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Overview of the lecture

1 Derivation of the two-phase equations and the closure issue

−→ From the average definition to the closed set of equations

The first part of this lecture is essentially based on Jackson’s
book (2000).

2 Application to bed-load transport in laminar shearing flows

−→ From analytical calculation to 3D numerical model
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1 Introduction

2 Fundamental equations and averaging procedure

3 The closure issue
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What are particulate two-phase flows?

Definition:

Two-phase flows are flows that involves two phases (liquid, solid, gaz).

Classifications:

On the nature of the phases:
→ Liquid-Liquid, Gaz-Liquid, Gaz-Solid
and Solid-Liquid.

On the nature of the spatial distribution
of the interfaces:
→ Dispersed, Separated or Transient.

Fig.: Different regimes of two-phase flows,
a) transient two-phase flow, b) separated
two-phase flow, c) dispersed two-phase
flow (From Sommerfeld 2000).

This lecture is dedicated to dispersed
Solid-Liquid flows
→ Particulate Two-phase Flows
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Some industrial examples

Hoppers and bunkers
Fluidized beds

Pneumatic transport
Cyclones

Slurry pipes

Julien Chauchat PUF Workshop

Particulate two-phase flow modelling


LitFluidise_exp.mpg
Media File (video/mpeg)



Introduction Fundamental equations and averaging procedure The closure issue

Some geophysical examples

Sediment transport Continental Landslides
(El Salvador)

Coastal Landslides (Canada)

Snow Avalanches (Scotland)
Submarine Avalanches (Santa Barbara)
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Modelling approaches?

Idea 1: Eulerian - Lagrangian approach

→ Fluid flow around each particle solved explicitely
⇒ Resultant force and torque exerted on each particle

→ Limited to small number of particles

Idea 2: Eulerian - Lagrangian approach
→ Fluid velocity spatially averaged Vaverage >> Vparticle

⇒ Ffluid→particle = f(φ,−→ur) empirical correlations

→ Particle-particle interactions explicitely solved

”Discrete Particle Modelling” (≥1990’s)

Idea 3: Eulerian - Eulerian approach
→ Fluid and particles velocities spatially averaged Vaverage >> Vparticle

⇒ Ffluid→particle = f(φ,−→ur) empirical correlations

→ No limitation on the number of particles

”Two-fluid model”
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2 arguments for an Eulerian approach

Their are approximately 1 million particles of 1 mm diameter in a cube of
volume 10 cm3 filled at 60%!

With

8>>><>>>:
dp = 10−3 m

L = 10−1 m

φ = 0.6

we get

8>>>>>><>>>>>>:

Vt = L3 = 10−3 m3

vp =
π

6
d
3
p ≈ 5.10

−10
m

3

Np =
φVt

vp
≈ 10

6
particles

The solution of the Lagrangian model would provide more detailed
information than it is usually needed. Indeed, a knowledge of the average
values of the velocity of the fluid, the velocities and angular velocities of
the particles, and the fluid pressure, over some appropriately small region
in the neighbourhood of each point [...], is usually all that is required.

Jackson (1997)

⇒ Eulerian - Eulerian approach (Idea 3)
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Objectives

Understanding the two-phase flow equations

from derivation to closure

How does one obtain the two-phase equations?

⇒ Averaging procedure

How does one close the system of partial differential equations obtained
by the averaging procedure depending on the dilute or dense flow regime?

⇒ Closure issue

→ Application: Bed-load transport by laminar shearing flows
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Eulerian two-phase approach

Local and instantaneous conservation equations

⇓

Averaging process

⇓

Averaged conservation equations for each phase

⇓

Closures
⇓

Closed set of equations
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Eulerian two-phase approach

dΩ

Ω

Fluid + particles

Idea: Describe the motion of the fluid and the particles by a continuous
approach at the scale of dΩ (i.e.:Dparticle << LdΩ)
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Various averaging approach

Ensemble average

→ Averaged at each point of space over an ensemble of ”macroscopically“
equivalent systems

Drew and Lahey (1993), Zhang and Prosperetti (1997), ...

Local spatial average

→ Averaged over small region compared to macroscopic length scale of
interest

Jackson (1997 and 2000), ...

→ The two averaging procedures are equivalent and led to the same equations

⇒ We describe here the local spatial average
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Definition of the local space average (Jackson, 1997 and 2000)

L 0 L0

0.5

1

1.5

2

2.5

3x 105

r

g(
r)

Weighting function g(r)

Weighting function g(r)

g(r) =

8><>:
3

4 π L3
for r ≤ L

0 for r > L

Verifying 4π

Z ∞
0

g(r)r2dr = 1

Overall average value of f at position −→x and time t : 〈f〉

〈f〉 (−→x ,t) =

Z
V
f(−→y ,t) g(|−→x −−→y |)dVy

L must be chosen such that: Lmacro >> L >> Dp

⇒ Separation of scales: Lmacro >> Dp

L 0 LL
0

L

L

0

L

x
y

z
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Definition of the fluid phase average

Void fraction ε

→ fraction of space occupied by fluid in the neighbourhood of −→x

ε(−→x ,t) =

Z
Vf (t)

g(|−→x −−→y |)dVy =
Vf
V

where Vf (t) indicate the part of the system
occupied by fluid at time t. Vf x

L

Fluid phase average of f at position −→x and time t : 〈f〉f

ε(−→x ,t) 〈f〉f (−→x ,t) =

Z
Vf (t)

f(−→y ,t)g(|−→x −−→y |)dVy
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Definition of the solid phase average

Solids volume fraction φ

→ fraction of space occupied by particles in the neighbourhood of −→x

φ(−→x ,t) =
X
p

Z
vp

g(|−→x −−→y |)dvy =

P
p vp

V

where vp is the interior of particle p.

vp
x

L

Solid phase average of f at position −→x and time t : 〈f〉s

φ(−→x ,t) 〈f〉s (−→x ,t) =
X
p

Z
vp

f(−→y ,t)g(|−→x −−→y |)dvy
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Definition of the particle phase average

Number density n

→Number of particles / unit volume in the neighbourhood of −→x

n(−→x ) =
X
p

g(|−→x −−→xp|)

where −→xp is the position of the centre of particle p.

Xp x

L

Particle phase average of f at position −→x and time t : 〈f〉p

n(−→x ,t) 〈f〉p (−→x ,t) =
X
p

fpg(|−→x −−→xp|)

Link with the solid phase average n(−→x ,t) vp = φ(−→x ,t) .
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Theorems
Using Leibniz rule we can demonstrate that (differentiation under the integral sign)

Theorem 1 (Th1):

ε

fi
∂f

∂xk

flf
=
∂ε 〈f〉f

∂xk
−
X
p

Z
sp

f(−→y )nk(−→y )g(|−→x −−→y |)dsy

Theorem 2 (Th2):

ε

fi
∂f

∂t

flf
=
∂ε 〈f〉f

∂t
+
X
p

Z
sp

f(−→y )nk(−→y )uk(−→y )g(|−→x −−→y |)dsy

→ The same relationship exists for the solid phase average

Theorem 3 (Th3):

n

fi
∂f

∂t

flp
=
∂n 〈f〉p

∂t
+

∂

∂xk

X
p

fpupkg(|−→x −−→xp|)

Julien Chauchat PUF Workshop

Particulate two-phase flow modelling



Introduction Fundamental equations and averaging procedure The closure issue

Local and instantaneous conservation equations

General continuity equation

−→
∇.−→u = 0

General momentum equation

ρ

»
∂−→u
∂t

+
−→
∇. (−→u ⊗−→u )

–
=
−→
∇ .
`
σ
´

+ ρ−→g

Applying the spatial averaging for the fluid and the solid phases separetly

to these conservation equations we obtain the two-phase equations
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Average equation of fluid mass conservation

1 Continuity equation for the mixture:
∂uk

∂xk
= 0

2 Applying the fluid phase average → ε

fi
∂uk

∂xk

flf
=

Z
Vf (t)

∂uk

∂xk
(−→y ,t)g(|−→x −−→y |)dVy

3 Using previous theorems

8>>>>>><>>>>>>:

Th1 : f = uk → ε

fi
∂uk

∂xk

flf
=
∂ε 〈uk〉f

∂xk
−
X
p

Z
sp

uk(
−→y )nk(

−→y )g(|−→x −−→y |)dsy

Th2 : f = 1 → 0 =
∂ε 〈uk〉f

∂t
+
X
p

Z
sp

nk(
−→y )uk(

−→y )g(|−→x −−→y |)dsy

4 Substituting the term
P
p

R
sp
...dsy from the second equation in the first one we obtain the

mass conservation equation for the fluid phase

∂ε

∂t
+
∂ε 〈uk〉f

∂xk
= 0
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Average equation of fluid momentum

1 Point momentum equation for the fluid: ρf

»
∂ui

∂t
+
∂uiuk

∂xk

–
=
∂σik

∂xk
+ ρfgi

2 Applying the fluid phase average

ρf

"
ε

fi
∂ui

∂t

flf
+ ε

fi
∂uiuk

∂xk

flf#
=

fi
∂σik

∂xk

flf
+ ε 〈ρfgi〉f

3 Using previous theorems8>>>>>>>>>>>>>><>>>>>>>>>>>>>>:

Th2 : f = ui → ε

*
∂ui

∂t

+f
=
∂ε
˙
ui
¸f

∂t
−
X
p

Z
sp
ui(
−→y )uk(−→y )nk(−→y )g(|−→x − −→y |)dsy

Th1 : f = uiuk → ε

*
∂uiuk

∂xk

+f
=
∂ε
˙
uiuk

¸f
∂xk

−
X
p

Z
sp
ui(
−→y )uk(−→y )nk(−→y )g(|−→x − −→y |)dsy

Th1 : f = σik → ε

*
∂σik

∂xk

+f
=
∂ε
˙
σik

¸f
∂xk

−
X
p

Z
sp
σik(−→y )nk(−→y )g(|−→x − −→y |)dsy

4 Fluid phase momentum equation

ρf

"
∂ε 〈ui〉f

∂t
+
∂ε 〈uiuk〉f

∂xk

#
=
∂ε 〈σik〉f

∂xk
−
X
p

Z
sp

σik(
−→y )nk(

−→y )g(|−→x −−→y |)dsy + ερfgi
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Averaged equations for the fluid and solid phase

Fluid phase equations

Mass
∂ε

∂t
+
∂ε 〈uk〉f

∂xk
= 0

Momentum

ρf

"
∂ε 〈ui〉f

∂t
+
∂ε 〈uiuk〉f

∂xk

#
=
∂ε 〈σik〉f

∂xk
−
X
p

Z
sp

σiknkg(|−→x −−→y |)dsy + ερfgi

Solid phase equations

Mass
∂φ

∂t
+
∂φ 〈uk〉s

∂xk
= 0

Momentum

ρs

»
∂φ 〈ui〉s

∂t
+
∂φ 〈uiuk〉s

∂xk

–
=
∂φ 〈σik〉s

∂xk
+
X
p

Z
sp

σiknkg(|−→x −−→y |)dsy + φρsgi
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Average equation of particle momentum

1 Momentum equation for particle p:

ρfvp
∂upi
∂t

=

Z
Sp

σik(
−→y )nk(

−→y )dSy| {z }
traction exerted by the fluid

+
X
q 6=p

f
pq

| {z }
Contact forces

+ρsvpgi

2 Applying the particle phase average gives

ρsvp

fi
∂nui

∂t

flp
=
X
p

g(|−→x −−→xp|)

24Z
Sp

σiknkdSy +
X
q 6=p

f
pq

35+ ρsvpngi

3 Using Theorem 3 with f = ui and the fact that vpn = φ

n

fi
∂ui

∂t

flp
=
∂n 〈ui〉
∂t

+
∂

∂xk

X
p

uiukg(|−→x −−→xp|)

4 Particle phase momentum equation

ρs

»
∂φ 〈ui〉
∂t

+
∂φ 〈uiuk〉p

∂xk

–
=
X
p

g(|−→x −−→xp|)

24Z
Sp

σiknkdSy +
X
q 6=p

f
pq

35+ ρsφgi
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Fluid-particle interactions
Newton’s third law (action-reaction law)X
p

g(|−→x −−→xp|)
Z
Sp

σiknkdSy =
X
p

Z
sp

σiknkg(|−→x −−→y |)dsy

and using a Taylor expansion of the weighting function

g(|−→x −−→y |) = g(|−→x −−→xp|)− a
∂g(|−→x −−→xp|)

∂xj
nj −

a2

2

∂2g(|−→x −−→xp|)
∂xj∂xk

njnk + ...

we can demonstrate that

X
p

Z
sp

σik(
−→y )nk(

−→y )g(|−→x −−→y |)dsy = n
D
ffi

Ep
−
∂n
D
sfij

Ep
∂xj

+ ...

Interpretation

n
D
ffi

Ep
: Average of the integral of the fluid stress on the surface of each particle

⇒ Forces exerted by the fluid on the particles

∂n
D
sfij

Ep
∂xj

: Effect of the presence of the particles on the stresses

→ Effective stress tensor Sfik = ε 〈σik〉f + n
D
sfij

Ep
+ ...
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Two-phase equations
Simplified notations :˙−→u ¸f −→ −→uf˙−→u ¸s −→ −→us

n
D−→
f f

Ep −→ n
−→
fMass conservation equations

∂ε

∂t
+
−→
∇ .
„
ε
−→
uf
«

= 0 ;
∂φ

∂t
+
−→
∇ .
“
φ
−→
up
”

= 0

Momentum conservation equations

ρf

24∂ε−→uf
∂t

+
−→
∇ .
„
ε
−→
uf ⊗

−→
uf
«35 =

−→
∇ .
„
Sf
«
− n
−→
f + ερf

−→g

ρs

"
∂φ
−→
up

∂t
+
−→
∇ .
“
φ
−→
up ⊗

−→
up
”#

| {z }
Inertia

=
−→
∇ .
“
Sp
”

| {z }
Stresses

+ n
−→
f|{z}

Interaction

+ φρs
−→g| {z }

Gravity

We need to relate the fluid and solid phase stress tensors Sf , Sp and the

interaction term n
−→
f to the average variables ε,φ,

−→
uf ,
−→
us
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Remarks on mixture average equations

We can substitute one of the fluid or solid conservation equation by a
mixture conservation equation.

Definitions

Volume average velocity: 〈−→u 〉 = ε 〈−→u 〉f + φ 〈−→u 〉s

Global volume conservation ⇒ ε+ φ = 1 i.e.: V = Vf + Vp

Summing the mass conservation equations for the two phases gives

∂

=1z }| {
ε+ φ

∂t
+
−→
∇ .(

=〈uk〉z }| {
ε
−→
uf + φ

−→
up) = 0 ⇒ ∂ 〈uk〉

∂xk
= 0

⇒ The mixture is incompressible in terms of the volume average velocity
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Definitions

Mixture density: ρm = ερf + φρs

Mass average velocity: ρm 〈−→u 〉m = ερf 〈−→u 〉f + φρs 〈−→u 〉s

Averaging the point conservation equation over the whole space

led to the following equations

Mass conservation of the mixture

∂ρm

∂t
+
∂ρm 〈uk〉m

∂xk
= 0

Momentum equation for the mixture

ρm
»
∂ 〈ui〉m

∂t
+
∂ 〈ui〉m 〈uk〉m

∂xk

–
=
∂Smik
∂xk

+ ρmgi

Stress tensor: Smik = Sfik + Ssik −
εφρsρf
ρm

“
〈ui〉f − 〈ui〉s

”“
〈uk〉f − 〈uk〉s

”
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2 Fundamental equations and averaging procedure

3 The closure issue
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Position of the problem

From the derivation of the conservation equations we get:

29 unknowns
→ 2 volume fractions ε,φ

→ 2x3 velocity components ufi ,u
s
i

→ 2x9 stress tensor components Sfik,S
s
ik

→ 3 interaction term components n fi

8 equations
→ 2 mass conservation equations
→ 2x3 momentum equations

⇒ We need 21 additional equations !!!
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Hypothesis

1 We neglect the Reynolds like contribution Re ≤ 1

⇒ 〈uiuk〉f = 〈ui〉f 〈uk〉f

2 The fluid is Newtonian

⇒ σik = −p+ η

„
∂ui
∂xk

+
∂uk
∂xi

«

3 The particles are spherical, rigid and monodisperse

The closure consists in expressing 〈σik〉f , Sfik, Ssik and n
D
ffi

Ep
in terms of

local average variables and their derivatives.
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Closure for the fluid stress tensors

1 Newtonian fluid: σik = −pδik + η

„
∂ui
∂xk

+
∂uk
∂xi

«

2 Averaging over the fluid phase: ε 〈σik〉f = −ε 〈p〉f + ηε

fi
∂ui
∂xk

+
∂uk
∂xi

flf
with ε

fi
∂ui
∂xk

+
∂uk
∂xi

flf
=
∂ 〈ui〉
∂xk

+
∂ 〈uk〉
∂xiZ

Vf

„
∂ui

∂xk
+
∂uk

∂xi

«
g(−→r )dVy =

Z
V

„
∂ui

∂xk
+
∂uk

∂xi

«
g(|−→x −−→y |)dVy

3 Fluid average stress tensor: ε 〈σik〉f = −ε 〈p〉f + η

„
∂ 〈ui〉
∂xk

+
∂ 〈uk〉
∂xi

«
expressed in terms of the volume average velocity 〈−→u 〉
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Closure for the effective fluid stress tensors

We simply introduce an effective viscosity ηeff in the previous definition that
takes into account the effect of the presence of particles on the shear resistance
of the fluid

Sfik = −ε 〈p〉f δik + ηeff

„
∂ 〈ui〉
∂xk

+
∂ 〈uk〉
∂xi

«

Dilute flows: ηeff = η

„
1 +

5

2
φ

«
Einstein (1906)

Valid for φ < 0.3%

→ We have 9 new equations, we need 12 additional equations
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Closure for the effective fluid stress tensors

Dense flows: ηeff = η

„
1− φ

φmax

«−5

2
φmax

Krieger-Dougherty (19??)

Imagine the case of a fixed assembly

of particles close to maximum

packing φ ≈ φmax then ηeff →∞.

⇒ The fluid cannot be sheared !!!

0 0.1 0.2 0.3 0.4 0.5 0.6
100

101

102

103

104

!
"

ef
f/"

Effective viscosity

 

 

Einstein
Krieger−Dougherty

Krieger-Dougherty’s viscosity has been developed for the mixture as a whole
without differentiation between fluid and particles behaviour
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Closure for the effective solid stress tensors : Particle-particle interactions

In very dilute suspension Ss ≈ 0

→ No contact between particles.

When φ increases Ss 6= 0

→ Collisions between particles occurs ⇒ Kinetic and collisional stresses

When φ→ φmax

→ Enduring contact between particles exists ⇒ Frictional stresses

See the lecture from O. Pouliquen this morning

General stress-shear rate relation:

Ssik = −〈p〉s δik + ηseff

„
∂ 〈ui〉s

∂xk
+
∂ 〈uk〉s

∂xi

«
where 〈p〉s and ηseff depends on the physics at work

→ We have 9 new equations, we need 3 more equations
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Collisional regime

Granular material ≈ Molecular gas

6= Inelastic nature of collisions

Kinetic theory of Granular flows
→ Haff (1983), Jenkins and Savage (1983), Lun et al. (1984), ...

⇒ 〈p〉s = 〈p〉s (φ,T s) and ηseff = ηseff (φ,T s)

where T s = 〈usiusk〉p is the ”particle temperature“or the ”pseudothermal“ energy

⇒ An additional equation for T s needs to be solved.

See Koch and coworkers, Buyevich and coworkers or Simonin and coworkers for
further details
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Collisional regime

Granular material ≈ Molecular gas

6= Inelastic nature of collisions

Kinetic theory of Granular flows
→ Haff (1983), Jenkins and Savage (1983), Lun et al. (1984), ...

⇒ 〈p〉s = 〈p〉s (φ,T s) and ηseff = ηseff (φ,T s)

where T s = 〈usiusk〉p is the ”particle temperature“or the ”pseudothermal“ energy

⇒ An additional equation for T s needs to be solved.

See Koch and coworkers, Buyevich and coworkers or Simonin and coworkers for
further details

Julien Chauchat PUF Workshop

Particulate two-phase flow modelling



Introduction Fundamental equations and averaging procedure The closure issue

Frictional regime

Frictional rheology: µ(I)

Ssik = −〈p〉s δik + ηseff

„
∂ 〈ui〉s

∂xk
+
∂ 〈uk〉s

∂xi

«
→ GDR Midi (2004), Jop et al. (2006), Forterre and Pouliquen (2008)

From Jop et al. (2006)

Where ηseff =
µ(I) 〈p〉s

‖ γ̇s ‖

and µ(I) = µs +
µ2 − µs
I0
I

+ 1

with I the inertial parameter.

Simplified frictional rheology (Coulomb):
→ µ = µs = constant
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Fluid-particle interactions n
−→
f

Following Jackson (2000) we can write n
−→
f as

n
−→
f = φ

−→
∇.Sf| {z }

Buoyancy

+n
−→
f1 or n

−→
f = −ρfφ

 
−→g − Df

−→
uf

Dt

!
| {z }
Specific gravity

+n
−→
f2

with
−→
f2 =

−→
f1

ε

Remark

”When a fluid flows through an assembly of particle there is a contribution to its
local average pressure gradient from the relative motion. But this contribution,
in turn, exerts a force on the immersed particles that may be attributed either

to the buoyancy term [φ
−→
∇.Sf ] or to the other term in the decomposition

[n
−→
f2]. [...] this is the reason why

−→
f2 is greater than

−→
f1 by a factor 1/ε.“

Jackson (2000)
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Two-phase equations
Using the first decomposition for the fluid-particle interaction led to

Mass conservation equations

∂ε

∂t
+
−→
∇ .
„
ε
−→
uf
«

= 0 ;
∂φ

∂t
+
−→
∇.
“
φ
−→
up
”

= 0

Momentum conservation equations

ρf

"
∂ε
−→
uf

∂t
+
−→
∇ .
„
ε
−→
uf ⊗

−→
uf
«#

=

=εz }| {
(1− φ)

−→
∇.
“
Sf
”
− n
−→
f1 + ερf

−→g

ρs

"
∂φ
−→
up

∂t
+
−→
∇ .
“
φ
−→
up ⊗

−→
up
”#

=
−→
∇.
“
Sp
”

+ φ
−→
∇ .
“
Sf
”

+ n
−→
f1 + φρs

−→g
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Fluid-particle interaction force n
−→
f1

From experimental evidence : n
−→
f1 =

Dragz }| {
−→
FD +

Liftz }| {
−→
FL +

V irtual Massz }| {
−−−→
FVM +...

Drag force:
−→
FD = F (φ,|

−→
uf −−→us|)

„−→
uf −−→us

«
→ Colinear to the relative motion

Lift force:
−→
FL = CL(φ) ρf φ

„
−→
∇ ∧

−→
uf
«
∧
„−→
uf −−→us

«
→ Perpendicular to the plan formed by the relative motion and the vorticity

Virtual Mass force:
−−−→
FVM = CVM (φ) ρf φ

0@Df
−→
uf

Dt
−
Ds
−→
us

Dt

1A
→ Colinear to the relative acceleration

→ We have 3 new equations, the two-phase equations are closed !
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Virtual Mass force

−−−→
FVM = CVM (φ) ρf φ

 
Df
−→
uf

Dt
− Ds

−→
us

Dt

!

An accelerating or decelerating particle must move some volume of surrounding
fluid with it as it moves. The virtual mass force opposes the motion of particles.

ωn: Natural frequency

k: Spring stifness
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Lift force

−→
FL = CL(φ) ρf φ

„
−→
∇ ∧

−→
uf
«
∧
„−→
uf −

−→
us
«

uf
t pf

t

uf
b pf

b

uft > ufb ⇒ pft < pfb

∃ a force from low to high velocity

Lift force on a single particle (Saffman ,1965 and 1968):

FL = CSaf.L

∂uf

∂z

“
uf − up

”
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Drag force - Dilute flows

−→
FD = F (φ,|

−→
uf −

−→
us|)

„−→
uf −

−→
us
«

Stokes drag on a single particle: fD = 3 π Dp η
f

„−→
uf −

−→
up
«

Recalling FD = n fD with n vp = n
π D3

p

6
= φ

we obtain: FD = 18
φ ηf

D2
p

„−→
uf −

−→
up
«

Dimensional analysis: FD =
1

2
ρf CD

Apz }| {
πD2

p

4

˛̨̨̨−→
uf −

−→
up
˛̨̨̨ „−→
uf −

−→
up
«

Identifying the two expressions we get: CD =
24ηf

ρfDp|
−→
uf −

−→
up|

=
24

Rep
for Re << 1
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Drag force - Dilute flows

Influence of inertial effect (transition regime)

First order correction: CD =
24

Rep

„
1 +

3

16
Rep

«
for Rep < 5

Oseen (1910)

Empirical correlation: CD =
24

Rep

`
1 + 0.15 Re0.687

p

´
for 0.5 < Rep < 1000

Schiller and Naumann (1933)

Influence of the particles concentration

vs = vt (1− φ)n| {z }
=f(φ)

Richardson-Zaki (1954)

⇒ FD = n fD (1− φ)2−n

n = 4.65 for low Reynolds Number Rep

From Chehata at al. (2006)
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Drag force - Dense flows

−→
FD = F (φ,|

−→
uf −

−→
us|)

„−→
uf −

−→
us
«

Darcy drag

−→
FD =

ηε2

K

„−→
uf −

−→
up
«

Fluid viscosity: η

Permeability: K = ε3d2

k(1−ε)2

with k ≈ 180 : Kozeny-Karman relation for the permeability (Goharzadeh et al.,
2005)

⇒ F (φ,|
−→
uf −

−→
us|) =

ηε2

K
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Case of a suspension of particles in sedimentation

Hypothesis:

Inertia of the fluid is negligible

The fluid-particle interaction is dominated by the drag force

Mass conservation equations

∂ε

∂t
+
−→
∇ .
„
ε
−→
uf
«

= 0 ;
∂φ

∂t
+
−→
∇ .
“
φ
−→
up
”

= 0

Momentum conservation equations

ρf
∂ε
−→
uf

∂t
= −ε

−→
∇pf + ε

−→
∇ .
„
τf
«
− F (

−→
uf −

−→
up) + ερf

−→g

ρs
∂φ
−→
up

∂t
= −
−→
∇pp +

−→
∇ .
“
τp
”
− φ
−→
∇pf + φ

−→
∇.
„
τf
«

+ F (
−→
uf −

−→
up) + φρs

−→g
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Case of a suspension of particles in sedimentation

Rewriting the equation for a 1D vertical problem, we get:

Mass conservation equations

∂ε

∂t
+
∂εwf

∂z
= 0 ;

∂φ

∂t
+
∂φwp

∂z
= 0 ;

∂wm

∂z
= 0

Momentum conservation equations

ρf
∂εwf

∂t
= −ε

∂pf

∂z
+ ε

∂

∂z
(ηeff

∂wm

∂z
)− F (wf − wp)− ερfg

ρs
∂φwp

∂t
= −

∂pp

∂z
+

∂

∂z
(ηp

∂wp

∂z
)− φ

∂pf

∂z
+ φ

∂

∂z
(ηeff

∂wm

∂z
) + F (wf − wp)− φρsg

Mixture momentum equation

ρm
∂wm

∂t
= −

∂pp

∂z
−
∂pf

∂z
+

∂

∂z
(ηp

∂wp

∂z
) +

∂

∂z
(ηeff

∂wm

∂z
)− ρmg
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We can choose 4 of the six previous equations

Mass conservation equations

∂φ

∂t
+
∂φwp

∂z
= 0 ;

∂wm

∂z
= 0

Particle momentum equation

ρs
∂φwp

∂t
= −

∂pp

∂z
+

∂

∂z
(ηp

∂wp

∂z
)− φ

∂pf

∂z
+ φ

∂

∂z
(ηeff

∂wm

∂z
) +

F

1− φ
(wm − wp)− φρsg

where we have used the fact that wf − wp =
wm − φwp

ε
− wp =

wm − wp

ε

Mixture momentum equation

ρm
∂wm

∂t
= −

∂pp

∂z
−
∂pf

∂z
+

∂

∂z
(ηp

∂wp

∂z
) +

∂

∂z
(ηeff

∂wm

∂z
)− ρmg

⇒ We now have a system with only wm, wp, φ, pf and pp as variables
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Remark 1
Far from the bottom we can assume that:

the flow is uniform and steady −→ ∂wm/p

∂z
=

∂

∂t
= 0

the particle-particle interactions are negligible −→ pp = τp = 0

and so the momentum equations simplifies as

0 = −φ∂p
f

∂z
+

F

1− φ (wm − wp)− φρsg

0 = −∂p
f

∂z
− ρmg

Meaning that:

⇒ The fluid pressure gradient balances the weight of the mixture ρmg

⇒ The drag force balances the apparent weight of the particles

0 =
F

φ(1− φ)
(wm − wp)− (1− φ)(ρs − ρf )g
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Remark 2
At the bottom, the fluid and the particles are at rest −→ wm = wp = 0

and so the momentum equations simplifies as

0 = −∂p
p

∂z
− φ∂p

f

∂z
− φρsg

0 = −∂p
p

∂z
− ∂pf

∂z
− ρmg

Meaning that:

⇒ The fluid pressure gradient balances the weight of the fluid ρfg

0 =
∂pf

∂z
+ ρfg

⇒ The particle pressure gradient balances the apparent weight of the particles
φ(ρs − ρf )g

0 = −∂p
p

∂z
− φ(ρs − ρf )g
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Synthesis

You know how to derive the two-phase equations?

⇒ Averaging procedure

You have some ideas about how to close the two-phase equations
depending on the dilute or dense flow regime?

⇒ Closure issue

We have shown that the equation of motion for spherical particles in
sedimentation seems to be well represented by the two-phase equations

→ In the second part of this lecture, we will apply these equations to the case
of bed-load transport by laminar shearing flows
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[Jackson, 1997] Jackson, R. (1997).
Locally averaged equations of motion for a mixture of identical spherical
particles and a newtonian fluid.
Chemical Engineering Science, 52:2457–2469.
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