs decreases below this
percolation threshold. This percolation value is different in the
non-cohesive and cohesive cases, it corresponds to the random
loose packing for non-cohesive particles and is denoted as α∗

s ,
and it is the gelling point α

gel
s for cohesive ones.

Identifying Eqs. (6) and (7) the solid-phase pressure ps is
written as

ps = pf + σe

αs
(8)

in order to respect Terzaghi’s principle. This expression is iden-
tical to the one proposed by Concha et al. (1996) and Bürger
(2000) adapted to our notations. Again, the specific closure for σe

depends on the nature of the particles: cohesive and deformable
particles such as mud, or non-cohesive and “rigid” particles such
as sand or beads.

Finally, substituting Eqs. (5) and (8) in the momentum Eq. (2)
leads to the following one-dimensional two-phase equations

αf + αs = 1 (9)

∂αf ρf

∂t
+ ∂αf ρf wf

∂z
= 0 (10)

∂αsρs

∂t
+ ∂αsρsws

∂z
= 0 (11)

∂αf ρf wf

∂t
+ ∂αf ρf wf wf

∂z
= −αf

∂pf

∂z

+ αf
∂τ zz

v

∂z
− αf ρf g + M z′

f (12)

∂αsρsws

∂t
+ ∂αsρswsws

∂z
= −αs

∂pf

∂z
− ∂σe

∂z

+ αs
∂τ zz

v

∂z
− αsρsg + M z′

s (13)

Equation (9) represents the global volume conservation that gives
an additional equation. The system (9)–(13) is composed of five
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equations expressed in terms of the five unknowns αf , αs, wf , ws

and pf . This system of equations can be solved numerically
if the closures for M ′z

s , M ′z
f and σe are given in terms of

αf , αs, wf , ws, pf .
The set of Eqs. (9)–(13) are solved by a projection method.

A finite difference technique is used for the discretization of
momentum conservation equations on a staggered grid. The gov-
erning equations are implicitly solved. All the details concerning
the algorithm and discretization are given in Appendix A (see
online version of the article).

The present model equations are consistent with those used
in Bürger (2000)’s and with Toorman (1996)’s models. The
originality of the proposed model is that both fluid-phase and
solid-phase velocities, sediment concentration as well as fluid
pressure are solved by the model, whereas Bürger (2000)’s and
Toorman (1996)’s models only solve the sediment concentration
and deduce the excess pore pressure from a simplified momen-
tum balance for the fluid phase. The present model formulation
is more general and would enable the study of the complex inter-
action between a sedimenting and/or consolidating suspension
with a boundary layer flow.

3 Sedimentation of non-cohesive particles

3.1 Model suspension experiments

We first validate the present two-phase model for pure sedimen-
tation of non-cohesive particles, then no consolidation occurs. A
set of experimental data (Pham Van Bang et al. 2008) has been
used for this validation. This concerns a suspension of mono-
disperse spherical polystyrene beads of diameter d = 0.29 ±
0.03 mm, and of density ρp = 1.05 kg m−3 in Rhodorsil silicone
oil (viscosity μf = 20 10−3 Pa s, density ρf = 0.95 kg m−3). The
material was prepared in a well-mixed cylindrical container (base
diameter 50 mm; height 100 mm) for an initial solid volume frac-
tion (α0

s = 0.48). The container was covered and placed in a
Proton MRI for automatic measurements of the solid concen-
tration profiles along the vertical. Experiments were performed
at the Navier Laboratory (Ecole de Ponts ParisTech, Champs-
sur-Marne, France) on a Bruker 24/80 DBX MRI facility: the
vertical prototype operates at 0.5 T (20 MHz proton frequency).
The vertical concentration profiles (a measuring point for every
0.9375 mm on the vertical) were averaged over 16 instantaneous
profiles, which were taken every 3 s. Thus, one single-profile was
obtained for every 60 s.

3.2 Closures for non-cohesive spherical particles

The closure laws for the momentum transfer term M z′
k and the

particle pressure σe are needed. For the present experimental
configuration (polystyrene beads in silicon oil), the particulate
Reynolds number Rp = ρf αf d ‖ ws − wf ‖ /μf is at the order
of magnitude about 10−3 − 10−4, and then M ′

k reduces to the

Stokes drag

M z′
s = −M z′

f = 3αsρf

4d
CD ‖ ws − wf ‖ (ws − wf )α

2−nRZ
f (14)

where CD is the averaged drag coefficient for a single parti-
cle (Stokes drag coefficient): CD = 24/Rp for small particulate
Reynolds number; and the term α

2−nRZ
f is the hindrance function

proposed by Richardson and Zaki (1954). nRZ is an empirical
coefficient that allows to account for the decrease in the parti-
cle settling velocity when the local concentration of particles
increases. Nicolai et al. (1995) have obtained a value of the
Richardson and Zaki exponent nRZ = 5 ± 0.3 for the sedimen-
tation of mono-disperse spherical particles at small particulate
Reynolds number (Rp ≤ 10−3), which corresponds to the present
experimental conditions.

Following Hsu et al. (2004), we model the particulate pressure
(solid-phase normal stresses) due to enduring contact using a
Hertz contact model. They proposed the following relationship:

σe =
{

0 if αs < α∗
s

	(αs) (αs − α∗
s )

ξ if α∗
s ≤ αs ≤ αmax

s

(15)

The term (αs − α∗
s )

ξ represents the average compressive volume
strain divided by the particle’s diameter. The exponent ξ is an
ad hoc coefficient that must be calibrated. Hsu et al. (2004) have
proposed a value of 5.5 from a comparison with experiments.
	(αs) is a coefficient proportional to the coordination number
and depends on the mechanical properties of the material of the
particles (i.e. Poisson coefficient ν and Young modulus E)

	(αs) = E αs

9π
√

3(1 − ν2)

{
3 + 3 sin

[
π

2

(
2

α∗
s − αs

αmax
s − α∗

s
− 1

)]}
(16)

For polystyrene beads, the following values are used ν = 0,
E = 3 109 Pa and ξ = 4.5. The value of ξ has been determined
by trial and error in order to ensure a correct hydrostatic pressure
distribution for the solid phase at the end of the sedimenta-
tion process. Details concerning this calibration are given in
Appendix B (see online version of the article). For a suspension
of mono-disperse spherical particles, the random loose packing is
about α∗

s = 0.57 and the maximum packing is about αmax
s = 0.6.

3.3 Results and discussion

In the numerical simulation, we use a uniform 300-nodes mesh
(z = 3.3 × 10−4 m) and a time step of t = 5.10−5 s. The
Richardson–Zaki exponent nRZ is set to 5.15 after calibration, this
value is consistent with the one given by Nicolai et al. (1995).
The initial and boundary conditions are imposed as described
in Fig. 1. As initial condition, the solid-phase volume fraction is
constant and equal to α0

s below Z0
i and zero above, the solid-phase

vertical velocity is calculated from a simplified balance equation
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Figure 1 Sketch of the numerical configuration with initial and
boundary conditions for the numerical model

between gravity and drag force, using relationship (14) and the
fluid-phase velocity is initialized to ensure incompressibility of
the mixture. At the top and bottom boundaries, the vertical veloc-
ities vanish and the normal derivative of the volume fraction are
taken equal to zero.

The convergence of the numerical results in terms of the grid
size and the time step has been checked. The results of the sen-
sitivity analysis are given in Appendix B (see online version of
the article). A minimum grid size of z = 10−3 m and minimum
time step of t = 10−3 s are required to satisfactorily represent
the fluid–bed interface dynamic.

Figure 2 shows the settling curves for both experiments and
numerical simulation in the left panel (a), time evolution of
the fluid-suspension and suspension-fixed bed interfaces, and
the concentration profiles at different stages during the pro-
cess on the right panels (b). In Fig. 2(a), the upper interface
corresponds to the interface between the clear fluid and the sus-
pension Zup

i . The lower one denotes the interface between the
suspension and the granular bed at maximum packing fraction
Zlow

i . They are defined as follows: Zup
i = max{z | αs ≥ α0

s } and
Zlow

i = max{z | αs ≥ 0.5(αmax
s + α0

s )}. After roughly 1200 s, the
interfaces match and stabilize to a constant value. The bed is at
rest and the concentration of the suspension reaches the maxi-
mum packing fraction αmax

s as shown in Fig. 2(b) at t = 1432 s.
Figure 2 shows that the numerical and experimental time evo-
lutions of the interface positions and vertical profiles of solid
volume fraction at different times are in good agreement. This
validates the closure laws (14) and (15) as well as the numerical
model presented in Section 2. The increase in the measured solid
volume fraction observed above the upper interface is due to an
artefact in the MRI measurements.

Figure 3 shows (from left to right) the solid volume fraction
profiles, the excess pore pressure and the vertical momentum
balance of the mixture at various times during sedimentation
(t = 30, 600 and 1800 s). The vertical momentum balance for the
mixture is obtained from the sum of the momentum equations

0 500 1000

(a) (b)

1500
−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

z
(m

)

t (s)
0 0.2 0.4 0.6

t=1432s

α
s

0 0.2 0.4 0.6
−0.1

−0.08

−0.06

−0.04
t=1012s

z
(m

)

α
s

t=592s

−0.1

−0.08

−0.06

−0.04
t=172s

z
(m

)

Figure 2 Comparison of two-phase numerical results with experiments of Pham Van Bang et al. (2008) (a) settling curves: time evolution of the
lower and upper interface positions (circles: experiments; lines: model) and (b) profiles of solid volume fraction (dashed blue lines: experiment; solid
red lines: model)
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0 0.1 0.2 0.3 0.4 0.5 0.6
−0.1

−0.09

−0.08

−0.07

−0.06

−0.05

−0.04

−0.03

z
(m

)

α
s

−10 0 10 20 30
Δ p (Pa)

9200 9400 9600 9800 10000

Momentum (kg/m2/s2)

Gravity
Pressure
Pressure+Effective Stress

 t =1800 s

 t =600 s

 t =30 s

 t =1800 s

 t =30 s

 t =600 s

Figure 3 Vertical profiles of solid volume fraction (left), excess pore pressure: p = pf − [patm − ρf gz] (middle) and vertical mixture momentum
balance at t = 600 s (see Eq. 17) (right). The red solid line ( ) represents the gravity force, the blue dash-dotted line ( ) represents the fluid
pressure force and the dashed black line (- -) represents the sum of the pressure and effective stress forces in Eq. (17)

for the fluid phase (12) and the solid phase (13) that reads:

∂

∂t
(αsρsws + αf ρf wf ) + ∂

∂z
(αsρsw2

s + αf ρf w2
f )

= −∂pf

∂z
− ∂σe

∂z
+ ∂τ zz

m

∂z
− (αsρs + αf ρf )︸ ︷︷ ︸

=ρmix

g (17)

When all the particles have settled to the bed (bed at rest), the
vertical gradient of fluid pressure is expected to balance the pure
fluid’s weight, while the effective stress balances the apparent
particles weight. In the suspension, the effective stress vanishes
(no contact network exists to support the particles weight) and
therefore the vertical gradient of fluid pressure is expected to bal-
ance the mixture’s weight of the suspension. This is exactly what
is shown in Fig. 3. In the zone of clear fluid above the upper inter-
face, the vertical gradient of fluid pressure is equal to the fluid’s
weight (−∂pf /∂z = ρf g ≈ 9320 kg m−2 s−2). In the suspension
zone located between the two interfaces, the vertical gradient
of fluid pressure is equal to the weight of the initial mixture
(−∂pf /∂z = ρmixg ≈ 9790 kg m−2 s−2). This gradient is equal
to the pure fluid’s weight (−∂pf /∂z = ρf g ≈ 9320 kg m−2 s−2)
below the lower interface that represents the deposited granular
bed. In this layer, the vertical gradient of excess pore pressure
vanishes (see middle panel), i.e. it does not contribute to the
force balance of the mixture, and thus the particles weight is
balanced by the effective stress term (see right panel). This dis-
sipation of the excess pore pressure is instantaneous in the case
of non-cohesive particles.

4 Sedimentation–consolidation of estuarine mud

4.1 Le Havre’s mud sedimentation–consolidation experiments

Experimental data for sedimentation–consolidation of Le
Havre’s mud obtained with the same experimental set-up pre-
sented in the previous section are used. The mud was treated
using potassium permanganate and sieved to obtain fine particles,
the diameter of which is smaller than 125 × 10−6 m. The median
diameter is evaluated at d50 = 7.5 × 10−6 m. The density of dry
sediment is estimated at 2590 kg m−3 by a helium pycnometer.
Three initial homogeneous solid volume fractions 1.2, 2.2 and
5.2% were tested and the time evolution of the solid volume frac-
tion profiles were measured using the Proton MRI facility at the
Navier Laboratory (see Pham Van Bang et al. (2008) for details).

4.2 Closures for cohesive particles (mud)

The heterogeneity of the suspension and the existence of elec-
trochemical forces responsible for particle aggregation make
Eq. (14) useless. A more macroscopic point of view for the drag
force must be adopted. Following Toorman (1996), the Darcy–
Gersevanov’s semi-empirical expression for the drag force is
used in the two-phase model

M z′
s = −M z′

f = ρf g
K

(wf − ws) (18)

where K (in m s−1) represents permeability. Therefore, the clo-
sure issue consists in finding closure laws for the permeability
K and the effective stress σe. In the literature, there is a large
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number of formulations concerning the permeability of cohe-
sive sediments, e.g. Bartholomeeusen et al. (2000), but most of
them are disconnected from the settling property of the particles.
Based on the fractal theory for cohesive sediments, Merckelbach
and Kranenburg (2004) have proposed formulations for the effec-
tive stress and the permeability as functions of the solid volume
fraction and of the fractal dimension n

K = Akα
−2/(3−n)
s ; σe = Aσα2/(3−n)

s (19)

where Ak and Aσ are empirical coefficients to be determined from
experiments. In the framework of the fractal theory, some char-
acteristics such as the floc density, ρfloc, or the volume fraction
of flocs, φ, amongst others, can be related to the typical floc size,
dfloc, and the fractal dimension (Winterwerp and Van Kesteren
2004)

ρfloc = ρf + (ρs − ρf )

(
dp

dfloc

)3−n

, φ = αs

(
dfloc

dp

)3−n

(20)

where dp represents the floc’s primary particle diameter. It
follows from Eq. (20) that

ρfloc = ρf + (ρs − ρf )
αs

φ
, φ = αs

ρs − ρf

ρfloc − ρf
(21)

When the volume fraction approaches unity, the flocs form a
space-filling network that corresponds to the gel point (αgel

s ).
Formulations (19) suffer two severe limitations in consider-

ing sedimentation–consolidation of mud. Knowing that W =
Kαs(ρs/ρf − 1) (Toorman 1996), when sediment concentra-
tion tends to zero, the permeability formulation (19) gives an
infinite settling velocity, W , which should theoretically tend
towards an equivalent settling velocity of a typical aggregate.
Also the effective stress, given by Eq. (19), is never equal to
zero, i.e. the consolidation occurs for any value of concentration.
Consequently, this formulation neglects the separation between
sedimentation and consolidation.

The first limitation can be overcome by using the formula-
tion and the method proposed by Camenen and Pham Van Bang
(2011). Such a formulation ensures a smooth transition of the
settling velocity from the hindered settling regime to the perme-
ability one by imposing the continuity of the first derivative of
settling velocity at the gelling point. The settling velocity in the
hindered regime is given by

Wh

W0
= (1 − αs)

n/2(1 − φ)n/2−1
(

1 − φ

φmax

)φmax

(22)

where W0 is the asymptotic settling velocity at zero concentra-
tion. It is assumed that the floc property (size and density) are
fixed in space and in time, and are identical to the floc’s prop-
erty at the maximum floc concentration φmax = 0.85. As above
explained, this situation corresponds to the gelling fraction α

gel
s .

With the assumption of constant floc property, the floc density is
given by ρfloc = ρf + (ρs − ρf ) α

gel
s φmax.

In the permeability regime, since constant floc properties are
assumed between sedimentation and consolidation, the fractal
dimension n must be the same as in the hindered settling regime.
This is achieved by seeking the solid volume fraction, at which
the slopes of the settling velocity in both regimes (hindered set-
tling and permeability) are identical. This point is denoted by
αs = α

gel
s /χ (with χ > 1). Therefore, in order to ensure the con-

tinuity of the settling velocity for both regimes, the following
relationships are used:

W =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Wh if αs ≤ α
gel
s

χ

W gel
h

(
χαs

α
gel
s

)−2/(3−n)+1

if αs >
α

gel
s

χ

(23)

where W gel
h corresponds to the value of Wh at αs = α

gel
s /χ . W0,

n, α
gel
s and χ need to be determined from experiments.

In the two-phase model, the permeability is used for the drag
force closure (18). The relationship K = W /[αs (ρs/ρf − 1)],
where W is calculated from Eq. (23), is used in the model. The
velocities of both phases are calculated from the momentum
equations (12) and (13).

The effective stress represents permanent contacts between
particles in concentrated suspension. The following closure is
proposed:

σe =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if αs < α
gel
s

σ0

⎡
⎣(

1 − αs − α
gel
s

αmax
s

)−2/(3−n)

− 1

⎤
⎦ if αs ≥ α

gel
s

(24)

This formulation is asymptotically consistent with Merckelbach
and Kranenburg (2004) relationship (19) and the effective stress
vanishes below α

gel
s . For this closure, σ0 and αmax

s need to be
determined.

4.3 Results and discussion

Figure 4(a) presents the experimental and numerical settling
curves. Figure 4(b) presents the experimental and numerical solid
volume fraction profiles at different times for the three initial solid
volume fractions α0

s = 1.2, 2.2 and 5.2%. At first, the experimen-
tal measurements are used to determine the closure’s parameters
W0, n, α

gel
s , χ , σ0 and αmax

s .
For the initial solid volume fraction at 1.2%, the experimental

settling curve presents a slope break around 400 s, which repre-
sents the transition between the hindered settling regime and the
permeability one, i.e. the existence of a gelling point (Toorman
and Berlamont 1993). This slope break is less evident for the
2.2% initial solid volume fraction and not existent for the last
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Figure 4 Comparison of two-phase model results with experiments for initial concentrations α0
s = 1.2, 2.2 and 5.2%. (a) Settling curves: time

evolution of the mud–clear water interface position (symbols: experiments; lines: model) and (b) solid volume fraction profiles (dashed blue lines:
experiments; solid red lines: model)

case (α0
s = 5.2%), which is in consolidation since the begin-

ning of the experiment. The value of α
gel
s is estimated using the

method presented in Toorman (1999), and the value of the solid
volume fraction at the gel point is estimated to be α

gel
s ≈ 0.025.

Therefore, the floc density is fixed at ρfloc = 1047 kg m−3 in the
model.

The closure for the permeability has been calibrated against
the 1.2% initial solid volume fraction experiment following the
method proposed by Camenen and Pham Van Bang (2011). The
closure for the effective stress is obtained from the 5.2% initial
solid volume fraction experiment following the method proposed
by Been and Sills (1981). In none of the simulations presented
hereafter, both the closures for the permeability and the effec-
tive stress have been simultaneously calibrated against the same

experiment, and the 2.2% initial solid volume fraction experi-
ment has not been used to calibrate the model parameters. The
values of the parameters are summarized in Table 1 and the details
concerning the determination of the parameter values are given
in Appendix C (see online version of the article).

The value of W0 = 2 × 10−4 m s−1 corresponds to the settling
velocity of an equivalent floc diameter of dfloc = 115 × 10−6 m
with primary particles diameter of dp = 2 × 10−6 m and a fractal
dimension n = 2 at low particulate Reynolds number (Winterw-
erp and Van Kesteren 2004). This is close to the value obtained
by Van Leussen (1994) for flocs in the Ems estuary.

As in the previous case, a uniform 300-node mesh (z =
3.3 × 10−4 m) is used and the time step is fixed to t = 10−2 s
for the numerical simulations.
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Table 1 Summary of the model parameter values and their typical range

Parameters W0 n α
gel
s αmax

s σ0 φmax χ

(unit) (m s−1) (–) (–) (–) (Pa) (–) (–)

Value 2 × 10−4 2.55 0.025 0.14 0.14 0.85 1.283
Range 10−5 − 10−3 1.7 − 2.8 0.01 − 0.05 0.1 − 0.6 − ≈1 ≈1

In Fig. 4, as Toorman (1999) for the Oxford data, the time
origin has been shifted, for theα0

s = 5.2% case, to the point where
the water–sediment interface reaches a constant settlement rate.
This time lag is estimated by the experimental data at 90 min,
which is close to Toorman (1999)’s value (95 min). This time lag
is justified by the mixing process imposed on the suspension at the
beginning of each experiment. Indeed, this mixing process has
induced an initial flocculation stage, for which aggregates have
been formed until they reach an equilibrium state. For the two-
first cases, at lower initial concentrations, the experimental time
is shifted by 60 s for the 1.2% case and 300 s for the 2.2% case.
This is mainly due to the time needed to introduce the settling
column in the MRI facility and to obtain the first concentration
profile.

The profile of volume fraction, Fig. 4(b), continuously
increases with the vertical downward even inside the cohesive
bed, which is characteristic for a solid skeleton compaction (i.e.
existence of effective stresses). The best results are obtained for
the first two experiments (α0

s = 1.2 and 2.2%). The difference
observed for the last case (α0

s = 5.2%) can be attributed to a
modification of the internal structure (n and ρfloc). This exper-
iment is clearly in consolidation since the beginning, contrary
to the first two. Therefore, the dependency of the permeabil-
ity on the sediment concentration is certainly different from
the 1.2% case, for which it has been calibrated. The pro-
posed closure laws suffer some limitations. First, they depend
only on the sediment concentration, which is too restrictive.
As pointed out by Toorman (1999) amongst others, estuarine
mud presents thixotropic behaviour such that the permeabil-
ity and effective stress closures depend on the preparation
of the sediment suspension (initial concentration, initial mix-
ing, etc.). Also, the assumption of constant aggregate density
(ρfloc) and fractal dimension (n) in the permeability closure
are a limiting assumption. Indeed, during the sedimentation–
consolidation, flocculation and deflocculation processes occur
and would change both the permeability and the effective stress.
As reported by Chakraborti et al. (2003), the fractal dimen-
sion varies during the aggregation process. Winterwerp and Van
Kesteren (2004) found that the fractal dimension is larger than 2.6
for cohesive sediment beds, while for suspended floc it is usually
lower than 2.2. Considering constant flocs properties therefore
neglects this effect and certainly constitutes the main limiting
assumption of the present model. This phenomenon is not easily
measurable in experiments and more refined experimental mea-
surements are still lacking to improve our understanding of such
structural changes. To the best of our knowledge, closure laws

accounting for these time-dependent effects have not yet been
established.

Figure 5 shows successively from left to right the vertical pro-
files of solid volume fraction, excess pore pressure and vertical
mixture momentum balance at various stages of sedimentation–
consolidation (for α0

s = 2.2%). Almost the same results for the
other initial concentrations are also obtained.

The profiles of excess pore pressure (middle panel) show that
the fluid pressure tends towards the pure fluid hydrostatic one at
the end of the consolidation process. The greater the initial con-
centration is, the longer the process takes (Been and Sills 1981,
Merckelbach and Kranenburg 2004). Looking at the momen-
tum balance (right panel), one observes that during the initial
stage of sedimentation, the gravity is balanced by the vertical
gradient of fluid pressure everywhere, except for a thin layer
near the bottom where effective stress develops. In this layer,
the vertical gradient of effective stress balances the apparent
weight of the particles (−∂σe/∂z = αs(ρs − ρf ) g) and the verti-
cal gradient of fluid pressure balances the fluid’s weight only
(−∂pf /∂z = ρf g ≈ 9839 kg m−2 s−2). These observations are
consistent with the non-cohesive case (Fig. 3). The difference
comes from the smooth transition between the fluid pressure
and the effective stress in the mixture momentum balance for
the cohesive case. This difference is also noticeable on the
excess pore pressure profiles, which slowly tend towards zero
in the bottom layer whereas they vanish in the non-cohesive
case instantaneously. The dissipation of the excess pore pres-
sure is characteristic of the consolidation process (Been and Sills
1981). As sediment settles to the bed, the sediment concentration
increases, and from mass conservation the fluid has to be expelled
upward from the pores towards the fluid–sediment bed interface.
This mechanism leads to an excess pore pressure induced by the
fluid compression inside the pores (Toorman 1996). As shown
in Fig. 5, the proposed model allows us to represent this phe-
nomenon. The upward Darcy flow inside the settling suspension
(typically for αs > α

gel
s ) leads to a drag increase in the solid phase

that reduces its settling rate.
This is illustrated in Fig. 6, where the solid-phase momen-

tum balance is plotted (see Eq. 13) at different instants for the
initial solid volume fraction α0

s = 2.2%. At t = 300 s (
5 min),
the drag force and the buoyancy force (pressure force) are the
two dominant mechanisms in the whole column, except in a
very thin layer near the bottom. In this bottom layer, effective
stress starts to develop as the concentration exceeds the gelling
fraction (αgel

s = 0.025 or α
gel
s ρsg ≈ 650 kg m−2 s−2). The sus-

pension is in the hindered settling regime. At t = 15000 s (
4 h),
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Figure 5 Vertical profiles of solid volume fraction (left panel), excess pore pressure: p = pf − [patm − ρf g z] (middle panel) and mixture momen-
tum balance (right panel) at different instants for α0

s = 0.022. The red solid line ( ) represents the gravity force, the blue dash-dotted line ( )
represents the fluid pressure force and the dashed black line (- - -) represents the sum of the pressure and effective stress forces in Eq. (17)
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Figure 6 Vertical profiles of solid momentum balance (13) at different instants for α0
s = 0.022. The legend is as follows: red solid line ( ) gravity

force ; blue dash-dotted line ( ) fluid pressure force ; dashed magenta line ( ) drag force ; green circles ( ) effective stress force ; blue triangles
( ) advection force ; black dotted line (· · · ) viscous stress force and black crosses (×) sum of all contributions except gravity force

one observes a competition between the drag force, the effective
stress and the buoyancy (pressure) forces. In the upper part of
the dense layer (−0.06 ≤ z ≤ −0.045 m), the drag force and the
buoyancy are the dominant terms of the momentum balance. We
point out that the pressure term here corresponds to the buoy-
ancy including the effect of the excess pore pressure. This layer
can be considered as a “permeability layer” because the drag

forces associated with the strong excess pore pressure are the
mechanisms controlling the suspension’s settling. In the lower
part of the dense layer (−0.07 ≤ z ≤ −0.06 m), the solid-phase
momentum balance is dominated by the effective stress and the
buoyancy forces. As the effective stress is the dominant term
in the momentum balance there, this layer can be denoted as
“effective stress layer”. At t = 192000 s (
53 h), the drag force
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and the excess pore pressure have fully vanished. The equilib-
rium is obtained between the buoyancy and the effective stress;
therefore, the apparent sediment’s weight is balanced by its own
structural compressive resistance (soil skeleton) and the consol-
idation process is over. This is confirmed by the flatness of the
settling curve in Fig. 4(a) for t ≥ 5 × 104 s.

It is also interesting to note that Fig. 6 confirms Bürger
(2000)’s dimensional analysis by showing that advection and
viscous stress can be neglected in the two-phase equations
for sedimentation–consolidation problems. However, if one
wants to look at mud–flow interactions, i.e. a suspension in
sedimentation–consolidation submitted to a boundary layer flow,
the viscous stress terms should be kept in the formulation, and
turbulence models like in Hsu et al. (2007) or Torres-Freyermuth
and Hsu (2010) should be considered. This is also true for
the advection term if strong horizontal variations are to be
considered.

5 Conclusions

In this paper, a vertical one-dimensional two-phase flow
model is presented and has been extensively validated against
high- resolution experimental data (concentration profiles)
for sedimentation of non-cohesive spherical particles and
sedimentation–consolidation of mud. In the first case, the clo-
sure laws are the drag force around a single particle, modified
by the hindrance function for the fluid–particles interaction. The
particle pressure is modelled by using a Hertz contact model. In
the latter case, the Darcy drag expression is used to express the
fluid–particles interaction and the effective stress concept is intro-
duced instead of the Hertz contact model. This stress represents
the resistance of the solid skeleton to compression.

The results presented in this paper demonstrate the reliabil-
ity of the proposed model and of closure laws to quantitatively
reproduce the interface dynamics and the associated concentra-
tion profiles in both cases. Moreover, the vertical profile of excess
pore pressure is directly calculated by the model and is consis-
tent with experiments for both spherical particles and mud. In the
cohesive case, the vertical equilibrium is more complex than in
the non-cohesive one due to the formation of the solid skeleton
in the sediment bed. The proposed closure laws only depend on
sediment concentration and therefore neglect history effects on
the aggregate structure evolution. This limitation is also shown
in other classical sedimentation–consolidation models.

As claimed in the introduction of this paper, the validity of
the proposed two-phase model, which covers from the suspen-
sion to the consolidated bed, represents a major advantage of
the two-phase approach compared with the classical Kynch or
Gibson ones. Two-phase approach gives a general framework
that potentially allows studying more precisely the interaction
between an ambient current and a sedimenting and consolidat-
ing bed. Future work will concern the use of the proposed closure
laws to study mud–flow interactions in ECZs flows.
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Notation

Ak empirical coefficients for permeability closure (m s−1)
Aσ empirical coefficients for effective stress closure (N m−2)
CD drag coefficient (–)
d particle diameter (m)
dfloc floc diameter (m)
dp primary particle diameter (m)
d50 median sediment diameter (m)
d̃ dimensionless inter-particle distance (–)
E Young modulus (Pa)
g gravity acceleration vector (m s−2)
K permeability (m s−1)
Mk interfacial momentum transfer vector (kg m−2 s−2)
n fractal dimension (–)
nRZ Richardson and Zaki’s exponent (–)
pk pressure of phase k (Pa)
p̃ total pressure of the mixture (Pa)
Rp particulate Reynolds number (–)
uk velocity vector of phase k (m s−1)
um volume-averaged mixture velocity vector (m s−1)
wk vertical velocity of phase k (m s−1)
W settling velocity (m/s)
Wh settling velocity in the hindered regime (m/s)
W gel

h settling velocity at the transition between hindered and
permeability regime (m s−1)

W0 settling velocity at zero concentration (m s−1)
Zup

i upper interface vertical position (m)
Zlow

i lower interface vertical position (m)

Greek symbols

αk volume fraction of phase k (–)
α0

s initial solid volume fraction (–)
α∗

s percolation volume fraction (–)
αmax

s maximum packing volume fraction (–)
α

gel
s gel fraction (–)

β amplification factor for viscosity (–)
z grid size (m)
t time step (s)
p excess pore pressure (Pa)
μf fluid dynamical viscosity (kg m−1 s−1)
μmix mixture dynamical viscosity (kg m−1 s−1)
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ν Poisson coefficient (–)
φ volume fraction of flocs (–)
φmax maximum volume fraction of flocs (–)
ρk density of phase k (kg m−3)
ρfloc density of flocs (–)
σe effective stress (Pa)
σ0 effective stress modulus (Pa)
	 particle pressure modulus (Pa)
τk stress tensor of phase tensor k (Pa)
τv mixture’s viscous shear stress tensor (Pa)
τpp frictional–collisional shear stress tensor (Pa)
ξ exponent for the particle pressure closure (–)

References

Bakhtyar, R., Yeganeh-Bakhtiary, A., Barry, D., Ghaheri, A.
(2009). Two-phase hydrodynamic and sediment transport
modeling of wave-generated sheet flow. Adv. Water Resour.
32(8), 1267–1283.

Barbry, N., Guillou, S., Nguyen, K.D. (2000). A two-phase
approach for computing sediment transport in estuarine zones.
C. R. Acad. Sci. (série II B) 328(11), 793–799.

Bartholomeeusen, G., Sills, G.C., Znidarcic, D., Van Kesteren,
W., Merckelbach, L.M., Pyke, R., Carrier, W.K., Lin, H., Pen-
dumadu, D., Winterwerp, H., Masala, S., Chan, D. (2000).
SIDERE: Numerical prediction of large-strain consolidation.
Géotechnique 52(9), 639–648.

Been, K., Sills, G.C. (1981). Self-weight consolidation of soft
soils: An experimental and theoretical study. Géotechnique
31(4), 519–535.

Berzi, D., Jenkins, J.T. (2008). A theoretical analysis of free-
surface flows of saturated granular-liquid mixtures. J. Fluid
Mech. 608, 393–410.

Bürger, R. (2000). Phenomenological foundation and mathemat-
ical theory of sedimentation–consolidation processes. Chem.
Eng. J. 80, 177–188.

Buscall, R. (1990). The sedimentation of concentrated colloidal
suspensions. Colloids Surf. 43(1), 33–53.

Camenen, B., Pham Van Bang, D. (2011). Modelling the settling
of suspended sediments for concentrations close to the gelling
concentration. Cont. Shelf Res. 31, 106–116.

Chakraborti, R., Gardner, K., Atkinson, J., Van Benschoten,
J. (2003). Changes in fractal dimension during aggregation.
Water Res. 37, 873–883.

Chauchat, J., Guillou, S. (2008). On turbulence closures for two-
phase sediment-laden flows models. J. Geophys. Res. 113,
C11017.

Chauchat, J., Médale, M. (2010). A 3D numerical model for
incompressible two-phase flow of a granular bed submitted to
a laminar shearing flow. Comput. Method Appl. Mech. Eng.
199, 439–449.

Concha, F., Bustos, M.C., Barrientos, A. (1996). Phenomeno-
logical theory of sedimentation. In Sedimentation of small

particles in a viscous fluid, 51–96, E. Tory, ed. Computational
Mechanics Publications, Southampton.

Dankers, P., Winterwerp, J. (2007). Hindered settling of
mud flocs: Theory and validation. Cont. Shelf Res. 27(14),
1893–1907.

Dong, P., Zhang, K. (2002). Intense near-bed sediment motions
in waves and currents. Coast. Eng. 45(2), 75–87.

Drew, D.A. (1983). Mathematical modelling of two-phase flow.
J. Appl. Mech. 15, 261–291.

Drew, D.A., Lahey, R.T. (1993). Analytical modelling of
multiphase-flow. In Particulate two-phase flows series on
chemical engineering, 509–566, Rocco, ed. Butterworth–
Heinemann, Boston, MA.

Einstein, A. (1906). Eine neue bestimmung der molekuldimen-
sionen. Ann. Phys. 19, 289–306.

Frankel, N.A., Acrivos, A. (1967). On the viscosity of a con-
centrated suspension of solid spheres. Chem. Eng. Sci. 22(6),
847–853.

Gibson, R.E., Englund, G.L., Hussey, M.J.L. (1967). The the-
ory of one-dimensional consolidation of saturated clays.
Géotechnique 17(3), 261–273.

Graham, A.L. (1981). On the viscosity of suspensions of solid
spheres. Appl. Sci. Res. 37(3-4), 275–286.

Greimann, B., Holly, F. (2001). Two-phase flow analysis of
concentration profile. J. Hydraulic Eng. 127, 753–761.

Greimann, B.P., Muste, M., Jr., Holly, F.M. (1999). Two-phase
formulation of suspended sediment transport. J. Hydraulic
Res. 37(4), 479–500.

Hsu, T., Jenkins, J.T., Liu, L.F. (2003). On two-phase sediment
transport: Dilute flow. J. Geophys. Res. 108.

Hsu, T.-J., Jenkins, J.T., Liu, Philip, L.-F. (2004). On two-phase
sediment transport: Sheet flow of massive particles. Proc. Roy.
Soc. A – Math. Phys. 460(2048), 2223–2250.

Hsu, T.J., Traykovski, P.A., Kineke, G.C. (2007). On model-
ing boundary layer and gravity-driven fluid mud transport.
J. Geophys. Res. 112(C4).

Jackson, R. (2000). The dynamics of fluidized particles. Cam-
bridge University Press, Cambridge.

Jha, S.K., Bombardelli, F.A. (2010). Toward two-phase flow
modeling of nondilute sediment transport in open channels.
J. Geophys. Res. 115(F3).

Jiang, J., Law, A. W.-K., Cheng, N.-S. (2004). Two-phase model-
ing of suspended sediment distribution in open channel flows.
J. Hydraulic Res. 42(3), 273–281.

Kynch, G. (1952). A theory of sedimentation. Trans. Faraday
Soc. 48, 166–176.

Le Hir, P. (1994). Fluid and sediment “integrated” modelling
application to fluid mud flows in estuaries. 4th Nearshore
and Estuarine Cohesive Sediment Tranport Conference, Inter-
coh’94, Wallingford, 417–428, N. Burt, R. Parker, J. Watts,
eds. John Wiley & Sons, Chichester.

Longo, S. (2005). Two-phase flow modeling of sediment motion
in sheet-flows above plane beds. J. Hydraulic. Eng. 131(5),
366–379.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

ae
n]

 a
t 0

4:
53

 1
6 

A
pr

il 
20

13
 



Journal of Hydraulic Research, iFirst (2013) Two-phase model for consolidation 13

Merckelbach, L.M., Kranenburg, C. (2004). Determining effec-
tive stress and permeability equations for soft mud from simple
laboratory experiments. Géotechnique 54(9), 581–591.

Nguyen, K.D., Guillou, S., Chauchat, J., Barbry, N. (2009). A
two-phase numerical model for suspended-sediment transport
in estuaries. Adv. Water Resour. 32(8), 1187–1196.

Nguyen, D.H., Levy, F., Bang, D.P.V., Guillou, S., Nguyen, K.D.,
Chauchat, J. (2012). Simulation of dredged sediment releases
into homogeneous water using a two-phase model. Adv. Water
Resour. 48, 102–112.

Nicolai, H., Herzhaft, B., Hinch, E.J., Oger, L., Guazzelli, E.
(1995). Particle velocity fluctuations and hydrodynamic self-
diffusion of sedimenting non-brownian spheres. Phys. Fluids
7(12).

Pham Van Bang, D., Lefrançois, E., Sergent, P., Bertrand, F.
(2008). MRI experimental and finite elements modelling of
the sedimentation–consolidation of mud. La Houille Blanche
3, 39–44.

Richardson, J.F., Zaki, W.N. (1954). Sedimentation and fluidiza-
tion: Part i. Trans. Instn. Chem. Eng. 32.

Teisson, C. (1991). Cohesive suspended sediment transport: Fea-
sibility and limitations of numerical modeling. J. Hydraulic
Res. 29(6), 755–769.

Teisson, C., Simonin, O., Galland, J.C., Laurence, D. (1992).
Turbulence and mud sedimentation: A Reynolds stress model
and a two-phase flow model. Proc. 23rd Int. Conf. Coastal
Engineering, 2853–2866, Venice, Italy. Billy L. Edge, ed.
ASCE Publisher ASCE, New York.

Terzaghi, K. (1923). Die Berechnung der Durchlassigkeitsz-
iffer des Tones aus dem Verlauf der hydrodynamischen
Spannungerscheinungen. Sitz. Akad. Wissen. Wien, Math.
Naturwiss. Kl., Abt. IIa. 132, 125–138.

Thiébot, J., Guillou, S., Brun-Cottan, J.-C. (2011). An optimisa-
tion method for determining permeability and effective stress
relationships of consolidating cohesive sediment deposits.
Cont. Shelf Res. 31(10), S117–S123.

Toorman, E.A. (1996). Sedimentation and self-weight con-
solidation: General unifying theory. Géotechnique 46(1),
103–113.

Toorman, E.A. (1999). Sedimentation and self-weight con-
solidation: Constitutive equations and numerical modelling.
Géotechnique 49(6), 709–726.

Toorman, E.A., Berlamont, J.E. (1993). Mathematical modeling
of cohesive sediment settling and consolidation. In Nearshore
and estuarine cohesive sediment transport, coastal estuarine
studies, Vol. 42, 167–184. A.J. Mehta, ed. AGU, Washington,
DC.

Torres-Freyermuth, A., Hsu, T.-J. (2010). On the dynamics of
wave-mud interaction: A numerical study. J. Geophys. Res.
115(C7).

Van Leussen, W. (1994). Estuarine macroflocs and their role in
fine-grained sediment transport. Ph.D. thesis, University of
Utrecht, The Netherlands.

Winterwerp, J., Van Kesteren, W. (2004). Introduction to the
physics of cohesive sediment dynamics in the marine environ-
ment. Elsevier, Amsterdam.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
C

ae
n]

 a
t 0

4:
53

 1
6 

A
pr

il 
20

13
 




