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[1] Recent experimental studies show that there exists a difference between horizontal
velocity components of particles and of fluid in sediment-laden open channel flows. For
suspended particles with sufficient inertia, volume fraction profile cannot be represented
without the introduction of empirical parameters in passive scalar sediment transport
models. The aim of this paper is to propose a two-phase model that allows representation
of the main features of sediment-laden flows: the existence of a horizontal velocity
difference between particles and fluid, the dispersion of particles by fluid turbulent
motion, and the damping of fluid turbulent kinetic energy. A 2-D vertical numerical model
for suspended particle transport in open channels using a two-phase approach is used in
conjunction with experimental measurements. Different turbulence models for both
phases are presented. The fluid phase turbulence is modeled by a k � e model. Two
models for the solid phase turbulence are used: a first-order model, based on the kinetic
theory of granular flows, and an algebraic model based on an homogeneous, isotropic, and
steady fluid turbulence assumption. We demonstrate that a modeling approach of the
coupling between fluid and solid turbulence allows reproduction of the main features of
sediment-laden flows. We show this approach represents an improvement compared
with the classical approach. We show that a simple algebraic model based on the
homogeneous, isotropic, and steady fluid turbulence assumption for the solid phase
turbulence allows the physical phenomenon to be reproduced with very slight differences
compared with a first-order model.
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1. Introduction

[2] Sediments suspended in natural waters, rivers, estu-
aries or coasts, are transported by bed load and suspended
load [Fredsoe, 1993]. Bed load is the part of the total load
where sediment particles are in contact with the bed
sediment and constrained by the effective shear stress.
Suspended load is the part of the total load which is moving
without continuous contact with the bed sediment as the
result of the agitation of the fluid. In this paper we will
focus our attention on the suspended sediment load. His-
torically, Rouse [1937] describe the suspended load by
supposing that, at steady state, the gravitational vertical
downward flux of particles wsc is balanced by a turbulent
vertical upward flux of particles w0

sc
0:

@wsc

@z
þ @w0

sc
0

@z
¼ 0; ð1Þ

where ws, ws
0, c, c0 represent, respectively, the sediment

particle settling velocity and its fluctuating component, and
the sediment particle concentration and its fluctuating
component. z designate the vertical coordinate and the
overbar represents averaging over time.
[3] In the Rouse approach the turbulent vertical upward

flux of particles is modeled with the eddy viscosity concept as:

w0
sc

0 ¼ ntf
@c

@z
ð2Þ

[4] Given a closure for the eddy viscosity vertical profile
(3) and a reference concentration ca at a given adimension-
alized height above the bed sa it is possible to solve
analytically equation (1) to obtain the vertical concentration
profile (4).

ntf ¼ ku
*
sh 1� sð Þ ð3Þ

k and u* represent the Von Karman constant and the bottom
shear velocity. s = z/h is the adimensionalized height.

c

ca
¼ 1� s

s
sa

1� sa

� � ws
ku* ð4Þ
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[5] The classical sediment transport models are based on
similar considerations, the passive scalar hypothesis is
assumed in which the fields of fluid velocity and pressure
are determined without considering the influence of sedi-
ment particles. A mass balance is solved to calculate the
sediment concentration by assuming no interaction between
sediment particles and fluid flow. This implies that the
horizontal velocity of sediments is equal to that of the fluid.
The sediment vertical velocity differs from that of the fluid
because of a settling velocity that accounts for the difference
in the true density between sediment particles and the
surrounding fluid. The particle’s turbulent vertical flux is
modeled following Rouse’s [1937] concept in the mass
balance equation. The turbulent sediment diffusivity is
usually modeled using an empirical relation between the
fluid eddy viscosity and the sediment turbulent diffusivity
[Van Rijn, 1984]. The influence of sediment particles on
fluid flow turbulence is either neglected [Duy and
Shibayama, 1997] or incorporated as a dissipative term
in the turbulent kinetic energy transport equation based on
an analogy with density stratification [Smith and McLean,
1977; Vilaret and Davies, 1995].
[6] All the hypotheses mentioned above are very restric-

tive and not always verified. Experimental work carried out
by Kaftori et al. [1996], Muste and Patel [1997], Muste et
al. [2005], amongst others, has shown the existence of a
horizontal velocity difference between sediment particles
and the fluid especially for sufficiently massive particles
such as sand. This is in contradiction to one of the
hypotheses assumed in the classical approach for sediment
transport modeling. Muste et al. [2005] observed that
turbulent intensities are damped or enhanced depending
on particle inertia and on the distance from the bed. This
cannot be represented by the analogy with density stratifi-
cation that always must be a damping term. Moreover, the
dispersion effects of particles by the fluid turbulent motion
based on Rouse [1937] concept is not correct for massive
particles (i.e., Stokes number St � 1 with St = tfs/tf where
tfs is the particle relaxation time and tf is a time scale of the
fluid flow). In fact, the diffusion coefficient of large
particles is greater than the fluid’s eddy viscosity [Coleman,
1970]. While there is no theory developed to cover this
aspect a calibration of the sediment’s diffusivity is needed to
represent correctly the sediment particle concentration pro-
file. All these comments show the limitations of the classi-
cal model.
[7] The two-phase flow modeling approach gives a the-

oretical framework to describe the physical processes more
accurately than in the classical model by reducing the latter
models restrictive assumptions.
[8] Two-phase flow models have been developed since

the 1970s for application in the field of chemical and
mechanical engineering [Ishii, 1975; Drew and Lahey,
1993; Gidaspow, 1994; Enwald et al., 1996]. Two-phase
flow equations have also been applied to sediment transport
problems [Drew, 1983; Vilaret and Davies, 1995; Greimann
et al., 1999; Barbry et al., 2000; Greimann and Holly, 2001;
Hsu et al., 2003; Amoudry et al., 2005]. In this approach,
the medium is decomposed into two phases: a fluid phase
(water) and a solid or particulate phase (sediment particles).
Conservation equations for mass and momentum are de-
rived for both phases by applying an averaging procedure to

the local instantaneous conservation equations. The averag-
ing operator can be either time or space or both depending
on the nature of the problem. The statistical treatment used
to derive the model’s equations introduces interfacial mo-
mentum terms, stress tensors and turbulent correlations that
must be modeled. Interactions between sediment particles
and the fluid are accounted for in the governing equations
by the presence of transfer terms of mass, momentum and
energy. Two classes of two-phase flow models exist to solve
the set of partial differential equations: the mixed flow
model where a momentum equation for the mixture is
obtained by combining momentum equations for each phase
and the two-fluid model where momentum equations are
solved separately for each of the phases. This last class of
model is the most general one because velocity fields for
both phases are distinguished and there is no assumption
concerning the equality of horizontal velocity between fluid
and sediment particles. The fundamental difference between
the two-phase flow model and the classical approach con-
cerns the vertical velocity. In the classical approach, the
vertical velocity is simply the sediment particle settling
velocity whereas in the two-phase flow approach, this
velocity is obtained by solving the vertical momentum
equation for the solid phase.
[9] Recently, Greimann et al. [1999] have applied two-

phase flow equations to a steady, uniform open channel
flow and derived analytical solutions for sediment transport.
These authors have focused their attention on the effects of
fluid turbulence on the behavior of suspended particles.
Following Simonin [1991] the dispersion of particles by the
fluid turbulent motion is modeled by a drift velocity
appearing in the relative velocity expression. The dispersion
coefficient is related to the correlation between the fluctu-
ating fluid and particles velocities multiplied by the time
that a particle spends in the fluid eddy. The damping of
turbulence is represented in the model by decreasing the
Von Karman constant in agreement with experimental
measurements. They derived an analytical solution for the
concentration profile in dilute flow conditions and for the
horizontal velocity difference between sediment particles and
the fluid, called lag velocity (see details in Appendix C).
Greimann et al. [1999] give a theoretical justification for the
modification of the Rouse [1937] exponent (ZR) to represent
the increased diffusive flux of large particles which is due to
vertical turbulent stress of the solid phase. According to
the authors dimensional analysis this term increases with
particles inertia for given flow conditions. Experimental
investigations of Sumer and Deigaard [1981] and Rashidi
et al. [1990], amongst others, have shown that particles
suspended in a turbulent flow are correlated with the area of
positive vertical velocity fluctuations of the fluid. If not,
particles would sink to the bed and never be resuspended.
Because of the negative value of the Reynolds stress
huf0wf

0if, it follows that particles are also correlated with
area of negative horizontal velocity fluctuations of the fluid.
This physical interpretation shows that horizontal velocity
of particles is lower than the horizontal velocity of the fluid.
The analytical solution proposed by Greimann et al. [1999]
represents this feature of the flow. Greimann and Holly
[2001] extended their work and presented a semianalytical
solution for the concentration profile by including particle-
particle interactions based on the kinetic theory of granular
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flows [Chapman and Cowling, 1970]. This new solution
improves upon the original analytical solution when sedi-
ment particles concentration in volume is of the order of 0.1.
[10] More recently, Hsu et al. [2003] have presented a

two-phase flow model based on the original equations of
Drew [1983]. A Favre [1965] averaging technique is
applied to the original two-phase equations to account for
the large-scale turbulence. This technique introduced extra
terms into the momentum conservation equation: a large-
scale Reynolds stress and the correlation between the
concentration fluctuations and the fluid velocity fluctua-
tions. This last term represents the turbulent sediment
vertical flux induced by the large-scale fluid turbulent
motion. The authors used the closure proposed by Drew
[1976] and Ma and Ahmadi [1988] for the dissipation term
in the fluid turbulent kinetic energy equation. This closure is
based on the assumption that the cross correlation of the
velocity fluctuations for the fluid and the particles can be

related to the fluid velocity correlation by the ratio
tt
f

tt
f
þtfs

where tf
t is the fluid turbulence time scale and tfs is the

particle relaxation time. The models equations are solved in
two ways: a semianalytical approach and a numerical
approach. The numerical solution is tested against experi-
mental data and is used to check the validity of boundary
approximations made in the semianalytical approach.
Amoudry et al. [2005] have used the same numerical model
but applied to a pure oscillatory flow and an oscillatory flow
superimposed on a mean current. Authors have investigated
a concentration-dependent Schmidt number and two near-
bed boundary conditions: an empirical pickup function and
a reference concentration. Using a concentration-dependent
Schmidt number, results obtained with the reference con-
centration boundary condition are an improvement upon
the pickup function approach.
[11] Muste et al. [2005], on the basis of the experiments

of Raudkivi [1998], amongst others, show that the mixed
fluid or classical approach for sediment transport is of
limited validity and that more research should be oriented
toward understanding and formulating the actual physical
processes involved in sediment transport. In their own
results Muste et al. [2005] conclude that the mixed fluid
approach admits some inconsistencies especially concerning
the way energy transfer between the fluid and the particles

are represented in this type of model. In the same way Hsu
et al. [2003] argued, on the basis of experimental work of
Gore and Crowe [1989] and Hetsroni [1989], that an
appropriate turbulence model describing fluid particle flow
should be able to represent a damping or an enhancement of
the fluid turbulent kinetic energy depending upon the
particle characteristics and the flow conditions.
[12] In the present paper, we propose to apply a 2-D

vertical two-phase flow model (K. Nguyen et al., A two-
phase numerical model for suspended-sediment transport in
estuaries, submitted to Advances in Water Resources, 2008)
to a steady, uniform sediment-laden flow in an open
channel. Different turbulence models taken from the litera-
ture on fluidized beds are implemented and tested. The main
objective of this paper is to propose an appropriate set of
two-phase equations with pertinent closures. We focus our
attention more especially on the modeling of the fluid
particle turbulent interactions in terms of dispersion of
particles by the fluid turbulent motion and the transfer of
turbulent kinetic energy between the fluid and the particles.
In order to discuss the appropriateness of turbulence clo-
sures we compare numerical results with experimental data
from Muste et al. [2005]. We consider a two-dimensional,
unidirectional, free surface flow, driven by gravity in an
inclined channel with a small inclination angle (see
Figure 1). Two different types of particles have been used:
crushed nylon particles and natural sand particles.
[13] The theoretical formulation of the two-phase flow

model is presented in section 2 including the description of
four turbulence models of increasing complexity. We have
restricted the turbulence modeling to the first-order ap-
proximation. The dispersion effect due to particle transport
by turbulent fluid motion is modeled by a drifting velocity
appearing in the interfacial momentum transfer term
[Simonin, 1991]. In section 3, an overview of the numerical
methods used in the model is proposed. The experimental
setup and the numerical settings, including boundary con-
ditions, are detailed in section 4. In section 5 the numerical
results are compared with the experimental data of Muste et
al. [2005] and analytical solutions of Rouse [1937] and
Greimann et al. [1999] for the lag velocity and the sediment
concentration profile for the two types of particles. In
section 6, we shall attempt to discuss the turbulent closures

Figure 1. Experimental configuration of Muste et al. [2005].
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used in the two-phase flow model for sediment transport
and the improvement of the two-phase flow model upon the
classical model of sediment transport.

2. Theoretical Formulation

2.1. Governing Equations

[14] The present model is based on averaged balance
equations for each phase, fluid and sediment [Barbry et
al., 2000; Barbry, 2000]. The local instantaneous equations
are averaged by an ensemble average operator and a
weighting procedure is applied to the variables [Drew and
Lahey, 1993; Drew, 2001]. Using this procedure averaged
balance equations for mass (5) and momentum (6) are
derived:

@ak rkh ik
@t

þ r!: ak rkh ik uk
!� �

k

� �
¼ Dak rkh ik

Dt
¼ 0 ð5Þ

Dak rkh ik uk
!� �

k

Dt
¼ r!: ak Tk

D E
k
þTRe

k

� �h i
þ ak rkh ik g

!� Mk
�!

ð6Þ

[15] The average operator h�ik represent either a phase
average or a mass average [Favre, 1965]. ak, huk!ik, hrkik are
the volume fraction, mean velocity vector and mean
density of phase k. g! is the acceleration of gravity.

Tk

D E
k and TRe

k = � rk hu0k
!

 u0k
!
ik represents the viscous

stress tensor and the Reynolds stress tensor, respectively.
Mk
�!

is the interfacial momentum transfer between fluid
and solid phases.
[16] The averaging procedure applied to the local instan-

taneous equations introduces more unknowns than the num-
ber of equations. Therefore, additional expressions are
needed to close the set of equations as turbulent correlations,
stress tensor and interfacial momentum transfer between
phases [Enwald et al., 1996; Peirano and Leckner, 1998].
[17] We point out that the volume conservation imposes:

af þ as ¼ 1 ð7Þ

[18] For sake of clarity, we have omitted the ensemble
average operator, hik, when there was no ambiguity.

2.2. Closures for Sediment Particle Equations

2.2.1. Interfacial Momentum Transfer
[19] The interfacial momentum transfer term Mk

�!
arises

from stresses acting on the interface. It is defined following
Drew and Lahey [1993] by equation (8).

Mk
�! ¼ pkir

!
ak � tkir

!
ak þ M 0

k

�!
ð8Þ

[20] The first two terms represent the interfacially aver-
aged pressure pki and shear stress tki of phase k. And the last
term M 0

k

�!
represents forces associated with drag, virtual

mass, lift forces and unsteady effects. In the case of small
sediment particles, such as sand (diameter � 200 mm),
falling under the effect of gravity the particulate Reynolds

number Rep =
af dkur

!k
nf

[Drew and Lahey, 1993] is of order

unity and so the drag force is dominant [Hsu et al., 2003]. In
a first approach we only consider the drag force in the
interfacial momentum transfer term. The drag force is
written in terms of the mean relative velocity ur

! and the
particle relaxation time tfs.

M 0
s

�!
¼ �M 0

f

�!
¼ 1

tfs
asrsur

! ð9Þ

[21] The mean relative velocity is defined by (10)

ur
!¼ us

!� uf
!� ud

! ð10Þ

where ud
! = huf!

0is represents the correlation between the
fluctuating velocity of the fluid phase and the spatial
distribution of the solid phase. This term, called the drift
velocity, represents the dispersion of particles by the large
scale of the fluctuation motion in the fluid phase, large with
respect to the particle diameter [Simonin and Viollet, 1990].
[22] The particle relaxation time is defined by [Enwald et

al., 1996]:

tfs ¼
4drs

3rf CD k ur
! k

a�2:65
f ð11Þ

where CD is the averaged drag coefficient for a single
particle in a suspension. It is given by the equation [Haider
and Levenspiel, 1989]:

CD ¼ 24

Rep
1þ c1Rep

c2
� 

þ c3

1þ c4=Rep
ð12Þ

c1 ¼ e2:33�6:49yþ2:45y2

c2 ¼ 0:10þ 0:56y
c3 ¼ e4:91�13:90yþ18:42y2�10:26y3

c4 ¼ e1:47þ12:26y�20:73y2þ15:89y3

ð13Þ

where Rep is the mean particle Reynolds number defined by

Rep =
af dkur

!k
nf

[Drew and Lahey, 1993]. The shape factor y =
As/Ap takes into account the form of the particle. It is
defined by the ratio of the surface area of the equivalent
spherical particle of diameter d (As) and the real surface area
of the particle (Ap). The shape factor is always less than
unity meaning that non spherical particles have a larger
surface area than spherical ones. Consequently, the drag
coefficient increases with increasing deviation from sphe-
rical shape.
[23] A model for the drift velocity, proposed by Deutsch

and Simonin [1991], is expressed as:

ud
!¼ Dt

fs

r!af

af

� r!as

as

 !
ð14Þ

[24] On the basis of semiempirical analysis, the disper-
sion tensor is expressed in terms of the covariance between
the turbulent velocity fluctuations of the two phases and a
fluid particle turbulent time component:

Dt
fs ¼ ttfs u0f

!
 u0s
!D E

s
ð15Þ
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ttfs ¼ gst
t
f with gs ¼ 1þ Cb �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 k ur

! k2
� 

= 2kf
� q� ��1=2

ð16Þ

[25] The fluid particle turbulent time scale can be written
following Csanady [1963] as given by equation (16). It is
mainly related to the loss of correlation between the
turbulent motions of the fluid and particles due to the mean
relative motion of the particles (‘‘crossing-trajectories
effects’’). The value of the coefficient Cb depend on the
direction of the flow, Cb = 0.45 in the direction orthogonal
to the mean relative velocity and Cb = 1.8 in the direction
parallel to the mean relative velocity. These values were
determined by Deutsch and Simonin [1991] on the basis of
experimental data of Wells and Stock [1983].
[26] Drew [2001] proposed a similar model for the

turbulent dispersion of particles or bubbles. The two-phase
flow model is derived on the basis of a Boltzmann equation.
The dispersion is the result of the correlation between the
fluid velocity with the trajectories of individual particles.
The dispersion ‘‘force’’ derived by the author is equal to the
scalar product of the Reynolds stress tensor for the solid
phase with the gradient of the solid phase volume fraction.
The dispersion tensor depends on the ratio of the particle
relaxation time to the fluid turbulence time scale. This
model is similar to Simonin’s model. The main difference
concerns the use of the solid phase Reynolds stress tensor in
the dispersion term by Drew [2001] whereas Simonin and
Viollet [1990] used the covariance between the turbulent
velocity fluctuations of the two phases. This difference is
due to the assumption that particles did not affect the fluid
turbulence in Drew’s model.
2.2.2. Constitutive Law
[27] Concerning the constitutive assumptions, we have

used the general expression for the stress tensor given by
Drew and Lahey [1993] with the closure proposed by
Lundgren [1972] for the effective viscosity (17).

af tf ¼ af 2mf Df þ as2mf Ds

asts ¼ asaf b2mf Df þ a2
sb2mf Ds

(
ð17Þ

Dk represent the mean strain rate tensor of phase k:

Dk ¼
1

2
r!uk
!þ r!uk

!� �T� �
ð18Þ

[28] An amplification factor for the viscosity, b, accounts
for the non-Newtonian characteristics of the flow when the
volume fraction of the solid phase reaches high values. We
have use the formulation of Graham [1981]. This formula-
tion is consistent with the expression proposed by Einstein
[1906] in the dilute case and with the expression proposed
by Frankel and Acrivos [1967] for dense suspension.

b ¼ 5

2
þ 9

4 as

1

1þ dip=d

1

2dip=d
� 1

1þ 2dip=d
� 1

1þ 2dip=d
� 2

 ! ð19Þ

dip is the interparticle spacing and d the particle diameter.
Drew and Lahey [1993] proposed the following formulae to
express the ratio of the interparticular spacing to the particle
diameter:

dip

d
¼

1� as=amax
s

� 1=3
as=amax

s

� 1=3
where as

max is the solid volume fraction for maximum
packing of spheres. For a simple cubic packing of rigid
spheres as

max = 0.625.
[29] The viscous stress for the sediment phase represents

the modification of the rheology of the suspension due to
the presence of particles. Assuming that the shear rate for
both phases is equal, i.e., Df ¼ Ds the viscous stress of the
mixture can be recovered from equation (17):

tmix ¼ af tf þ asts
tmix ¼ 2

��
as þ af|fflfflfflffl{zfflfflfflffl}

¼1

Þasbmf þ mf �Df

tmix ¼ 2mf 1þ asbð ÞDf

2.2.3. Turbulence Modeling
[30] Four turbulence models are introduced in the two-

phase flow model [Chauchat, 2007]. For sake of simplicity
they will be denoted T1, T2, T3 and T4 hereafter. The fluid
phase turbulence is always modeled using a k � e type
model based on Simonin and Viollet [1990]. The first two
models, T1 and T2, do not simulate either the solid phase
turbulence or the fluid-solid turbulent interactions. In the
first one (T1), the dispersion is not represented whilst in the
second one (T2) the dispersion is modeled using an
approximation explained later. The two last models, T3
and T4, solve the solid phase turbulence and the fluid-solid
turbulent interactions. In the model T3, the turbulent kinetic
energy for the solid phase (ks) and the fluid particle
covariance (kfs) are related to the turbulent kinetic energy
for the fluid phase (kf) by algebraic equations [Simonin,
1991]. Finally, the model T4 solves 2 transport equations
for the turbulent kinetic energy for the solid phase (ks) and
the fluid particle covariance (kfs) [Boëlle et al., 1994]. This
model is based on the kinetic theory of granular flows
[Jenkins and Richman, 1985].
[31] These two-phase flow turbulence models were orig-

inally developed for gas-solid mixtures. Vilaret and Davies
[1995], Greimann et al. [1999], Greimann and Holly
[2001], amongst others, applied these models to sediment
transport modeling, i.e., liquid-solid mixture problems. In
this work, we also use turbulence closures developed for
gas-solid mixtures.
[32] A summary of the four turbulence models imple-

mented in the numerical model is presented in Table 1.
2.2.3.1. Turbulence Model for Fluid Phase
[33] The fluid turbulence modeling is based on the model

proposed by Simonin and Viollet [1990]. This is a k � e type
model modified to take into account the influence of
suspended particles. Additional terms are included to
account for turbulent momentum transfer between phases.
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[34] Equations for the turbulent kinetic energy and dissi-
pation rate of turbulent kinetic energy of the fluid phase are
written as follows:

Daf rf kf
Dt

¼ r! � af mf þ
mt
f

sk

� �
r!kf

� �
� af rf �f

� af rf f ~u0f  ~u0f

D E
f
r!gT ~uf þPkf ð20Þ

Daf rf �f
Dt

¼ r! � af mf þ
mt
f

s�

� �
r!�f

� �
þP�f

� af rf
�f
kf

C�1f u0f
!

 ~u0f

D E
f
r!gT ~uf þ C�2�f

� �
ð21Þ

[35] The Reynolds stress tensor of the fluid phase TRe
f is

modeled using the Boussinesq model [Peirano and Leckner,
1998].

TRe
f ¼ � 2

3
rf kf I þ 2rf n

t
f Df �

1

3
ruf
!� 

I

� �
ð22Þ

[36] The kinematic turbulent viscosity of the fluid phase,
vf
t is defined by vf

t = 2 kf tf
t/3, and the time scale of the large

eddies by tf
t = 3

2
Cm kf/ef [Simonin, 1991].

[37] In the equations (20) and (21) the terms Pkf and Pef
represent the interaction terms, they are defined as follows:

Pkf ¼
af rf
tfs

�2kf þ kfs þ ud
!� ur!

� 
ð23Þ

P�f ¼ C�3

�f
kf
Pkf ð24Þ

[38] The interaction term for the fluid turbulent kinetic
energy (equation (23)) can be split into two contributions.
The first one is

af rf
tfs

(�2 kf + kfs). This term leads to the
destruction or the production of the fluid turbulence accord-
ing to the value of the fluid particle velocity covariance kfs
with regard to the fluid turbulent kinetic energy. The second
contribution is

af rf
tfs

ud
!:ur

! which corresponds to the Work of
the drag force associated with the fluid turbulent motion.
This term is a damping term if ud

! and ur
! are in opposite

direction.
[39] The values used in the kf � ef model are chosen as

Cm = 0.09, Ce1 = 1.44, Ce2 = 1.92, Ce3 = 1.2, sk = 1 and
se = 1.2. All these constants have standard single phase

values except Ce3. This constant is included in the
interaction terms for dissipation and has been determined
empirically from turbulent gas particle jet flows [Elghobashi
and Abou-Arab, 1983].
[40] The bottom boundary layer cannot be treated directly

by the k � e model. Different solutions exist [Mohammadi
and Pironneau, 1994]. The easiest one is to set the compu-
tational domain above the viscous sublayer, in the logarith-
mic region, then to impose the value of the stream-wise
velocity and the fluid phase kinetic energy from the loga-
rithmic law of the wall. Another solution consists of
introducing functions depending on the Reynolds number
that modify the coefficients of the standard k � e model in
the near-wall region. This is the so-called ‘‘Low Reynolds
number k � e’’ model. Because of very strong vertical
gradient, the mesh has to be very fine in the near wall
region. A third solution, is found in the k � e two-layer
model [Mohammadi and Pironneau, 1994] this technique
is more robust and stable than the ‘‘Low Reynolds number
k � e’’ model and, especially, does not require a so fine
mesh near the wall. We chose this late technique for the
numerical model (see Appendix A for details).
[41] The effect of the presence of particles in the low

Reynolds number layer is represented in the model by the
transfer term (Pkf) in the turbulent kinetic energy transport
equation (20). This term also represents the feedback of the
presence of the particles on the dissipation rate of the
turbulent kinetic energy and the eddy viscosity in the low
Reynolds number layer. Thus, the expressions for these two
quantities are proportional to the turbulent kinetic energy at
a given exponent.
[42] It should be noted that the T1 model hypothesis

implies that the turbulence interaction between the fluid and
solid phase and the dispersion of particles by the fluid
turbulent motion are neglected. So, interaction terms Pkf

and
Pef in the transport equations (20) and (21) are set to zero.
Also, the dispersion tensor in the drift velocity definition
(14) is null.

Pkf ¼ P�f ¼ 0

Dt
fs ¼ 0

ð25Þ

[43] The Reynolds stress tensor for the solid phase is set

equal to the fluid one (i.e., TRe
s ¼ TRe

f ).
[44] For the T2 turbulence model it should be noted that

we assumed that the covariance of the fluctuating velocities
of both phases is equal to the covariance of the fluid

fluctuating velocities: u0f
!

 u0s
!D E

s
¼ u0f

!
 u0f
!D E

f
. This as-

sumption has been used by Greimann et al. [1999], as
pointed out by the authors it may overestimate the fluid-
sediment correlations because the sediment does not follow,
exactly, the fluid turbulent motion due to their relative
motion.
[45] The consequences of this assumption on the model’s

equations are a simplification of the interaction terms:

Pkf ¼
af rf
tfs

�
�2kf þ kfs|fflfflfflfflfflffl{zfflfflfflfflfflffl}

¼0

þud
!� ur!


;

Table 1. Summary of Turbulence Models Implemented in the

Numerical Model

Notations
Fluid Phase
Turbulence

Solid Phase
Turbulence

Dispersion

Dt
fs

T1 kf�ef model – 0

T2 kf�ef model – tfs
t hu0f
!

 u0f
!
i

T3 kf�ef model algebraic model tfs
t hu0f
!

 u0s
!
i

T4 kf�ef model ks�kfs model tfs
t hu0f
!

 u0s
!
i

C11017 CHAUCHAT AND GUILLOU: TURBULENT TWO-PHASE SEDIMENT TRANSPORT

6 of 20

C11017



and of the dispersion tensor:

Dt
fs ¼ ttfs u0f

!
 u0f
!D E

f
:

[46] This model is the most similar in its assumptions,
regarding the other presented models, to the classical
approach.
2.2.3.2. Turbulence Models for Solid Phase: The ks � kfs
Model
[47] The turbulence model for the solid phase originates

from the framework of the kinetic theory of granular flow
[Jenkins and Richman, 1985]. The ks - kfs model is based on
two transport equations, one for the turbulent kinetic energy
of the solid phase, ks (26), and one for the fluid particle
velocity covariance, kfs (30) [Simonin, 1991].

Dasrsks
Dt

¼ r! � Dksr
!
ks

� �
� asrs

1� e2

3tcs
ks

� asrsf ~u0s  u0s
!D E

s
r!gT us!þPks ð26Þ

where Dks = as rs (Ks
t + Ks

c), Ks
t and Ks

c represent the
turbulent and collisional diffusivity. There expressions are
given in Appendix B.
[48] Therefore, the Reynolds stress tensor for the solid

phase TRe
s can be expressed following the Boussinesq model

(27) [Simonin, 1991].

TRe
s ¼ � 2

3
rsksI þ 2rsn

t
s Ds �

1

3
rus
!� 

I

� �
ð27Þ

where the solid phase turbulent viscosity is given by (28):

nts ¼ ntfs þ
1

3
tfsks

� �
1þ sstfs

2tcs

� ��1

ð28Þ

[49] In equation (26), the term Pks represent the interac-
tion with fluid turbulent motion.

Pks ¼ �asrs
tfs

2ks � kfs
� 

ð29Þ

[50] The fluid particle velocity covariance, kfs, is defined as

the trace of the tensor u0f
!

 u0s
!D E

s
. A transport equation is

obtained, in a similar manner to the Reynolds stress tensor
equation in the single phase case, by averaging the Navier-
Stokes operator for the fluid phase (6) multiplied by the
fluctuating part of the solid phase velocity plus the Navier-
Stokes operator for the solid phase multiplied by the fluctu-
ating part of the fluid phase velocity. Some higher-order
terms appear in this equation that have to be closed. The
resulting equation is presented here (30) [Simonin, 1991]:

Dasrskfs
Dt

¼ r! � asrs
ntfs
sks

r!kfs

� �
� asrs�fs

� asrsf ~u0f  ~u0s

D E
s
r!gT~us

� asrsf ~u0s  ~u0f

D E
s
r!gT ~uf þPkfs ð30Þ

[51] The fluid particle velocity covariance u0f
!

 u0s
!D E

s

tensor is obtained by a Boussinesq model [Peirano and
Leckner, 1998]:

u0f
!

 u0s
!D E

s
¼ � 1

3
kfsI þ ntfs Dfs �

1

3
Tr Dfs

� �
I

� �
ð31Þ

where Dfs ¼ r!uf
!þ r!us

!
� �T

is the strain rate tensor. The

turbulent fluid particle viscosity is given by ntfs ¼
kfsttfs
3
. The

two following terms correspond to the production of fluid
particle velocity covariance by the mean flow.
[52] The dissipation, �fs, is given by �fs = kfs/tfs

t and is a
function of the fluid particle velocity covariance kfs and the
eddy interaction time tfs

t . Meaning that the destruction of
covariance is due to viscous effects in the fluid phase and
crossing-trajectories effects.
[53] Finally, the interaction term, Pkfs, is expressed by

(32) with Xfs =
asrs
af rf

Pkfs ¼ �asrs
tfs

1þ Xfs

� 
kfs � 2Xfsks � 2kf

� 
ð32Þ

2.2.3.3. Turbulence Models for Solid Phase: Algebraic
Model
[54] In the case of dilute dispersion of heavy particles in a

homogeneous, isotropic and steady turbulent fluid flow
Tchen [1947] derived the following equations for the
particle correlation and the fluid particle correlation func-
tions using an exponential form for the fluid turbulence
Lagrangian function:

u0s
!

 u0s
!D E

s
¼ u0f

!
 u0f
!D E

s

b2 þ x
1þ x

ð33Þ

and

u0f
!

 u0s
!D E

s
¼ u0f

!
 u0f
!D E

s

bþ x
1þ x

; ð34Þ

with b = rf /rs and x = tfs
t /tfs.

[55] Simonin [1991] derived similar equations from
asymptotic analysis of the two-phase flow equations.
[56] The correlation functions are computed using the

eddy viscosity concept as in the ks - kfs model (27) and (31).
From equation (28), the particulate viscosity can be written
as:

nts ¼ ntfs þ
1

2
tfs

2

3
ks ð35Þ

and the fluid particle turbulent viscosity is written:

ntfs ¼
ttfskfs
3

; ð36Þ

as in the ks � kfs model.

3. Numerical Methods

[57] The complete set of equations (5), (6), (20) and (21)
plus equations (26) and (30) for the T4 turbulence model are
solved by a fractional step procedure that is briefly de-
scribed as follows. A projection method of Chorin [1968]
and Temam [1969] is used to solve the coupled set of
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equations formed [Guillou et al., 2000]. In order to avoid
spurious oscillations that could be produced by the projec-
tion method [Guillou and Nguyen, 1999] a staggered grid is
used [Harlow and Welch, 1965]. The finite difference
technique is used for the discretization of the equations
except for the mass conservation equation for the solid
phase (5). Indeed this equation is written in a conservative
form and solved by a finite volume technique to ensure the
conservation of the mass of the sediment [Barbry et al.,
2000]. The model equations are solved implicitly on the
vertical and explicitly on the horizontal direction to avoid a
too restrictive limitation on the time step.
[58] The free surface elevation (h) at time tn+1 is obtained

by solving equation (40). Then the solid volume fraction is
computed using the mass conservation equation (5) and the
volume conservation (7) gives directly the fluid volume
fraction. Depending on the choice of the turbulent model the
corresponding equations are solved (see Table 1). Horizon-
tal and vertical momentum equations (6) are computed for

the intermediate fluid velocity (u�f
!
) assuming that the fluid

pressure is equal to the fluid pressure at the precedent
iteration of the algorithm (pf*). The intermediate fluid

velocity (u�f
!
) is then used to solve the Poisson equation

for the pressure (37). After that the fluid velocity at time tn+1

(unþ1
f

��!
) is obtained by correcting the intermediate fluid veloc-

ity uf*
!

with the pressure gradient at time tn + 1. Finally, the

solid phase velocity at time tn+1 (unþ1
s

��!
) is obtained by solving

the momentum equation for the solid phase (6).

D anþ1
f pnþ1

f � an
f p
*
f

� �
¼ �

rf
Dt

r! anþ1
f unþ1

f

��!
� an

f u
*
f

�!� �
ð37Þ

[59] The free surface condition is obtained by combining
the vertical integrated mass conservation equation for the
mixture (38) with the kinematic free surface condition (39).

r!� af uf
!þ as us

!� 
¼ r! � um�! ¼ 0 ð38Þ

um
�! is the velocity vector of the mixture.

@h
@t

þ umjh
@h
@x

¼ wmjn ð39Þ

umjh = af ufjh + asusjh and wmjh = af wfjh + aswsjh represent
the horizontal and vertical components of the mixture at the
free surface.

@h
@t

þ @Qm

@x
¼ 0; ð40Þ

where Qm =
R
-h
h um dz is the horizontal volume flux of the

fluid particle mixture.

4. Physical and Computational Settings

4.1. Experimental Setup

[60] We use the experimental measurements from Muste
et al. [2005] for comparison with the numerical results. The
experiments were conducted using a tilting recirculating
flume (L = 6.0 m and B = 0.15 m). The flume’s bed was
smooth and a flow-conditioning honeycomb was set at the
flume’s entrance to facilitate quick development of flow
turbulence. The flow rate was selected so as to ensure full
particle suspension (Um � 1 m s�1 and Re � 2.104).
Channel slope was kept at 0.0113 m/m for all the experi-
ments. Flow depth was small (H � 0.02 m) so as to have a
large channel aspect ratio that prevented the formation of
significant secondary flows. All the reported measurements
were conducted along the flume centerline, in a test section
located 5.3 m downstream the flume’s inlet.
[61] Two kinds of sediment particles were used; natural

sand (NS) with rs = 2650 kg m�3, and a neutrally buoyant
sediment (NBS) consisting of crushed Nylon particles with
rs = 1025 ± 5 kg m�3. The NS and NBS particle diameters
are 230 ± 20 mm and had practically the same granular
shape. Fall velocities are obtained using Dietrich’s [1982]
formula with dp = 230 mm and densities of 2650 kg m�3 for
the NS case and 1025 kg m�3 for the NBS case. The
physical characteristics of the particles are summarized in
Table 2. Three particle concentrations were used in the
experiments. In this work we use the measures for the 0.46
10�3 volumetric concentration case referred to NS1 and
NBS1 hereafter.
[62] The velocity measurements were done by means of

particle image velocimetry (PIV) and particle-tracking
velocimetry (PTV). Time averages for the various reported
quantities were obtained by further taking the mean over all
images acquired in a recording series (up to 3500 images).

4.2. Numerical Settings

[63] The simulations are carried out with an 81 � 61
mesh. It is refined vertically near the bottom. The time step
is equal to 10�3 s for all simulations presented in the
following section. The initial condition is set to rest and a
first simulation in clear water gives the initial condition for
the simulation with sediment.
[64] The boundary conditions are summarized in Table 3.

At the inflow boundary (left side), a Neumann condition is
imposed for the horizontal velocity of each phase and the
free surface elevation is set to zero. At the outflow boundary
(right side), a Neumann condition is imposed for the
horizontal velocity of each phase and a radiation condition
is used for the free surface elevation [Orlanski, 1976]. A
Neumann condition is imposed for all the other variables,
denoted f in Table 3.
[65] At the bottom, a no-slip condition for the fluid phase

velocity is imposed (uf = 0) and a slip condition is imposed
on the solid phase velocity (@us@z = 0). This condition is
justified by the fact that sediment particles are not bounded
by viscosity shear as are fluid particles. Therefore, the no-

Table 2. Sediments Characteristics

NS: Natural
Sand

NBS: Crushed
Nylon

dp (mm) 230 ± 20 230 ± 20
rs (kg m�3) 2650 1025 ± 5
Wfal (m s�1) 0.024 0.0006
tfs (s) 0.0052 0.0029
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slip condition at the channel bottom does not apply for the
sediment velocity profile.
[66] Boundary conditions for turbulent variables are sum-

marized in (41). The unusual bottom boundary conditions
for kf and ef are due to the use of the two-layer model
presented above [Mohammadi and Pironneau, 1994]

Free surface :
@kf
@z

¼ @ef
@z

¼ @ks
@z

¼ @kfs
@z

¼ 0

Bottom :
@kf
@z

¼ @ef
@z

¼ @ks
@z

¼ @kfs
@z

¼ 0

ð41Þ

[67] The shape factor in the c-drag coefficient formulation
(12) [Haider and Levenspiel, 1989] is equal to 0.6. This
value is determined by a comparison with the empirical
formulae of Dietrich [1982] for the settling of natural
particles (see Figure 2).

[68] The restitution coefficient of binary collisions (e) is
set to 0.9 for all numerical simulations.

5. Results

[69] In this section, we present the comparison between
models results with experimental data of Muste et al. [2005]
and analytical solutions of Rouse [1937] and Greimann et
al. [1999]. We begin with a clear water simulation to ensure
that the hydrodynamic conditions are well simulated by the
model. This simulation also gives the initial condition for
simulations with particles. Next, we present the model
results in terms of the mean velocity, the lag velocity, the
volume fraction and the turbulent kinetic energy for the two
types of particles (NBS and NS).

5.1. Clear Water Simulation

[70] The steady state results in terms of stream-wise
velocity and turbulent correlations for the fluid phase are
presented in Figure 3. We point out that at steady state the
free surface is parallel to the bottom. We obtain an excellent
agreement for the stream-wise velocity Figure 3a. In
Figure 3b we compare the turbulent kinetic energy profile
obtained by numerical simulation with the measurements.
We observe that the numerical profile slightly overestimates
the measurements. The numerical prediction for Reynolds
stress in Figure 3c shows good agreement with experimental
measurements for the diagonal term huf0wf

0if. Here again a
slight overestimation of the numerical model is observed. A
kink is observed on the numerical results. It comes from the
transition between the two layers in the turbulence model. A

Table 3. Boundary Conditions

Inflow Outflow Bottom

h h = 0 @h
@t

þ
ffiffiffiffiffiffiffiffiffiffi
g � H

p @h
@n

= 0 -

uf
@uf
@n

= 0
@uf
@n

= 0 uf = 0

us
@us
@n

= 0
@us
@n

= 0
@us
@n

= 0

wk
@wk

@n
= 0

@wk

@n
= 0 wk = 0

as 0,46 10�3 @as

@n
= 0

@as

@n
= 0

f
@f
@n

= 0
@f
@n

= 0 -

Figure 2. Evolution of the drag coefficient with the particulate Reynolds number. Comparison of the
Haider and Levenspiel [1989] formula for different values of the shape factor (Y = 1, 0.8, and 0.6) with
Stokes drag coefficient and the empirical correlation of Dietrich [1982].
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small variation in the eddy viscosity coupled with a centered
derivative for the vertical gradient of horizontal velocity is
responsible for the kink. In Figure 3d we obtain an
underestimation of the horizontal term huf0uf0if and an

overestimation of the vertical term hwf
0wf

0if as can be

expected with a k�e model.
[71] We can estimate the friction velocity (u*) with the

Reynolds stress profile by the same method as the experi-
mental one. This gives the following value u* = 0.047 m s�1

which corresponds to a relative error of 12% compared with
the measurements. This means that the horizontal pressure
gradient is slightly overestimated over the channel in the
numerical simulation.
[72] We have performed simulations with particles with

the four turbulent models presented in section 2 (see
Table 1). We impose a uniform profile for the volume
fraction of sediment at the inflow boundary (Table 3) with
a mean value of as equal to 0.46 10�3, which corresponds
to the NBS1 and NS1 cases of Muste et al. [2005].

5.2. Mean Horizontal Velocity

[73] Figure 4 shows the mean horizontal velocity profiles
obtained with the four turbulence models presented in
section 2 compared with the clear water profile. Qualita-

tively we obtain the same effect of the presence of particles
on the mean flow as in the experience [Muste et al., 2005].
We observe an increase of the mean velocity for the NBS
particles (Figure 4a) and a decrease of the mean horizontal
velocity with the NS particles (Figure 4b).
[74] It should be noted that in Figure 4a the T1 model

result differs from the others model results. The drag
reduction is observed. In Figure 4b no effect of particles
is observed on the mean horizontal velocity profiles with the
T3 model.

5.3. Lag Velocity

[75] Figure 5 shows the lag velocity profiles obtained
with the four turbulence models presented in section 2
compared with experimental data from [Muste et al.,
2005] and analytical solutions of Greimann et al. [1999]
(see Appendix C) for the NBS1 and NS1 cases. In the NBS1
case (Figure 5a), the velocity lag is negligible far from the
bottom and shows negative values in a thin layer near the
bottom. Greimann et al. [1999] analysis predicts that the lag
velocity is of the same order as the fall velocity. In the
NBS1 case the particle’s inertia is small (wfall � 6.10�4 m
s�1), by consequence the lag velocity is negligible. The
negative values near the bottom are due to the difference of

Figure 3. Comparison of numerical results with measurements of Muste et al. [2005] in clear water
conditions for (a) stream-wise velocity (Uf), (b) Reynolds stress (huf0wf

0 if), and (c and d) horizontal and
vertical turbulent intensities (huf02if, hwf

02if).
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bottom boundary conditions on horizontal velocities of fluid
and solid phases. The sediment particles can slip on the wall
unlike the fluid. As a result solid particles have a positive
velocity in this layer whereas the fluid phase velocity is
zero. Consequently the lag velocity (ulag = uf � us) is
negative.
[76] In the NS1 case (Figure 5b), experimental measure-

ments show negative values for the lag velocity near the
bottom with a strong positive vertical gradient. Upward the
lag velocity is positive with maximum value of 0.08 m s�1

corresponding to approximately 10% of the mean stream-
wise velocity. The lag velocity decreases toward the free
surface where it is negligible. The analytical solution of
Greimann et al. [1999] predicts the vertical evolution of the

lag velocity but the magnitude, in this case, is underesti-
mated by a factor 3. This discrepancy can be explained by
the approximation made by Greimann et al. [1999] to obtain
the analytical solution: inertial effects are neglected. The
numerical model qualitatively reproduces the existence of
the velocity lag in the NS1 case. But magnitude is greatly
underestimated compared with experimental data and ana-
lytical solution.
[77] For this last case, the effect of particles on the mean

flow can explain the difference between the analytical
solution of Greimann et al. [1999] and the numerical
results. In fact, the Greimann et al.’s [1999] analytical
solution for the lag velocity is based on the clear water
profile unaffected by the presence of particles. Using the
same reference for the calculation of the lag velocity (see
Figure 6) we obtain a close agreement with the analytical

Figure 4. Comparison of the mean horizontal velocity
profile for the fluid phase obtained with the four turbulence
models (T1, T2, T3, and T4) by numerical simulations with
measurements of Muste et al. [2005] and analytical solution
of Greimann et al. [1999] for (a) NBS1 and (b) NS1 cases.

Figure 5. Comparison of the lag velocity profile (ulag =
uf � us) obtained with the four turbulence models (T1, T2,
T3, and T4) by numerical simulations with measurements of
Muste et al. [2005] and analytical solution of Greimann et
al. [1999] for (a) NBS1 and (b) NS1 cases.
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solution of Greimann et al. [1999] for the T2 model results.
The lag velocity obtained with the T4 model is closer to the
analytical solution but is always underestimated. Because of
the fact that the mean horizontal velocity obtained with the
T3 model is quite unaffected by the presence of particles,
the lag velocity is unchanged by this mode of calculation.

5.4. Suspended Particle Volume Fraction

[78] In Figure 7, the numerical prediction of the sus-
pended particles volume fraction profiles obtained with the
four turbulence models presented in section 2 are compared
with experimental data from [Muste et al., 2005] and
analytical solutions of Rouse [1937] and Greimann et al.
[1999] (see Appendix C). In the NBS1 case (Figure 7a),
sediment particles volume fraction profiles obtained with
turbulence models T2, T3 and T4 are close to each other
and in good agreement with experimental and analytical
profiles. However, when there is no dispersion modeling
(model T1) two interfaces appear, one near the bottom
between a high concentrated sediment layer and the dilute
suspension and the other under the free surface between the
dilute suspension and a clear water layer. These character-
istics of the sediment particles volume fraction profiles are
in disagreement with both experimental and analytical
profiles where sediment particles are all maintained in
suspension. We point out that the analytical solution of
Greimann et al. [1999] has not been represented in Figure
7a since it is rigourously identical to the Rouse profile for
such low-inertia particles.
[79] In the NS1 case (Figure 7b) the suspended particles

volume fraction profile is underestimated with the analytical
solution of Rouse [1937]. The Greimann et al.’s [1999]
solution improves upon the Rouse’s [1937] formula but fails
to represent the suspended particles volume fraction
profile. The sediment’s volume fraction profile predicted
with the model T2 is closer to experimental measurements,

especially in the lower part of the channel (z/H < 0.5), but
also underestimate the suspended particles volume fraction
in the upper part of the channel (z/H > 0.5). Suspended
particles volume fraction profiles obtained numerically with
models T3 and T4 are close to each other and are in quite
good agreement with the experimental measurements.
Results for Model T1 are not presented in Figure 7b because
of the unphysical results obtained in the NBS1 case.
Moreover we were not able to obtain the convergence for
this simulation.

5.5. Fluid Phase Turbulent Kinetic Energy

[80] Figure 8 shows the fluid phase turbulent kinetic
energy profiles obtained with the different turbulent models
(T1, T2, T3 and T4) compared with the fluid phase
turbulent kinetic energy profile obtained in the clear water
simulation for the NBS1 and NS1 cases. For the NBS1 case

Figure 6. Comparison of the lag velocity profile (ulag =
uf
ClearWater � us) obtained with the three turbulence models

(T2, T3, and T4) by numerical simulations with measure-
ments of Muste et al. [2005] and analytical solution of
Greimann et al. [1999] for NS1 case.

Figure 7. Comparison of the solid volume fraction profile
obtained with the four turbulence models (T1, T2, T3, and
T4) by numerical simulations with measurements of Muste
et al. [2005] and analytical profiles of Greimann et al.
[1999] and Rouse [1937] for (a) NBS1 and (b) NS1 case.
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(Figure 8a), there is no significant modification of the fluid
turbulent kinetic energy profile between the different mod-
els (T2, T3 or T4) and the clear water profile. On the other
hand for the NS1 case (Figure 8b), we observe some
modifications of the fluid phase turbulent kinetic energy
profile compared with the clear water profile. In order to
quantify these modifications we have calculated the relative
variation (Dr kf) between the maximum value of the fluid
phase turbulent kinetic energy and of the fluid phase
turbulent kinetic energy in the clear water case (42) (see
Table 4). A slight enhancement of fluid phase turbulent
kinetic energy is predicted (Dr kf < 1%) with the three
turbulent models T2, T3 and T4 in the NBS1 case. In the
NS1 case, the model T2 predicts an increase of fluid phase
turbulent kinetic energy, the T3 model shows a very slight

decrease of fluid phase turbulent kinetic energy whereas the
T4 model predicts a nonnegligible decrease of fluid phase
turbulent kinetic energy.

Drkf ¼
max kf

� 
�max kclear waterf

� �
max kclear waterf

� � ð42Þ

6. Discussion

[81] Our results allow us to discuss the improvement of
the two-phase flow approach over the classical one. The
main difference between these two approaches is the mod-
eling of turbulent motions for both fluid and particles and
their cross correlations in the two-phase flow model. The
results presented illustrate the importance of these processes
in the suspended sediment transport.

6.1. Velocity Profiles

[82] In Figure 4, we have observed a drag reduction on
the velocity profile obtained with model T1. This reduction
of drag is related to a damping of the fluid turbulence. This
can be explained from a simple analysis of the fluid
turbulent kinetic energy equation (20). We assume that the
flow is steady and one-dimensional, then equation (20)
becomes simply:

0 ¼ @

@z
af mf þ

mt
f

sk

� �
@kf
@z

� �
� af rf �f þ 2af rf n

t
f

@uf
@z

� �2

0 ¼ nf þ
nt
f

sk

� �
@kf
@z

@af

@z þ af
@
@z nf þ

nt
f

sk

� �
@kf
@z

� �
� af �f

þ 2af ntf
@uf
@z

� �2
0 ¼ 1

af

nf þ
ntf
sk

� �
@kf
@z

� �
@af

@z
þ @

@z
nf þ

ntf
sk

� �
@kf
@z

� �
� �f

þ 2ntf
@uf
@z

� �2

[83] The last three terms are classical in single fluid
turbulence. They simply express the local equilibrium
between production, dissipation and diffusion processes.
The first term is originated from the presence of vertical
gradient of the fluid volume fraction. This term can be
viewed as a Fick-like diffusion process. If we analyze the
sign of this term we find that it is negative which means it is
a damping term for the fluid turbulent kinetic energy.

1

af

nf þ
ntf
sk

� �
> 0

@kf
@z

< 0 ) 1

af

nf þ
ntf
sk

� �
@kf
@z

� �
@af

@z
< 0

@af

@z
¼ � @as

@z
> 0

8>>>>>><
>>>>>>:

Figure 8. Comparison of the difference of the fluid phase
turbulent kinetic energy by reference to the fluid phase
turbulent kinetic energy in clear water predicted by
simulations with the three turbulence models (T2, T3, and
T4) for (a) NBS1 case and (b) NS1 case.

Table 4. Relative Variation of the Fluid Phase Turbulent Kinetic

Energy Obtained With Turbulent Models T2, T3, and T4 in the

NBS1 and NS1 Cases

Drkf (%)

NBS: Crushed
Nylon

NS: Natural
Sand

Model T2 0.56 +1.35
Model T3 0.90 �0.18
Model T4 0.77 �1.55
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[84] The damping of turbulent kinetic energy is important
in the T1 model results for the NBS1 case because of the
important vertical gradient of particle concentration as
shown in Figure 7a. Since the concentration profile obtained
with model T1 is far from the experimental measurements
the drag reduction observed on Figure 4 has no physical
meaning.
[85] NS1 results confirm that the assumption of horizon-

tal velocity equality between particles and the fluid made in
the classical approach is not valid for high-inertia particles.
This feature can be represented by a two-phase flow model
as described by Greimann et al. [1999]. We point out that
both the analytical solution [Greimann et al., 1999] and the
numerical results underestimate the amplitude of the lag
velocity obtained experimentally by Muste et al. [2005].
Greimann et al.’s [1999] analysis applies to small values of
the ratio of the Stokes number over the dimensionless
mixing length (Stbks � 1) and neglects inertial effects.
Therefore, their analysis cannot represent the lag velocity
profile for natural sand particles (NS). In the numerical
approach, we have included inertial effects but the lag
velocity prediction is not improved. This tends to show that
inertial effects are not the processes responsible for the
underestimation of the lag velocity. We think that there are
two main reasons for the underestimation of the lag velocity.
One is the choice of the slip condition for the horizontal
velocity of the solid phase. This condition implies that
collisional and frictional effects at the wall are neglected.
The mean horizontal velocity of the solid phase should be
slower and the lag velocity would be greater. The second
reason is the isotropic assumption induced by the use of a k-e
type turbulence model. As illustrated by Figure 3, the
normal Reynolds stresses are not isotropic. Moreover, the
dispersion tensor in the drift velocity definition is also
anisotropic, the crossing-trajectories effects vary with the
orientation of the relative motion of particles with the mean
flow direction. To take into account the anistropy of
turbulence, we shall use a second-order turbulence model
that is beyond the scope of this paper.
[86] The two-phase models results underestimate the

amplitude of the lag velocity predicted by the analytical
solution of Greimann et al. [1999]. But we have shown that
the choice of the reference for the mean horizontal velocity
of the fluid phase affect the lag velocity profile. When
taking the clear water profile as reference, the lag velocity
obtained with the T2 model is in close agreement with the
analytical solution of Greimann et al.’s [1999]. This allows
us to validate the proposed numerical approach for the lag
velocity simulation.
[87] An important point to discuss is the modeling of the

dispersion tensor in the expression of the drift velocity (14).
We demonstrate, on the basis of physical considerations,
that the modeling of the dispersion in tensor formulation is
essential for representation of the lag velocity. Muste et al.
[2005], Sumer and Deigaard [1981] and Rashidi et al.
[1990], amongst others, have shown experimentally that
the lag velocity is positive when sufficiently far from the
bed. Greimann et al.’s [1999] have shown, theoretically,
that the lag velocity equals the opposite of the horizontal
drift velocity: Ulag = �ud + o(tfs). Therefore, the horizontal
drift velocity value must be negative to be consistent with
the experimental evidence: ud < 0. The horizontal drift

velocity is assumed to be as described by Simonin [1991]:
ud = � Dfs,xz

t @as

@z (14). The vertical gradient of the sediment’s
particle volume fraction is negative @as

@z < 0 meaning that the
sediment’s particle volume fraction is increasing toward the
bed. So the dispersion coefficient Dfs,xz

t must be negative to
satisfy the sign of the lag velocity observed experimentally.
If we make the isotropic assumption to obtain the dispersion

coefficient, that is Dt
fs ¼ ntfst

t
fsI , then the sign condition for

Dfs,xz
t is not fulfilled and the lag velocity would be negative.

However, if we use a tensor formulation to express the
cross-correlation tensor (Boussinesq model) in the dispersion

coefficient expression Dt
fs u0f

!
 u0s
!D E

stfs
t (31), the term

huf0ws
0is is negative and the horizontal drift velocity satisfies

the sign condition. This analysis shows that one must use
the tensor formulation to calculate the dispersion coefficient
in the drift velocity formulation (14), otherwise the lag
velocity between fluid and particles will not be consistent
with experimental and theoretical results.

6.2. Sediment Volume Fraction Profile and Turbulence
Analysis

[88] In model T1, there is no other suspension mechanism
than the non-Newtoninan stress. This term is responsible for
the presence of particles in suspension. The fact that the
sediment volume fraction profile obtained with model T1 is
far from the experiments shows that the modeling of the
dispersion of particles by the fluid turbulent motion is of
primary importance. We show that the introduction of a drift
velocity in the momentum transfer term in equation (6)
permits the description of the physical processes of disper-
sion of particles by the fluid turbulent motion. The utility of
this approach is confirmed by the results obtained with
models T2, T3 and T4. When the inertia of the particles is
small (NBS1 case) we obtain results similar to the classical
approach [Rouse, 1937] and to the analytical solution of
Greimann et al. [1999] with these three turbulent models.
When inertia of the particles is larger, as in the NS1 case,
the single phase flow model fails to reproduce the sediment
volume fraction profile [Rouse, 1937] whereas the two-
phase flow analytical solution [Greimann et al., 1999] gives
a more accurate description. Results obtained with the
model T2 give a more accurate prediction of the sediment
volume fraction profile but show some discrepancies with
the experimental measurements for z/H > 0.5. However
when turbulent models for solid phase and fluid particle
turbulent interactions are considered (model T3 and T4) the
sediment volume fraction profile predicted by the numerical
simulation is close to the one obtained with experimental
measurements.

6.3. Governing Equations and Turbulence Modeling

[89] We discuss the difference between the analytical
solution of Greimann et al. [1999] and the present model.
The main difference between the governing equations of
these two approaches concerns the modeling of the turbu-
lent stress terms, Greimann et al. [1999] assume that solid
phase turbulent intensities are constant and equal to the
near-bottom value of the fluid phase turbulent intensities
predicted by the theoretical profile of Nezu and Rodi [1986].
They neglect the effect of the particles on the fluid turbu-
lence. The other assumptions used by Greimann et al.’s
[1999] to derive their model are equivalent to the model T2.
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The improvement of the sediment volume fraction profile
obtained with the model T2 is mainly attributed to this
difference in the modeling of the turbulent stress terms.
Another difference concerns the numerical resolution of the
governing equations in model T2. Concerning the govern-
ing equations for model T2 and models T3 and T4, we can
identify three fundamental differences. The first one is
the modeling of the turbulent stress tensor for the solid

phase: TRe
s ; in model T2 we assume that TRe

s = TRe
f . The

second one is the modeling of the dispersion coefficient in
the drift velocity expression: Dt

fs. The third one is the
modeling of the fluid turbulent kinetic energy transfer term
in the kf � ef model: Pkf. To further discuss the difference
between model T2 and models T3 and T4 prediction for the
sediment volume fraction profile we analyze the results
from the models in terms of the fluid phase turbulent kinetic
energy profile.

[90] Elghobashi [1991] proposed a classification for gas-
solid suspensions based on some characteristic time scales
(Figure 9). Figure 10 shows the ratio of the relaxation time
scale tfs on the fluid turbulent time scale seen by the
particles tfs

t and the ratio of the relaxation time scale tfs
on the particle-particle collision time scale ts

c for the NBS1
and the NS1 cases. The ratio of the relaxation time scale tfs
on the fluid turbulent time scale seen by the particles tfs

t is
always lower than 102. According to Elghobashi’s [1991]
classification the effects of particles on the turbulent motion
of the fluid phase can be observed. Here we observe a
damping of fluid turbulent kinetic energy NS1 in the cases.
[91] As seen in Figure 8 the fluid turbulent kinetic energy

is slightly enhanced far from the bed (z* > 10-100 for NS1)
for the NS1 case and at all depths for the NBS1 case.
Figure 8b also shows that damping of fluid turbulent kinetic
energy occurs near the bed (z* > 10-100) in the NS1 case.

Figure 9. Classification of flow regimes for gas-solid flows according to Elghobashi [1991].

Figure 10. Ratio of different characteristic time scales predicted by the ks � kfs model (T4) for (a) the
NBS1 case and (b) the NS1 case.
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For this case, models T3 and T4 predict a significant
damping of the fluid turbulent kinetic energy whereas the
T2 model predicts a relatively small damping of fluid
turbulent kinetic energy for in a very small region near
the bottom (z* > 10). In order to see whether the transfer
term of fluid turbulent kinetic energy (23) is a damping or a
production term of turbulence, we have plotted in Figures 11
and 12 the vertical profiles of the two contributions of the
interphase transfer term (23) for model T3 and T4 in both
NBS1 and NS1 cases. It appears that both contributions
induce a damping of fluid turbulent kinetic energy. The
Work done by the drag force associated with the fluid

turbulent motion (Pkf

2 =
af rf
tfs

ud
!� ur!) is a damping term for

the NS1 case (see Figure 12). Whereas in the NBS1 case
this contribution is negligible because of the very small
relative velocity. The other contribution appearing in equa-
tion (23) (Pkf

1 =
af rf
tfs

(�2 kf + kfs)) also leads to a damping of
fluid turbulent kinetic energy for both NBS1 and NS1 cases.

This means that the transfer of fluctuating energy is done
from the fluid to the particles: particles are shaken by the
fluid turbulent motion. These results show that the damping
of fluid turbulence arises mainly from a kinetic transfer
between fluid and particles and not from the drag at the
scale of the particles. The other interesting point is that the
enhancement of fluid turbulent kinetic energy is not due to
this transfer of turbulent kinetic energy. In fact, it can be due
to an increase of the turbulent kinetic energy production
induced by an increase of the vertical gradient of the fluid
velocity or it can be due to a decrease of dissipation of fluid
turbulent kinetic energy (ef) due to the presence of the
transfer term in equation (21).

7. Conclusion

[92] In this paper a study of the turbulent effect on
sediment transport in an open channel flow has been done

Figure 11. Profile of the interaction term for the fluid
turbulent kinetic energy (Pkf with Pkf

1 =
af rf
tfs

(�2 kf + kfs) and
Pkf

2 =
af rf
tfs

ud
!:ur

!) obtained with turbulence models (a) T3

and (b) T4 for NBS1 case.

Figure 12. Profile of the interaction term for the fluid
turbulent kinetic energy (Pkf with Pkf

1 =
af rf
tfs

(�2 kf + kfs) and
Pkf

2 =
af rf
tfs

ud
!:ur

!) obtained with turbulence models (a) T3

and (b) T4 for NS1 case.

C11017 CHAUCHAT AND GUILLOU: TURBULENT TWO-PHASE SEDIMENT TRANSPORT

16 of 20

C11017



with a 2-D XZ two-phase flow model. We have focused our
attention on turbulent closures. Simulations of dilute sedi-
ment laden flows have been performed and compared with
experimental data with two types of particles with different
inertia [Muste et al., 2005]. Different turbulent closures
have been tested (models T1, T2, T3 and T4) and their
relevance in terms of physical processes modeling have
been discussed.
[93] The principal conclusions are as follows:
[94] 1. Modeling dispersion of particles by the fluid

turbulent motion in the momentum equations by a drift
velocity model [Simonin, 1991] allows representation of the
physical processes of dispersion of particles by the fluid
turbulent motion in both the vertical direction (suspension
mechanism) and in the horizontal direction (velocity lag).
[95] 2. A two-phase flow model including turbulent

closures for solid phase turbulence (model T3 and T4) is
appropriate for representing the main features of the sedi-
ment laden flow: the existence of a horizontal velocity lag
between the particles and the fluid; the increase of the
dispersion effects of particles with their inertia, and the
damping of fluid turbulent kinetic energy. We have shown
that the damping of fluid turbulent kinetic energy is repre-
sented in the model as a transfer of fluctuating kinetic
energy from the fluid to the particles.
[96] 3. An algebraic closure for solid phase turbulence

and fluid particle turbulent interactions (model T3) is a good
compromise between representing the physical processes
and complexity.
[97] In this approach no empirical parameter was adjusted

to obtain a satisfactory concentration profile. This consti-
tutes a real improvement upon the classical sediment
transport modeling approach (passive scalar hypothesis).
Nevertheless, our approach is time consuming and cannot
be applied on a large scale. This is a first step in the
development of a turbulent two-phase flow model for
sediment transport. Future work will be concerned with
the analysis of these results in terms of the solid phase
momentum and fluid phase turbulent kinetic energy balance
to provide guidelines for the development of parameter-
izations for classical suspended sediment transport
modeling.
[98] Finally, for actual use, an algebraic closure for the

solid phase fluctuating motion and fluid particle turbulent
interactions (model T3) is a good compromise between
representation of the physical processes and complexity of
implementation. This simple model gives quite similar
results to the first-order model (model T4) where two
additional transport equations have to be solved. This
approach could be used to test closures for two-phase
semianalytical solutions and for full numerical solution for
sediment transport in a simple and effective way for steady
state regime.

Appendix A: Two-Layer k � e Model

[99] In the two-layer k � e model the computational
domain is split in two layers, the high Reynolds number
area and the low Reynolds number area. In the first layer,
the standard k � e model is applied. In the near wall region,
the low Reynolds number layer, the dissipation of fluid

phase turbulent kinetic energy ef and the eddy viscosity nf
t

are imposed by algebraic relationships as follows:

ef ¼
k
3=2
f

le
ðA1Þ

and

ntf ¼ cm
ffiffiffiffi
kf

p
lm; ðA2Þ

where lm and le represent two length scales that account for
the damping of turbulence in the near-wall region.

lm ¼ kc�3=4
m z 1� e

�zþ
z0

� �
ðA3Þ

le ¼ kc�3=4
m z 1� e

� zþ

2kc�3=4
m

 !
ðA4Þ

[100] The local Reynolds number z+is defined by: z+ =ffiffiffi
kf

p
z

nf
. It is based on kf rather than u*. The separation between

the two layers is fixed at z+ = 70.

Appendix B: Closures for the ks � kfs Model

[101] In this appendix we present the detailed expressions
for the kinetic and collisional diffusivity Ks

t (B1) and Ks
c

(B4) obtained in the frame of the kinetic theory for granular
flow [Balzer et al., 1995; Jenkins and Richman, 1985].

Kt
s ¼

1
3
ttfskfs þ 5

9
tfs 23 ks 1þ asg0fcð Þ
1þ 5

9
tfs

zc
tcs

ðB1Þ

where the constants fc and zc are given by: fc = 3(1 +
e)2(2e � 1)/5 and zc = (1 + e)(49 � 33e)/100. g0 is the radial
distribution function which accounts for the increase in the
probability of collisions when the gas becomes denser. In a
very diffuse gas, g0 equals one, whereas g0 tends to infinity
when the particles are closely packed. The formulation
proposed by Ma and Ahmadi [1986] is valid in dense cases
and has been used in this model (B2).

g0 ¼
1þ 2:5as þ 4:5904a2

s þ 4:515439a3
s

1� as=amax
s

� � 0:678021 ðB2Þ

ts
c is the interparticle collision time scale and is given by

(B3) in the framework of the kinetic theory of granular flow.

tcs ¼
d

24g0as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3pð Þ= 2ksð Þ

p
ðB3Þ

Kc
s ¼ asg0 1þ eð Þ 6

5
Kt
s þ

4

3
d

ffiffiffiffiffiffiffi
2ks

3p

r !
ðB4Þ

Appendix C: Analytical Solutions of Greimann
et al. [1999]

[102] In this appendix we briefly present analytical sol-
utions of Greimann et al. [1999] for the concentration
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profile (C2) and the lag velocity (C4). The authors assumed
that the concentration of particles is sufficiently small so the
vertical turbulent intensities can be specified according to
the experimental work of Nezu and Rodi [1986] for clear
water conditions:

w02
f ¼ u2

*
Cne

�1:34s; ðC1Þ

where Cv = 1.51 is a constant.
[103] The analytical model for the volume fraction profile

is obtained by assuming that turbulence intensities are
constant with depth through the flow and are equal to their
value in the near wall region: wf 02 ¼ ws02 = u*

2 Cv. The
volume fraction profile is given by the following equation:

as

aa
s

¼
s � 1

2
1þ S0ð Þ

s � 1
2
1� S0ð Þ

sa � 1
2
1þ S0ð Þ

sa � 1
2
1� S0ð Þ

" #re=S0
; ðC2Þ

with

S0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4CnStb

gsk

s
; re ¼

ws

gsku*
ðC3Þ

[104] as
a is the reference volume fraction at the adimen-

sionalized height sa above the bed. gs = [1 + Cb � (3 kur!k2)/
(2kf)]�1/2 accounts for the loss of correlation between the
turbulent motions of fluid and particles due to the relative
motion of solid particles, this processes has been described
by Csanady [1963] as the crossing-trajectory effect.
ur
!¼ us

!� uf
! is the mean relative velocity between phases,

kf is the fluid turbulent kinetic energy and Cb is a constant.
St =

tfs
tfb

represent the Stokes number with tfs =
wsrs

g rs�rfð Þ the

particle relaxation time scale and tfb = u�
H

a characteristic
time scale of the fluid flow based on the bottom shear
velocity. When St = 0 and gs = 1 the solution of Greimann
et al. [1999] is equivalent to the Rouse [1937] profile (4).
[105] Assuming that Stbks� 1Greimann et al. [1999] derived

the following analytical solution for the lag velocity:

Ulag ¼ Uf � Us ¼
2

3
ws 1� sð Þe1:34s: ðC4Þ

[106] This model predicts that for relatively small par-
ticles away from the bed, Ulag is of the order of the settling
velocity and decreases to zero at the free surface. This is in
agreement with experimental data from Muste and Patel
[1997] and Kaftori et al. [1996].

Notation

Roman notation
Ap Surface area of the real particle, m2.
As Surface area of the equivalent spherical

particle, m2.
CD Drag coefficient, Ø.
Cb Empirical constant for crossing trajectory

effect, Ø.
c Mass concentration of sediment particles,

kg m�3.

dip Interparticular distance, m.
dp Particle’s diameter, m.

Dk Mean strain rate tensor of phase k, s�1.
Dfs
t Dispersion tensor for the drift velocity, m2

s�1.
e Restitution coefficient of binary collisions,

Ø.
g! Gravitational acceleration, m s�2

g0 Radial distribution function, Ø.
H Water depth, m.
I Unit tensor, Ø.
kf Fluid phase turbulent kinetic energy, m2

s�2.
ks Solid phase turbulent kinetic energy, m2

s�2.
kfs Fluid particle velocity covariance, m2 s�2.
le Length scale for the fluid turbulent kinetic

energy dissipation in the near wall region
(2 layer model), m.

lm Length scale for the fluid eddy viscosity in
the near wall region (2 layer model), m

Mk
�!

Interfacial momentum transfer term, kg
m�2 s�2.

M 0
k

�!
Force exerted by the other phase on phase k
(drag, virtual mass, lift,. . .), kg m�2 s�2.

n! Normal unit vector, Ø.
pk Pressure in phase k, Pa.
pki Interfacial pressure for phase k, Pa.

ps
eff Effective pressure for solid phase, Pa.
pk
t Turbulent pressure for phase k, Pa.

Re Reynolds number, Ø.
Rep Mean particle Reynolds number, Ø.
S’ Exponent correction in the analytical solu-

tion for the particle volume fraction profile
of Greimann et al. [1999]

St Stokes number, Ø.
t Time, s.

Tk Strain tensor of phase k, N m�2.
Tk
Re Turbulent strain tensor of phase k, N m�2.

huk!ik, huk,iik Mean velocity vector, ith component of the
velocity vector of phase k, m s�1.

u0k
!
, uk,i

0 Fluctuating velocity vector, ith component
of the fluctuating velocity vector of phase
k, m s�1.

ur
!, ur,i Relative velocity vector, ith component of

the relative velocity vector between phases,
m s�1.

ud
!, ud,i Drift velocity vector, ith component of the

drift velocity vector, m s�1.
Ulag Lag velocity, m s�1.
u* Bottom shear velocity, m s�1.
ws Sediment’s particle velocity, m s�1

x!, xi Position vector, ith component of the
position vector, m.

Greek notation
ak Volume fraction of phase k, Ø.

as
max Maximum volume fraction of solid phase,

Ø.
as
0 Reference volume fraction of solid phase,

Ø.
b Amplification factor for the viscosity, Ø.
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ek Turbulent kinetic energy dissipation of
phase k, m2 s�3.

efs Fluid particle covariance dissipation, m2

s�3

zs Bulk viscosity, m2 s�1.
h Free surface elevation, m.
k Von Karman constant, Ø.
vk Kinematic viscosity of phase k, m2 s�3.
vk
t Eddy viscosity of phase k, m2 s�3.

vfs
t Fluid particle covariance eddy viscosity, m2

s�3.
vs
c Collisional viscosity of solid phase, m2 s�3.
x Ratio of the fluid turbulence time scale

seen by the particles over the particle
relaxation time, Ø.

rk Solid phase density, kg m�3.
s Adimensionalized depth, Ø.
s0 Reference adimensionalized depth for ana-

lytical profiles [Rouse, 1937; Greimann et
al., 1999], Ø.

tk Deviatoric component of the stress tensor
of phase k, N m�2.

tki Deviatoric component of the interfacial
stress tensor of phase k, N m�2.

tfs Particle relaxation time, s.
tf
t Fluid turbulence time scale, s.

tfs
t Fluid turbulence time scale seen by the

particles, s.
ts
c Binary collisions time scale, s

tfb Bulk integral fluid time scale, s.
Y Shape factor, Ø.
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