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A numerical model for the simulation of incompressible two-phase flows of a flat granular bed submitted
to a laminar shearing flow is presented, considering a two-fluid model and a mixed-fluid one. The gov-
erning equations are discretized by a finite element method and a penalisation method is introduced
to cope with the incompressibility constraint. A regularisation technique is used to deal with the
visco-plastic behaviour of the granular phase. Validations are carried out on three flow test cases: a Bing-
ham fluid between two infinite parallel planes, a Bingham fluid in a square lid-driven cavity and a New-
tonian fluid over a granular bed in a two-dimensional configuration, for which we compare our numerical
results with existing analytical or numerical results. The accuracy and efficiency of the numerical models
have been compared for the two formulations of the two-phase flow model. It turns out that the two-fluid
model requires ten times more CPU time than the mixed-fluid one for a comparable accuracy, which can
be achieved provided one takes a smaller regularisation parameter in the latter model. Finally, three-
dimensional computations are presented for the flow of a Newtonian fluid over a granular bed in a square
and circular cross-section ducts.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

Particles transport occurs in a variety of environmental and
industrial flows such as sediment transport in rivers or at coasts,
hydrate formation in pipelines (oil production) or granular trans-
port in food or pharmaceutical industries. There are mainly two
modes for particles to be transported by a flow: suspended-load
or bed-load. Suspended-load is the part of the load where particles
are carried without contact with the bed. On the other way, bed-
load is the part of the load that is carried with intermittent contact
with the bed, by rolling, sliding and bouncing [15]. In this paper,
we focus only on the bed-load transport and more precisely in lam-
inar flow conditions.

The bed-load transport is by nature a two-phase problem
(fluid–particles). The particles of the bed are moving depending
on the value of the shear stress exerted by the fluid, the shear
stress being usually made dimensionless by the apparent weight
of a single particle the so-called Shields number h [31]. If the
Shields number based on the fluid bed shear stress is lower than
a critical value hc the particle flux is zero otherwise it evolves as
a function of h and hc [13,4,32,11,28]. The bed-load is usually mod-
elled as a two-layer problem: a pure fluid layer at the top and a
fluid–particles mixture layer at the bottom, the two layers being
ll rights reserved.
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separated by the bed upper surface. The fluid motion in the upper
layer is solved assuming weak interactions between the two layers.
From this calculation the fluid bed shear stress is known and the
particle flux in the lower layer is deduced from an algebraic rela-
tionship. A different approach for the bed-load has been proposed
by Ouriemi et al. [26]. The authors have proposed some closures of
the two-phase model which are appropriate to a situation in which
the sediment can be considered as a mobile granular medium
where the particles are in contact: the interphase force is then
Darcy drag and buoyancy, the fluid phase stress is of Newtonian
form, and the particle phase stress is described by a granular rhe-
ology (Coulomb friction).

The granular rheology shares some properties with visco-plastic
rheology, in particular it exhibits a threshold of motion due to the
friction between grains. The archetype model for visco-plastic
material is the Bingham model [9]. It is possible to identify the
Coulomb friction model for the granular media with the Bingham
model in which the fluid viscosity vanishes. The simulation of
Bingham fluid flows have been the subject of many papers in the
literature (see [12] for a recent review). There are mainly two ap-
proaches to deal with the yield stress in the Bingham model: the
Augmented Lagrangian technique [14,17] and the regularisation
technique [8,29,16]. In the Augmented Lagrangian technique, the
discontinuity in the Bingham constitutive relationship is treated
by introducing a new primal variable and a Lagrange multiplier
that enforces it to be equal to the strain rate tensor. This method
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is particularly accurate to capture and predict the yielded regions
of the flow. In the regularisation approach, the Bingham viscosity
is ‘‘regularised” by adding a small quantity to the magnitude of
the rate-of-strain tensor in the denominator. The solid regime is re-
placed by a very viscous one. But the cost overrun for the Aug-
mented Lagrangian Methods compared with regularization one is
obvious in terms of memory due to the introduction of an addi-
tional tensor variable (the ‘‘true” strain rate), whereas in terms of
CPU time the comparison is not known a priori. Actually, the regu-
larized problem is equivalent to the flow of a shear thinning mate-
rial that induces additional non-linearity in the equations. The
computation of which can significantly increase the CPU time
and do not allow to conclude on the most efficient method. How-
ever, let us mention that the implementation of the regularization
method is easier than the Augmented Lagrangian one. Therefore
we choose the regularisation technique to deal with the yield
stress in our two-phase flow model. This method is advantageous
for its simplicity but one must be careful of the induced creeping
flow in the yielded regions that arises when using regularisation.

In this paper we present a three-dimensional finite element
method (FEM) model of the two-phase incompressible flow model
for bed-load transport presented by Ouriemi et al. [26]. Our first
concern is to propose a numerical model able to predict accurately
the bed-load transport in laminar shearing flows. It is restricted to
the cases where the granular bed does not change its shape in the
course of time, consequently ripples and dunes formation are be-
yond the scope of this paper. We have considered two formulations
of the two-phase model. In the two-fluid model the unknowns are
the velocities and pressure in each phase (fluid and particles)
whereas in the mixed-fluid model the fluid–particles mixture is
only considered assuming that fluid and particles have the same
velocity. The computational efficiency of the numerical models
associated with both formulations is investigated in terms of accu-
racy, CPU time and memory usage. The two-phase flow model
equations and the numerical modelling are presented in Section 2.
Section 3 is devoted to the validation of the model by comparison
with analytical solutions or published numerical results. Firstly, we
have validated the numerical model for Bingham fluid flows on
two test cases. We have compared the numerical model with an
analytical solution for the flow of a Bingham fluid between two
infinite parallel planes. We have also compared our model with
the numerical results of Mitsoulis and Zisis [24] for the flow of a
Bingham fluid in a square lid-driven cavity. Then we have validated
the numerical model with the analytical solution presented by
Ouriemi et al. [26] for the flow of a Newtonian fluid over a granular
bed in a two-dimensional configuration. After the validation, we
present in Section 4 the application of the two-phase model to sim-
ulate the bed-load transport in three-dimensional configurations, a
square cross-section and a circular cross-section ducts. Finally, we
give concluding remarks in Section 5.
2. The two-phase flow model

Following Ouriemi et al. [26], we present here the formulation
of the two-phase flow model for bed-load transport in laminar
shearing flows.

2.1. Mathematical formulation

2.1.1. Governing equations
Given a cartesian coordinate system ðO; x; y; zÞ where x repre-

sents the stream-wise direction, y the lateral direction and z the
vertical upward direction, the velocity vector of the k phase and
its cartesian components are respectively denoted by

uk
!
¼ ðuk;vk;wkÞ. k is taken to be f for the fluid phase and p for
the particulate one. We start from Jackson’s equations [21] to get
the set of governing equations for the two-phase problem.

For the fluid phase, the continuity equation reads:

@�
@t
þr � �uf

!� �
¼ 0; ð1Þ

where � designates the volume fraction of the fluid phase. The par-
ticulate phase continuity equation has the same form:

@/
@t
þr � / up

!� �
¼ 0; ð2Þ

where / is the particulate phase volume fraction. The global volume
conservation imposes /þ � ¼ 1.

The momentum equations for the fluid and particulate phases
are respectively:

qf
@�uf

!

@t
þr � �uf

!
�uf
!� �2

4
3
5 ¼ r � ðrf Þ � n~f þ �qf~g; ð3Þ

qp
@/ up

!

@t
þr � / up

!
�up
!� �2

4
3
5 ¼ r � ðrpÞ þ n~f þ /qp~g; ð4Þ

where rf and rp represent the stress tensor associated with the
fluid and particulate phases respectively. n~f represents the average
force exerted by the fluid on the particles and~g is the gravity accel-
eration vector.

The set of partial differential Eqs. (1)–(4) introduces more un-
knowns than the number of equations then closure relationships
are needed to solve the problem. These relations are of two types:
fluid–particle interactions and stress tensor expressions.

2.1.2. Closures
2.1.2.1. Interaction term. Following Jackson [21] the average force
exerted by the fluid on the particles can be decomposed in two
contributions. The first one corresponds to the generalized buoy-
ancy force and the second one gathers all the remaining
contributions.

n~f ¼ /r � ðrf Þ þ n f 1
!

ð5Þ

For a viscous fluid flow in a porous media, the remaining contribu-
tions reduce to the viscous drag force due to the relative motion be-
tween phases. Using the Darcy law, the term n f 1

!
can be written:

n f 1
!
¼ g

�2

K
uf
!
�up
!� �

; ð6Þ

where g is the dynamic viscosity of the pure fluid. The coefficient of
permeability is empirically linked to � and the particle diameter d
by the Carman–Kozeny relationship:

K ¼ �3d2

kCKð1� �Þ2
ð7Þ

A typical value for kCK � 180 is proposed by Happel and Brenner
[20] and Goharzadeh et al. [18].

2.1.2.2. Stress tensors. The fluid phase has been assumed to be a
Newtonian viscous liquid in which the Einstein dilute viscosity for-
mula has been chosen to be applied to the concentrated situation:

rf ¼ �pf I þ sf ¼ �pf I þ ge rum
!
þðr um

!
ÞT

� �
; ð8Þ

where ge ¼ gð1þ 5/=2Þ is the effective viscosity of the mixture and

um
!
¼ �uf

!
þ/ up

!
is the velocity of the mixture.



Fig. 1. Sketch of domain definition for the fluid–particle problem.
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The particle phase has been assumed to be described by Cou-
lomb solid friction in which the extra stress is proportional to
the particle pressure.

rp ¼ �ppI þ sp ð9Þ

In the frame of the three-dimensional model we express the Cou-
lomb friction model in tensorial form following the idea of Jop
et al. [22]:

sp ¼ gpðk _cpk; ppÞ _cp; ð10Þ

with

gpðk _cpk;ppÞ ¼ lpp

k _cpk
; ð11Þ

where the rate-of-strain tensor _cp is defined as _cp ¼ rup
!
þðrup

!
ÞT

and its magnitude is given by the square root of its second invariant

k _cpk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2 Trð _c2Þ

q
. We emphasise that this expression in the one-

dimensional case reduces to the classical Coulomb expression:
sp

xz ¼ lpp.

2.1.3. Dimensionless equations
In the preceding subsections we have presented the ingredients

of the two-phase model for bed-load transport, we summarise here
the model equations to be solved. We consider two formulations of
the model. The first one, called the two-fluid model, is based on the
solution of mass and momentum conservation equations for each
phase (12). The second one, called the mixed-fluid model, is based
on the solution of mass and momentum equations for the mixture
(13) (i.e. a single effective phase is considered). In this latter formu-
lation, the mass and momentum equations are simply obtained by
summing the corresponding equations over each phase (fluid and
particles).

In the following, we assume that the volume fractions are con-
stant in space and time meaning that the interface between the
fluid–particle mixture and the pure fluid region is fixed and no dila-
tation occurs. This assumption implies that fluid and particulate
phase as well as the mixture are incompressible. We also express
the equations for the fluid phase in terms of the mixture velocity.

Following Ouriemi et al. [26] we make all the values dimension-
less by scaling the length by H, the height of the flow, and the stresses
by DqgH, and therefore the time by g=DqgH where Dq ¼ qp � qf .
Using these scales one obtains the following dimensionless equa-
tions for the two formulations of the two-phase model.

2.1.3.1. Two-fluid model.
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In these equations, Rq ¼ qf =qp represents the density ratio and
Ga ¼ d3qf Dqg=g2 is the Galileo number where d is the particle
diameter. The Galileo number is a Reynolds number based on the
settling velocity of particles.
2.1.3.2. Mixed-fluid model.

r � um
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>>>>>>:
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2.2. Numerical model

The finite element method (FEM) leads to the discretisation of
the variational formulation of Eq. (12) for the two-fluid model
and on Eq. (13) for the mixed-fluid model.

2.2.1. Weak formulations
2.2.1.1. Weak formulation for the two-fluid model. Let us define the
physical domains associated with the pure fluid and the fluid–par-
ticles mixture by Xf and Xp respectively and their respective
boundaries by Cf and Cp (see Fig. 1). From the previous system
of partial differential equations (12) one obtains the following
weak formulation of the momentum equations for the two-fluid
formulation [10,30]:

Find um
h

!
2 Uh and pf 2 Qh satisfying (14) and (15) and find

up
h

!
2 Uh and pp 2 Qh satisfying (16) and (17) 8 du

!
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2.2.1.2. Weak formulation for the mixed-fluid model. For the mixed-
fluid model, the weak formulation is given by:
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2.2.2. Algorithms associated with the two formulations
The first algorithm dealing with the two-fluid formulation is

based on the solution of the system (14)–(17) in a weakly coupled
way. For each Newton–Raphson iteration we solve for the fluid
momentum Eq. (15) whereas the particulate phase velocity is ta-
ken at its previous iteration value. From the value of the mixture
velocity obtained at this stage the particulate phase velocity is
computed by solving Eq. (17). On the other hand the algorithm de-
voted to the mixed-fluid formulation is based on the solution of the
system (18) and (19).

The non-linearities in the governing equations are solved by a
Newton–Raphson algorithm by taking the first variation of the var-
iational formulations (15)–(17), (19). Only the advective terms and
the particle stress term (visco-plastic) induce a contribution in the
first variation of the variational formulations.

2.3. Regularisation technique

The stress tensor for the particulate phase (10) reveals the pres-
ence of a yield stress that depends on the granular pressure. The
mixed-fluid model (13) can be identified as a Bingham fluid in
which the yield stress vary linearly with the granular pressure. This
remark allows us to use some well-known methods derived for
Bingham flows to deal with the visco-plastic behaviour of the
fluid–particle mixture.

As with a Bingham model, the particulate viscosity diverges
when the shear rate tends toward zero, rising evident numerical
problems. The idea of a regularisation technique from a mathemat-
ical point of view is to smooth the divergence of the viscosity func-
tion. The consequence on the computational behaviour of the yield
stress fluid results in a very viscous fluid at zero rate of strain in-
stead of a pure rigid body behaviour. One of the easiest solutions
to regularise the viscosity is the following [16]:

gð _cÞ ¼ lþ s0

k _ck þ k
;

where k is the regularisation parameter ðk� 1Þ and s0 is the yield
stress. We have chosen this expression in our implementation of
the numerical model. A review of regularisation technique can be
found in Frigaard and Nouar[16].

2.4. Implementation

In our implementation, we use piecewise quadratic polynomial
approximation for the velocity and piecewise linear discontinuous
approximation for the pressure. In the computations, we have em-
ployed a 27-nodes hexahedra element (H27) for the velocities. The
incompressibility constraint is solved by a penalisation method.
The code is developed with the PETSc library [6,5,7] which pro-
vides several parallel iterative and direct solvers.

As we use a penalisation method to cope with the incompress-
ibility constraint, all the algebraic systems have been solved by the
MUMPS direct solver [2,1,3] with a penalty parameter set to 109 for
all the simulations presented in this paper.
3. Validations

In this section we address a twofold goal for the validation of
our numerical model. The first one concerns the implementation
of visco-plastic flow using a regularisation technique (Section 3.1)
and the second one deals with the implementation of the two for-
mulations associated with the two-fluid model and the mixed-fluid
one (Section 3.2). In each case we discuss the accuracy and numer-
ical efficiency of the implemented numerical model.

3.1. Test cases for Bingham fluid flows

We have begun with test cases on Bingham fluid flows because
of the close link that exists between the Coulomb friction for the
particulate phase (10) and the Bingham fluid model. These two
models exhibit the presence of a yield stress. This is particularly
important to validate the implementation of the regularisation
on ‘‘well-known” configurations (Bingham fluid flows) in order to
avoid questions on it when performing two-phase flows simula-
tions. We have done two test cases. The first one is the flow of a
Bingham fluid between two infinite parallel planes. The second
one is the flow of a Bingham fluid in a square lid-driven cavity.

3.1.1. Flow of a Bingham fluid between two infinite plane
In this first test case we study the flow of a Bingham fluid be-

tween two infinite parallel planes. This is a 2D problem where
the longitudinal velocity component only depends on the vertical
coordinate. This simple problem is particularly interesting for the
validation since it possesses an analytical solution for the longitu-
dinal velocity (See [19, pp. 219–220]). Fig. 2 shows the sketch of
the problem and boundary conditions. The simulation are per-
formed using a regularisation method with a regularisation param-
eter k ¼ 10�4s�1 and the Bingham number (Bn) is equal to 10.

Fig. 3a shows the longitudinal velocity profiles for the numeri-
cal solution and the analytical one. In order to study the spatial
convergence of the numerical model we have considered five
meshes. The ratio of the mesh size in the three directions have
been kept constant Dx=Dz ¼ Dx=Dy ¼ 10 to avoid errors induced



Fig. 2. Sketch of the problem and boundary conditions of a Bingham fluid between
two infinite parallel plane in 2D.
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by the distortion of the mesh. The five mesh sizes are reported in
Table 1 as well as the CPU time requirements. All the simulations
have been performed on a cluster composed of AMD 280 proces-
sors at 2.4 GHz and 8 Go of RAM by node. The CPU time evolution
with the mesh size is more or less proportional to the number of
degrees of freedom. Fig. 3b shows the Root Mean Square (RMS) er-
Fig. 3. Flow of a Bingham fluid between two infinite parallel pla
ror between the numerical solution and the analytical one versus
the mesh size (h, defined as an element height Dz).

The longitudinal velocity profiles obtained by numerical simu-
lation are in close agreement with the analytical solution for the
five meshes. Fig. 3b reveals that the spatial order of convergence
is approximately of order three which corresponds to the optimal
convergence rate of the method (second order approximation)
[25,10,30,33]. This particularly good spatial convergence rate can
be explained by the fact that the analytic solution is quadratic in
the plastic region and constant in the plug located in the central re-
gion of the flow. Therefore our tri-quadratic finite element approx-
imation is able to represent at convergence this analytical solution.
So, this test case reveals that a correct implementation of the mod-
el to simulate Bingham fluid flows as the optimal asymptotic order
of convergence has been reached, see Fig. 3b.

3.1.2. Bingham flow in a lid-driven cavity
The second test case concerns the flow of a Bingham fluid in a

square lid-driven cavity. Its main goal is to qualitatively validate
the 3D implementation of the regularisation technique. The sketch
of the lid-driven cavity is presented in Fig. 4. A tangential velocity
is imposed at the top of the cavity whereas the three other bound-
aries are considered as walls. The geometry is a unit square cavity
ne: longitudinal velocity profiles (a) and error analysis (b).



Table 1
Mesh definition and CPU time per iteration.

Mesh definition (NX � NY � NZ) 3 � 1 � 10 6 � 1 � 20 12 � 1 � 40 24 � 1 � 80 48 � 1 � 160

Degrees of freedom 1323 4797 18,225 71,001 280,233
CPU time (s/it. on 8 proc.) 0.67 1.88 6.98 27.79 116.74

444 J. Chauchat, M. Médale / Comput. Methods Appl. Mech. Engrg. 199 (2010) 439–449
and the velocity at the top is also chosen to be unity. This test case
has been extensively studied and a great amount of literature on
visco-plastic flows exists concerning this problem [24,23,12]. We
have chosen the Mitsoulis and Zisis [24] results as reference who
also used a FEM model and a regularisation technique to deal with
the yield stress. In the following simulations we have neglected
inertial effects (i.e. Re = 0). The dimensionless number controlling
the flow is the Bingham number ðBn ¼ s0H=gUÞ where s0 is the
yield stress.

The mesh is composed with 60 � 1 � 60 quadratic elements
(H27). The regularisation parameter is fixed to k ¼ 10�4 s�1. This
value is equivalent to the one chosen by Mitsoulis and Zisis [24]
but the regularisation technique is different. Mitsoulis and Zisis
[24] used the Papanastasiou [29] regularisation whereas we have
used the simple regularisation (Cf. 2.3). In the simulations the
Bingham number has been considered in the range [0–20] to vali-
date our model.

Fig. 5 shows the velocity fields in the cavity for various Bingham
number (Bn = 0, 2 and 20). We observe that a rigid region appears
at the bottom of the cavity as the Bingham number is increased.
Also the velocity decreases as well as the vortex intensity.

Fig. 6 shows the yield zone position in the lid-driven cavity for
various Bingham number. We compare our results with the results
Fig. 4. Sketch of the lid-driven cavity.

Fig. 5. Velocity vector fields – Bin
from Mitsoulis and Zisis [24]. The position of the yield zone is de-
fined as the position where the material flows (yields) i.e. where
the magnitude of the stress tensor ksk exceeds the yield stress
s0 ðkskP s0Þ. The results obtained are in good agreement with
Mitsoulis and Zisis [24] and validate the implementation of the
Bingham model in our FEM model.

As a conclusion on the two Bingham fluid flow test cases one
can notice that the regularisation technique implemented give sat-
isfactorily accurate results for Bingham number in the range 0–20
for a regularisation parameter k ¼ 10�4s�1. Moreover with this
numerical parameter a third order (optimal) asymptotic conver-
gence rate has been reached for our tri-quadratic finite element
approximation.

3.2. Two-phase simulation of bed-load transport in 2D

In this subsection we present results on the flow of a Newtonian
fluid over a granular bed. The aim of this subsection is first to val-
idate quantitatively the two formulations of the two-phase flow
model by comparison with the analytical solution of Ouriemi
et al. [26] for the bed-load transport in laminar shearing flows
and secondly to assess computational efficiency of the numerical
model associated with both formulations.

The sketch of the problem and boundary conditions are given in
Fig. 7. The lower half of the domain is filled with particles at
/ ¼ 0:55 immersed in a fluid and the upper part is filled with pure
fluid ð/ ¼ 0Þ. Therefore in this problem the values of the dimen-
sionless numbers are: Re ¼ 2� 10�2; Ga ¼ 11; Rq ¼ 0:4 and
d=H ¼ 30. There are several choice for the definition of the Bing-
ham number in the bed-load problem. Actually, in dense granular
media the yield stress varies with the normal stress. Therefore one
has to choose a pertinent value of the yield stress. Here we choose
the yield stress corresponding to the first granular layer, this choice
is natural since the relevant length scale for the estimation of the
yield stress is the height of the moving granular bed that is of
the order of few grain diameters. Assuming a hydrostatic pressure
for the granular phase, it reads:

s0 ¼ lsDqgd;
gham varying from 0 to 20.
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where d is the particle diameter. With this yield stress definition the
value of the Bingham number in the bed-load problem considered
here is Bn ¼ 2� 104. This value is greatly higher than the one used
in the validation tests for Bingham fluid flows (Bn # 10) and implies
accordingly a smaller value of k than the one used in previous Bing-
ham flow test cases. So the regularisation parameter is set to
k ¼ 10�6 s�1 when its value is not mentioned in the figure captions.

We solved by FEM the two formulations of the two-phase flow
model (see Section 2.1.3) corresponding to the coupled system
(15)–(17) for the two-fluid model and Eq. (19) for the mixed-fluid
model. Numerical solutions for the two-fluid model and the
mixed-fluid model are presented in Fig. 8 for a 6 � 1 � 40 mesh
Fig. 6. Comparison of the present numerical model results with those from Mitsoulis an
number (Bn = 2, 5 and 20).
with a requested absolute residual lower than 10�11 per degree
of freedom.

Fig. 8a and b presents the comparison of the horizontal velocity
profiles obtained for the two formulations of the two-phase flow
model (two-fluid and mixed-fluid) by numerical simulations com-
pared with the analytical solution proposed by Ouriemi et al. [26].
In both figures the black solid line represents the analytical solu-
tion. A good agreement can be noticed between the numerical re-
sults and the analytical solution which validate the FEM model for
the bed-load transport in a 2D configuration.

Moreover we have performed a spatial convergence analysis
for both formulations (see Fig. 9). Concerning the two-fluid model
d Zisis [24] for the yield zone position in the lid-driven cavity for various Bingham



Fig. 7. Sketch of the flow of a Newtonian fluid over a granular bed.

Fig. 8. Comparison of the longitudinal velocity profiles for the flow of a Newtonian fluid over a granular bed between two infinite parallel planes obtained by numerical
simulations (two-fluid model) with the analytical solution of Ouriemi et al. [26].

Fig. 9. RMS error against analytical solution for the flow of a Newtonian fluid over a
moving granular bed between two infinite parallel planes: ep and ef stands for the
particulate phase and the fluid phase error respectively for the two-fluid model
whereas em designates the mixture velocity error for the mixed-fluid model. The
value in brackets is the value of the regularisation parameter k. The RMS error is

defined as: e ¼ 1
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1ðUi � Uana

i Þ
2

q
where N is the number of nodes in the mesh.
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solution the spatial convergence is of order one. Two hypotheses
could explain the first order convergence, the presence of a pre-
dominant Darcy term in the momentum equations and the regu-
larisation technique applied to the particulate phase rheology.
Moreover one can observe that the error on the particulate phase
velocity is greater than the fluid one. Therefore the difference
could be attributed to the regularisation technique that can be re-
duced using a smaller regularisation parameter k. For the mixed-
fluid model solution a third order spatial convergence is reached
for the coarsest meshes where the discretisation error dominates.
On the other hand for finer meshes the order of convergence re-
duces and tends to a first order one in the region where it is dom-
inated by the modelling error introduced by the regularisation
technique. One can also notice that the RMS error is one order
of magnitude greater than for the two-fluid model solution for
the same regularisation parameter as in the two-fluid model.
Reducing the regularisation parameter k by one order of magni-
tude for the mixed-fluid model reduces the error accordingly
(see Fig. 9). Therefore the same accuracy as the two-fluid model
is recovered but with a tenfold CPU time reduction for the
mixed-fluid model compared with the former formulation (see
Table 2). We point out that the CPU time for the mixed-fluid
model with a regularisation parameter k ¼ 10�7 is only 20% high-
er than the one with k ¼ 10�6 whereas the error is reduced by
one order of magnitude. More surprisingly, it takes the same
CPU time for two uniformly refined meshes for a comparable
accuracy solution (see Table 2). Indeed the iteration count for
the finest mesh is five times less than for the coarser meanwhile
the CPU time per iteration is five times higher.



Table 2
CPU time and number of iterations.

Mesh definition NX � NY � NZ 12 � 1 � 80 24 � 1 � 160

Two-fluid model DOFa 54450 212562

k ¼ 10�6 Niterb 1943 206

CPU time (s) 5682 5476

Mixed-fluid model DOF 36225 141561

k ¼ 10�6 Niter 269 54

CPU time (s) 438 473

k ¼ 10�7 Niter 253 75

CPU time (s) 453 589

a DOF: degrees of freedom.
b Niter: number of iterations.
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Consequently the two-fluid model is much more expensive (ten
times in CPU time) than the mixed-fluid one for a comparable
accuracy provided one takes a regularisation parameter sufficiently
small (one order of magnitude smaller than in the two-fluid mod-
el). But one should keep in mind that the mixed-fluid model is
based on the strong assumption of zero relative velocity between
Fig. 11. Mesh sensitivity of the velocity profiles obtained by numerical simulations
6 � 40 � 80).

Fig. 10. Velocity profile obtained by numerical simulations with the mixed-fluid
model for the square cross-section duct (6 � 20 � 40).
the fluid and particulate phases, which could be restrictive in ac-
tual problems.

It turns out from the results obtained in this section that the
modelling error associated with the implemented regularisation
technique is connected to the regularisation parameter value k.
Therefore in order to achieve computations with controlled accu-
racy we suggest to link the value of the regularisation parameter
to the Bingham number according to the following empirical rela-
tionship: k ¼ min 10�4; 10�4

Bn

� �
.

4. Two-phase simulation of bed-load transport in 3D
configuration

We have shown in the last section the convergence of the two-
phase numerical model compared with analytical solution for a
two-dimensional configuration. We now apply the model to
three-dimensional configurations: a square and a circular cross-
section ducts. As in the previous test case the values of the dimen-
with the mixed-fluid model for the square cross-section duct (6 � 20 � 40 and

Fig. 12. Velocity profile obtained by numerical simulations with the two-fluid
model for the square cross-section duct (6 � 20 � 40). The fluid phase velocity is in
blue and the particulate phase velocity is in red. An offset of 10�3 has been added to
the velocity of the particulate phase (up) to make it visible. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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sionless numbers are: Re ¼ 2� 10�2; Ga ¼ 11; Rq ¼ 0:4; d=H ¼ 30
and Bn ¼ 2� 104. However the characteristic length in the defini-
tion of the dimensionless numbers is the side length for the square
duct whereas it is the diameter in the cylindrical one.

4.1. Square section duct

We have performed simulations for a square cross-section duct
with two meshes: 6 � 20 � 40 and 6 � 40 � 80 elements uniformly
distributed, only the half of the domain has been solved in the
transverse direction for obvious symmetry reasons. Fig. 10 shows
the velocity profile in a cross-section of the duct. The contour col-
ors represent the x-velocity of the mixture ðumÞ. The horizontal
thick solid line at z ¼ 0:5 represents the position of the granular
bed. The fluid and the mixture are sheared in both z and y direc-
tions inducing an increase in the friction compared with the two-
dimensional case. Due to this shear increase the velocity is lower
than in the two-dimensional case. In order to test the convergence
of the solution with respect to the mesh we present in Fig. 11 the
comparison of the velocity profiles on the plane of symmetry of the
duct (y = 0) for the two meshes. The numerical solutions superim-
pose themselves except in the neighbourhood of the yield zone
Fig. 13. Velocity profile obtained by numerical simulations with the mixed-fluid
model for the circular cross-section duct (6 � 896).

Fig. 14. Mesh sensitivity of the velocity profiles obtained by numerical simulations wit
where the finest mesh better resolves the yield zone. Fig. 12 shows
the velocity profiles of the fluid phase velocity in blue and the par-
ticulate phase velocity in red (an offset of 10�3 has been added to
make the particulate phase velocity visible) obtained with the two-
fluid model for the square cross-section duct (6 � 20 � 40). This
illustrates the good behaviour of the numerical model in this
three-dimensional configuration.

4.2. Circular section duct

As for the square cross-section duct we have performed two sim-
ulations on the circular cross-section duct. The mesh sizes are
6 � 896 and 6 � 3596 quadratic elements in the x direction and in
the cross-section respectively. Fig. 13 shows the velocity profile in
a cross-section of the duct (6 � 896). As for the square cross-section
h the mixed-fluid model for the square cross-section duct (6 � 896 and 6 � 3596).

Fig. 15. Velocity profile obtained by numerical simulations with the two-fluid
model for the circular cross-section duct (6 � 896). The fluid phase velocity is in
blue and the particulate phase velocity is in red. An offset of 10�3 has been added to
the velocity of the particulate phase (up) to make it visible. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)
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duct, the thick solid line at z ¼ 0 represents the position of the gran-
ular bed and the contour colors represent the mixture velocity ðumÞ.
Here again the friction is increased in this geometry compared with
the two-dimensional configuration. We have compared the velocity
profiles on the vertical plane of symmetry to show the convergence
of the solution with respect to the mesh size (see Fig. 14). Again
Fig. 15 illustrates the good behaviour of the numerical model for
three-dimensional flow configurations.

5. Concluding remarks

In conclusion, we have developed a numerical model to simu-
late incompressible two-phase flow of a Newtonian fluid over a
granular bed. The model is based on a penalisation method for
incompressible flows and a regularisation technique for the vis-
co-plastic behaviour of the granular phase. Validations have been
carried out on three test cases: the flow of a Bingham fluid between
two infinite parallel planes, the flow of a Bingham fluid in a square
lid-driven cavity and the flow of a Newtonian fluid over a granular
bed. One can notice the very good agreement between the compu-
tations and the existing analytical solutions [19,26] or numerical
results [24]. To get these results we have considered that the mod-
elling error associated with the implemented regularisation tech-
nique should be correlated to the regularisation parameter value
k according to the empirical relationship: k ¼ minð10�4;10�4=BnÞ.

Concerning the two-phase flow formulation of the bed-load
problem we have shown that the mixed-fluid model is computa-
tionally more efficient than the two-fluid one (roughly ten times
faster and requires 20% less memory). Moreover, in order to
achieve a comparable accuracy of the two models one has to
choose a regularisation parameter ten times smaller for the
mixed-fluid model than for the two-fluid one. But one should recall
that the mixed-fluid formulation is based on the strong assump-
tion that the fluid–particles relative velocity is negligible which
could limits its validity range to the cases of small particulate Rey-
nolds number.

Finally we have performed three-dimensional numerical simu-
lation of the bed-load transport in a square and a circular cross-
section ducts illustrating the capability of the model to deal with
arbitrary geometries where no analytical solution exists. Future
developments will concern the implementation of a numerical
technique to simulate the motion of the fluid–granular bed inter-
face. Our final goal is to perform three-dimensional simulations
for the formation of ripples and dunes that are observed in exper-
iments [27].

Acknowledgements

We would like to thank P. Aussillous and É. Guazzelli for fruitful
discussions regarding the two-phase flow model and Y. Forterre
and O. Pouliquen for discussions regarding the granular rheology.
The authors also acknowledge Y. Jobic for technical support. Fund-
ing from Agence Nationale de la Recherche (Project Dunes ANR-07-
3_18-3892) is gratefully acknowledged.

References

[1] P.R. Amestoy, I.S. Duff, J. Koster, J.-Y. L’Excellent, A fully asynchronous
multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix
Anal. Appl. 23 (1) (2001) 15–41.
[2] P.R. Amestoy, I.S. Duff, J.-Y. L’Excellent, Multifrontal parallel distributed
symmetric and unsymmetric solvers, Comput. Methods Appl. Mech. Engrg.
184 (2000) 501–520.

[3] P.R. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet, Hybrid scheduling for
the parallel solution of linear systems, Parallel Comput. 32 (2) (2006) 136–156.

[4] R.A. Bagnold, The flow of cohesionless grains in fluids, Philos. Trans. R. Soc.
Lond. 249 (1956) 235–297.

[5] S. Balay, K. Buschelman, V. Eijkhout, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C.
McInnes, B.F. Smith, H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 –
Revision 2.1.5, Argonne National Laboratory, 2004.

[6] S. Balay, K. Buschelman, W.D. Gropp, D. Kaushik, M.G. Knepley, L.C. McInnes,
B.F. Smith, H. Zhang, PETSc Web Page, 2001, <http://www.mcs.anl.gov/petsc>.

[7] S. Balay, W.D. Gropp, L.C. McInnes, B.F. Smith, Efficient management of
parallelism in object oriented numerical software libraries, in: E. Arge, A.M.
Bruaset, H.P. Langtangen (Eds.), Modern Software Tools in Scientific
Computing, Birkhäuser Press, 1997, pp. 163–202.

[8] M. Bercovier, M. Engelman, A finite-element method for incompressible
non-Newtonian flows, J. Comput. Phys. 36 (3) (1980) 313–326. <http://www.
sciencedirect.com/science/article/B6WHY-4DDR302-7K/1/a27540473088dcd2a4
e158910bbbc4a4> .

[9] E.C. Bingham, Fluidity and Plasticity, McGraw Hill, New York, 1922.
[10] G. Carey, J.T. Oden, Finite Elements, Fluids Mechanics, The Texas Finite

Element Series, vol. VI, Prentice Hall, Englewood Cliffs, NJ, 1986.
[11] F. Charru, H. Mouilleron-Arnould, O. Eiff, Erosion and deposition of particles on

a bed sheared by a viscous flow, J. Fluid Mech. 519 (1) (2004) 55–80.
[12] E.J. Dean, R. Glowinski, G. Guidoboni, On the numerical simulation of bingham

visco-plastic flow: old and new results, J. Non-Newtonian Fluid Mech. 142 (1–
3) (2007) 36–62. <http://www.sciencedirect.com/science/article/B6TGV-
4KV846H-1/2/7a6e1bcd0ee1a120c885591aae6cfc6a> .

[13] H.A. Einstein, The bed load function for sedimentation in open channel channel
flows, Tech. Rep. 1026, US Department of Agriculture, 1950.

[14] M. Fortin, R. Glowinski, Augmented Lagrangians: Application to the Numerica
Solution of Boundary Value Problems, North-Holland, Amsterdam, 1983.

[15] J. Fredsoe, R. Deigaard, Mechanics of Costal Sediment Transport, World
Scientific, 1992.

[16] I.A. Frigaard, C. Nouar, On the usage of viscosity regularisation methods for
visco-plastic fluid flow computation, J. Non-Newtonian Fluid Mech. 127 (1)
(2005) 1–26. <http://www.sciencedirect.com/science/article/B6TGV-4G4XBV
2-1/2/b071488697d73549ac617789b903a4c7> .

[17] R. Glowinsky, P. Le Tallec, Augmented Lagrangians and Operator-Splitting
Methods in Nonlinear Mechanics, SIAM, Philadelphia, 1989.

[18] A. Goharzadeh, A. Khalili, B.B. Jorgensen, Transition layer thickness at a fluid–
porous interface, Phys. Fluids 17 (5) (2005) 057102. <http://link.aip.org/link/
?PHF/17/057102/1> .

[19] E. Guyon, J.-P. Hulin, L. Petit, Hydrodynamique Physique, EDP Sciences – CNRS
Editions, Paris, 2001.

[20] J. Happel, H. Brenner, Low Reynolds Number Hydrodynamics, Martinus Nijhof,
The Hague, 1973.

[21] R. Jackson, The Dynamics of Fluidized Particles, Cambridge University Press,
Cambridge, 2000.

[22] P. Jop, Y. Forterre, O. Pouliquen, A constitutive law for dense granular flows,
Nature 441 (2006) 727–730. <http://dx.doi.org/10.1038/nature04801> .

[23] F. Lalli, P.G. Esposito, R. Piscopia, R. Verzicco, Fluid–particle flow simulation
by averaged continuous model, Comput. Fluids 34 (9) (2005) 1040–1061.
<http://www.science-direct.com/science/article/B6V26-4F3FDV3-2/1/59e809
336e8c43572b2595b43f3a0631> .

[24] E. Mitsoulis, T. Zisis, Flow of bingham plastics in a lid-driven square cavity, J.
Non-Newtonian Fluid Mech. 101 (2001) 173–180.

[25] J.T. Oden, G. Carey, Finite Elements, Mathematical Aspects, The Texas Finite
Element Series, vol. IV, Prentice Hall, Englewood Cliffs, NJ, 1986.

[26] M. Ouriemi, P. Aussillous, E. Guazzelli, Sediment dynamics. Part 1: bed-load
transport by laminar shearing flows, J. Fluid Mech. 636 (2009) 295–319.

[27] M. Ouriemi, P. Aussillous, E. Guazzelli, Sediment dynamics. Part 2: dune
formation in pipe flow, J. Fluid Mech. 636 (2009) 321–336.

[28] M. Ouriemi, P. Aussillous, M. Medale, Y. Peysson, E. Guazzelli, Determination of
the critical shields number for particle erosion in laminar flow, Phys. Fluids 19
(6) (2007) 061706. <http://link.aip.org/link/?PHF/19/061706/1> .

[29] T.C. Papanastasiou, Flows of materials with yield, J. Rheol. 31 (1987) 385–404.
[30] O. Pironneau, Méthodes des éléments finis pour les fluides, Masson, Paris,

1988.
[31] A. Shields, Application of similarity principles and turbulence research to bed-

load movement, Mitteilunger der Preussischen Versuchsanstalt fr Wasserbau
und Schiffbau 26 (1936) 5–24.

[32] S. Yalin, An expression for bed-load transportation, J. Hydraul. Division HY3
(1963) 221–250.

[33] O.C. Zienkiewicz, R.L. Taylor, The Finite Element Method, fourth ed., vol. 1,
MacGraw Hill, 1994.

http://http://www.mcs.anl.gov/petsc
http://www.sciencedirect.com/science/article/B6WHY-4DDR302-7K/1/a27540473088dcd2a4e158910bbbc4a4
http://www.sciencedirect.com/science/article/B6WHY-4DDR302-7K/1/a27540473088dcd2a4e158910bbbc4a4
http://www.sciencedirect.com/science/article/B6WHY-4DDR302-7K/1/a27540473088dcd2a4e158910bbbc4a4
http://www.sciencedirect.com/science/article/B6TGV-4KV846H-1/2/7a6e1bcd0ee1a120c885591aae6cfc6a
http://www.sciencedirect.com/science/article/B6TGV-4KV846H-1/2/7a6e1bcd0ee1a120c885591aae6cfc6a
http://www.sciencedirect.com/science/article/B6TGV-4G4XBV2-1/2/b071488697d73549ac617789b903a4c7
http://www.sciencedirect.com/science/article/B6TGV-4G4XBV2-1/2/b071488697d73549ac617789b903a4c7
http://link.aip.org/link/?PHF/17/057102/1
http://link.aip.org/link/?PHF/17/057102/1
http://dx.doi.org/10.1038/nature04801
http://www.science-direct.com/science/article/B6V26-4F3FDV3-2/1/59e809336e8c43572b2595b43f3a0631
http://www.science-direct.com/science/article/B6V26-4F3FDV3-2/1/59e809336e8c43572b2595b43f3a0631
http://link.aip.org/link/?PHF/19/061706/1

	A three-dimensional numerical model for incompressible two-phase flow  of a granular bed submitted to a laminar shearing flow
	Introduction
	The two-phase flow model
	Mathematical formulation
	Governing equations
	Closures
	Interaction term
	Stress tensors

	Dimensionless equations
	Two-fluid model
	Mixed-fluid model


	Numerical model
	Weak formulations
	Weak formulation for the two-fluid model
	Weak formulation for the mixed-fluid model

	Algorithms associated with the two formulations

	Regularisation technique
	Implementation

	Validations
	Test cases for Bingham fluid flows
	Flow of a Bingham fluid between two infinite plane
	Bingham flow in a lid-driven cavity

	Two-phase simulation of bed-load transport in 2D

	Two-phase simulation of bed-load transport in 3D configuration
	Square section duct
	Circular section duct

	Concluding remarks
	Acknowledgements
	References


