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A brief history of openFOAM: Field Operation And Manipulation

1998

- A set of top level classes for finite volume on unstructured grids 

- User defined solvers based on top level classes: algorithms are written in a math-like syntax

FOAM 

Henry Weller

JASAK Hrvoje


Nabal Ltd

Imperial College (UK)

2004



Example: PISO algorithm for incompressible Navier-Stokes equations

 
//set up the linear algebra for the momentum 
equation.  The flux of U, phi, is treated explicity
//using the last known value of U.  
 
        fvVectorMatrix UEqn
        (
            fvm::ddt(U)
          + fvm::div(phi, U)
          - fvm::laplacian(nu, U)
        );
 
// solve using the last known value of p on the 
RHS.  This gives us a velocity field that is
// not divergence free, but approximately satisfies 
momentum.  See Eqn. 7.31 of Ferziger & Peric
        solve(UEqn == -fvc::grad(p));
 

The PISO algorithm consists in building an elliptic equation for the pressure to ensure the velocity field is divergence free 

(not shown here)
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Motivations

Luijendijk et al. CE (2017)

Sand Engine - The Netherland

Sediment transport during floods

Storms at coast

Scour around hydraulic structures

O. Link (UdeC, Chili)

Salmon River during the 1964 flood 
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Modeling approaches

Pros 
• Simple

• Applicable at large-scale


Cons 
• Empirical formulas 

‣ large scatter

‣ Missing physics


• Arbitrary separation between 
bed-load and suspended-load

Pros 
• Resolve continuously sediment 

transport profile

• Incorporate fine-scale 

processes:

‣ Turbulence

‣ Particle-particle interactions


• No arbitrary separation


Cons 
• Very expensive

• Limited to ‘small scale’ 

applications

Jenkins and Hanes JFM (1998) 6
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Eulerian-Eulerian two-phase flow equations

Local mass & momentum conservation for a fluid-particle mixture
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Local spatial averaging 
Jackson (2000)
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GL is a 3D door function 
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Governing equations
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Fluid phase equations

Solid phase equations

Fluid-particle interactions 
= fluid flow at the particle scale

Granular stresses 
= particle-particle interactions

Effective fluid stress 
= include particle perturbations

Details of the flow at the particle scale are missing due to averaging

➡ Need to model grain-scale physics 
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Fluid-particle interactions

Generalized buoyancy  
Jackson (2000) 

nfB = �r.
⇣
�pfI + ⌧f

⌘
n~f = n ~fB + n ~fD + ...

Stokes drag around a single particle


x particle number density: n

x hindrance function

fD = 3 ⇡ dp ⌘f
⇣
~uf � ~up

⌘

nfD =
� ⇢p

tp

⇣
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⌘
Drag 

           where tp is the particle response time
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⇣
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Archimede Local fluid acceleration



sedFoam: a 3D two-phase numerical model for sediment transport
• Finite Volume Method


• PISO algorithm for pressure-velocity coupling


• Based on twoPhaseEulerFoam from H. Rusche (2002) implemented in OF-2.4


• Publically available on github: https://github.com/SedFoam/sedfoam 

• Fluidfoam: a python pre/post-processing package for OpenFOAM https://bitbucket.org/sedfoam/fluidfoam 

• sedFOAM-3.1 is available and is compatible with OF5.x, OF6, OF7, OF1712+ to OF1906+
Chauchat et al. (2017) - Geoscientific Model Development
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BOOT DIRECTLY 
FROM USB-STICK

• AT LAPTOP STARTUP, BOOT 
FROM THE USB-STICK :  
      F2 OR DEL OR … 
(DEPENDING OF LAPTOP) 

• ADVANTAGES :
‣ NO DOWNLOAD
‣ NO VIRTUALISATION -> FASTEST
‣ NO VIRTUALBOX SOFTWARE 

• DISADVANTAGES :
‣ IO ACCESS NOT VERY FAST
‣ NO FULL CONTROL  

• NOT RECOMMENDED FOR MAC

BOOT USB-STICK 
VIA VIRTUALBOX

• VIRTUALBOX 6.0 NEEDED  
(CF. README_USB.TXT) 

• ADVANTAGES :
‣ NO DOWNLOAD
‣ NO STARTUP PROBLEMS

• DISADVANTAGES :
‣ IO ACCESS NOT VERY FAST
‣ NO FULL CONTROL 

• RECOMMENDED FOR MAC

LAUNCH PRE-
DOWNLOADED 

VIRTUAL 
MACHINE

• VIRTUALBOX 6.0 NEEDED  
(CF. README_FULL.TXT) 

• ADVANTAGES :
‣ FULL CONTROL
‣ VERY FAST

• DISADVANTAGES :
‣ RISK OF BREAKING THE VM
‣ DOWNLOAD NEEDED

• RECOMMENDED FOR SPEED

Installation and technical aspects



• Linux OS : Ubuntu

• Username : lubuntu

• Password : lubuntu

• OpenFoam v1812 (ESI version)

• Python 3.7

• Latest official sedfoam

• Latest official fluidfoam

• Important tools : 
terminal, python notebook

• Directory of openfoam sources : 
/opt/openfoam/1812plus/

• Directory of sedfoam (sources, tutorials, turbulent 
models, post processing functions…) : 
/home/lubuntu/Documents/sedfoam 

SPECIFICATIONS OF THE ENVIRONMENT



• To launch terminal, just click on icon of the desktop or icon of launch bar

• List of useful classical commands/tools in terminal :

• cd : change directory; 

example : cd /home/lubuntu/Documents/sedfoam

• ls :  list directory contents of files and directories; 

example : ls /home/lubuntu/Documents 

• touch : create empty file; 

example : touch /home/lubuntu/Documents/empty.file

• rm :  remove file or directory (-r option needed for directory); 

example : rm /home/lubuntu/Documents/empty.file

• gedit : classical editor to modify files 

other editors : vi, emacs, nano, atom, vscode…

Linux Survival Guide

• Paraview : visualisation tools (very useful for 
3D output) 

• To launch python notebook, just type : 
jupyter-lab in terminal

• List of shortcuts for notebook :

• shift+return : execute the notebook box

• return : go to the line



Test case 1: Sedimentation of particles at low particulate-Reynolds number 
Polystyrene beads in silicon oil

Model ingredients: 
• Stokes drag + hindrance function


• Particle pressure due to enduring contacts:


where       is a modulus (in Pa) and          is the random loose packing fraction


Numerical parameters: 
• Ny= 120 ; Δt=0.2 s; first order schemes

pp = P0
(�� �rlp)

5

(�m � �)3

P0

Johnson & Jackson (1987)

�rlp
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• Open a terminal 


cd /home/lubuntu/Documents/sedfoam/tutorials/


• Open the jupyter-notebook: 


jupyter-lab THESIS.ipynb &


•  Follow the steps!

!16

Test case 1: run the case
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Test case 1: run the case



Excess pore pressure:


Mixture momentum balance: 


The dense granular flow rheology depends on pp => essential to predict it accurately

ϕ

pe = pf � ⇢f g y

D⇢mwm

Dt
= �dpf

dy
� ⇢mg � dpp

dy

Chauchat et al. GMD (2017)  18

Test case 1: Sedimentation of particles at low particulate-Reynolds number



Test case 2: Laminar bed-load

Index-matching experiments  
• Particles: dp=2mm PMMA ; ⍴p/⍴f = 1.2


• Fluid: Triton X-100 


• Re ~ 1

(Aussillous et al., JFM 2013)  19

Analytical solution 
• Einstein viscosity


• Coulomb friction: μ = constant


• Parabolic velocity profile

(Ouriemi et al., JFM 2009)



Governing equations
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Fluid phase equations

Solid phase equations

Fluid-particle interactions 
= fluid flow at the particle scale

Granular stresses 
= particle-particle interactions

Effective fluid stress 
= include particle perturbations

Details of the flow at the particle scale are missing due to averaging

➡ Need to model grain-scale physics 
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Control parameter = Inertial number: 

Granular stresses: particle-particle interactions

Dense granular flow rheology: μ(I)           (GDR Midi, 2004) 

Represent frictional-collisional interactions in dense granular flows


• Shear stress                                                          (Jop et al., 2006) 

with


Visco-plastic rheology: contain a yield stress (need regularization) and a non-linear viscous term
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• Particle pressure 

Shear-induced pressure: lead to bed decompaction  (Maurin et al., 2016) 

                + pressure due to enduring contact (Johnson & Jackson, 1987)
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Sp = r ~up + (r ~up)T � 2

3
tr(r. ~up)



Effective fluid stress

Shear stress:                                    with                                                           the velocity shear rate


Effective viscosity models depends on volume fraction  

• Einstein (1906) model:


• Krieger-Dougherty (1957) model:


‣ Viscosity increases with volume fraction
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Sf = r ~uf + (r ~uf )T � 2

3
tr(r. ~uf )



• Once the particles are deposited we set a streamwise pressure gradient to drive the fluid flow above 
the granular bed.


• Modify the input files (see NoteBook) and run the model 


• Numerical parameters: Ny=120, Δt=0.2 s, first order schemes

 23

Test case 2: Laminar bed-load

-dP/dx



Test case 2: Laminar bed-load with Coulomb rheology

• Comparison with analytical solution: Coulomb rheology + Einstein viscosity model


‣ Numerical implementation of granular flow rheology is validated


• Numerical parameters: Ny=200; first order schemes

Chauchat et al. GMD (2017) 24



Test case 2: Laminar bed-load with μ(I) rheology

• Comparison with numerical solution: μ(I) rheology + Einstein viscosity model


‣ Numerical implementation of granular flow rheology is validated


• Numerical parameters: Ny=120; first order schemes

Chauchat et al. GMD (2017) 25



Test case 2: Laminar bed-load with μ(I) rheology and dilatancy law 

• Numerical solution: μ(I) rheology + phi(I) + Einstein viscosity model


• Numerical parameters: Ny=120; first order schemes

Chauchat et al. GMD (2017)
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Fluid phase equations

Solid phase equations
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Favre-averaged two-phase flow equations

Favre-averaging:  Ensemble averaging                                           Favre-average velocities


                                  Concentration fluctuations                                    Velocity fluctuations 

h�i = lim
N!1

NX

k=1

�k
~fuf =

h(1� �) ~uf i
1� h�i

�0
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Kinetic shear stress

Turbulent shear stress

Drift velocity
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Fluid turbulence modeling

Reynolds shear stress: 

Eddy viscosity models: 

• Two-equation models: k-𝜀 or k-⍵ models 


➡ Modified TKE equation:


correlations between fluid and sediment velocity fluctuations:                                                      (Cheng et al., 2017)


• Large Eddy Simulation: Dynamic Smagorinsky

Drag damping term Density stratification term

Rf = ⇢f (1� h�i) ⌫ft Sf

Drift velocity model: 

• Gradient diffusion model:                                       where 𝜎c is a turbulent Schmidt number


Drift velocity is equivalent to Reynolds flux in Rouse profile (Chauchat, 2018)
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Granular stress modeling

Kinetic Theory of Granular Flows = analogy with molecular gases 

Collisional and kinetic stresses: 

• Shear viscosity: 

• bulk viscosity: 

• Collisional pressure: 

➡ Depend on the granular temperature:                              counterpart of the TKE for a fluid


• Transport equation for the granular temperature: 

Jenkins and Savage (1983); Ding and Gidaspow (1990)
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Sheet flow experiment of Revil-Baudard et al. JFM (2015, 2016)


‣ d=3mm, s~1.2 / h=0.17m ; Slope=0.005 ; 𝜽=0.5


‣ Acoustic Concentration and Velocity Profiler (Hurther et al., CE 2011)


‣ Collocated velocity and concentration measurements at 100Hz and 3mm resolution

Application to unidirectional sheet-flow
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Application to sheet-flow: Eulerian-Eulerian simulations

Chauchat et al. GMD (2017) ; Cheng et al. AWR (2018)

φ

Simulations Turbulence model Granular stress model
Run 1 1D  k-𝜀 µ(I) rheology

Run 2 1D  k-𝜀 Kinetic Theory
Run 3 3D LES Kinetic Theory
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Sediment flux and transport layer thickness

• Meyer-Peter and Müller (1948): 


• Comparison of Eulerian-Eulerian model predictions with experimental data 


• Wide range of particle properties: medium sand - 2.6mm acrylic - 3mm PMMA particles


• Wide range of Shields number: 𝜽 = 0.1-3.5

Chauchat (2018); Nagel (PhD Thesis)

qsq
(s� 1)gd3p

= 8 (✓ � ✓c)
3/2
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Test case 3: Application to scour around a pipeline

3 stages of scour below a pipeline: onset, tunneling, lee-wake erosion 

• Non-structured grid: N~200 000 cells 

   (Δx~Δy ~ 0.75 - 3 mm)


• D=0.05m, ReD=4.3 104

• Medium sand: d=360μm, ϱs=2650 kg/m3, 𝜽0=0.33

•  µ(I) rheology + two-equation turbulence models
Mathieu et al. Water (2019)          33



Test case 3: Applications to scour around a pipeline

• k-𝜀 model is not able to reproduce vortex shedding


• We developed a hybrid k-𝜀/k-⍵ model to simulate both the 
tunneling and the lee-wake erosion stages.


‣ k-𝜀 behavior in the near bed region 


‣ k-⍵ behavior near solid walls


• More work has to be done on turbulence modeling…


Mathieu et al. Water (2019)         

 34

t=11 s

t=18 s

t=25 s



Test case 3: Applications to scour around a pipeline

Mathieu et al. Water (2019)         
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• 3D scour: 5 million cells 

‣ 600s of dynamics = 110 000 CPU hours 


‣ ~ 20 days on 224 CPUs ~ 12 yrs on 1CPU


• D=0.1m, ReD=4.6 104

• Medium sand: d=260μm, ϱs=2650 kg/m3


• Live-bed configuration: 𝜽0=0.2

• µ(I) rheology + k-omega Wilcox 2006
Nagel et al. ADWR (in prep.)         

Test case 4: Applications to scour around a bridge pile

 36



Test case 4: Applications to scour around a bridge pile

Nagel et al. ADWR (in prep.)         
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Conclusions
‣ Open-source framework for two-phase flow modeling of sediment transport


‣ Basic validation on fundamental problems: sedimentation & laminar bed-load


‣ Turbulence modeling using « classical » 2 equations models: k-𝜀 & k-⍵ models 

‣ Granular stress models: μ(I) and Kinetic Theory 

‣ Validation on sheet-flows: vertical structure + sediment flux and transport layer thickness Vs 𝜽


‣ Application to multi-dimensional problems: scour around a pipeline and « bridge pier » 


‣ Develop more reliable turbulence models to account for the presence of sediment particles


‣ Develop accurate sub grid scale models for LES - A. Mathieu PhD 2018-2021


‣ Implement extended kinetic theory and better elastic stress models 

‣ Develop a multi-class model to reproduce grain size sorting mechanisms - H. Rousseau PhD 2018-2021


‣ Implement dilatancy and pore-pressure coupling - B. Tsai PhD (UD)


‣ Perform ripple migration simulations to disentangle suspended/bedload/near bed suspended load - A. Salimi PhD (UD)


‣ Develop a free surface resolving two-phase flow model (Kim et al., 2018)

Perspectives
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Numerical algorithm for the pressure-velocity coupling

The algorithm is based on the following steps:

1. Solve for {�}n+1
j using

@�

@t
+

@�wp

@z
= 0

2. Solve for {✏}n+1
j using ✏ = 1� �

3. Solve for intermediate velocities
�
wf

 ⇤
j
and {ws}⇤j

4. Solve for the pressure
�
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 ⇤
j
using the poisson equation

5. Correct the velocities
�
wf

 n+1
j

and {ws}n+1
j using the new pressure

There are di↵erent methods for solving the pressure-velocity coupling, they are almost all based
on predictor-corrector algorithm. In the following the PISO (Pressure Implicit with Splitting of
Operators) algorithm is detailed.
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Pressure Implicit with Splitting of Operators (PISO) algorithm

The PISO algorithm requires the momentum equations to be written in a
semi-discretized form. We start by writing the fluid phase momentum equation in the
phase intensive form:
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The semi-discrete form of the equation can be written in matrix form as:
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contains implicit advection and drag terms,
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j
contains explicit

source terms including temporal derivative, gravity, explicit drag term (solid phase
contribution) and the index j represents the j

st grid node in the mesh.

For example, using a first order Euler scheme for the time derivative, the vector
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�
H

f
 
j
=

1

�t

�
wf

 n
j
� g +

{�}n+1
j ⇢p

{✏}n+1
j ⇢f tp

{ws}nj

where �t the time step.
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Using a first order Upwind scheme, the matrix coe�cients
⇥
A

f
⇤
ij

are given by:

⇥
A

f
⇤
ij

= �

�
wf
 n
j

�z
�i j�1 +

 �
wf
 n
j

�z
+

{�}n+1
j ⇢p

{✏}n+1
j ⇢f tp

!
�i j

where �i j is the Kronecker symbol and �z the grid size assumed uniform for
simplicity. In matrix form, it reads:

h
A

f
i
⇥
�
wf
 n+1

=

2

6666664

. . .
. . .

�

�
wf
 n
j

�z

�
wf
 n
j

�z
+

{�}n+1
j ⇢p

{✏}n+1
j ⇢f tp

. . .
. . .

3

7777775

0

BBBBB@

...�
wf
 
j�1�

wf
 
j

...

1

CCCCCA

n+1

1. Velocity predictor step
Using the discretized momentum equation, the predictor step for the fluid phase can
be written formally as:
�
wf
 ⇤
j
=
⇥
A

f
⇤�1
ij

�
H

f
 
j

This step requires the inversion of the matrix
⇥
A

f
⇤
ij
.
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Similarly, the solid phase momentum equation in matrix form can be written as:

[As]ij {ws}⇤j = {Hs}j �
1

⇢p

@
�
pf
 ⇤
j

@z

where the term {Hs} also contains the particle pressure contribution:

{Hs}j =
1

�t
{ws}nj � g +

1

tp

�
wf

 n
j

Using the discretized momentum equation, the predictor step for the solid phase can
be written formally as:
{ws}⇤j = [As]�1

ij {Hs}j

The velocity correction equations integrate the fluid pressure gradient correction and
provide the corrected velocity fields

�
wf

 ⇤⇤
j

and {ws}⇤⇤j :

�
wf

 ⇤⇤
j

=
�
wf

 ⇤
j
�

⇥
A

f
⇤�1
ij

⇢f

@
�
pf
 ⇤
j

@z

{ws}⇤⇤j = {ws}⇤j �
[As]�1

ij

⇢p

@
�
pf
 ⇤
j

@z
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2. Pressure solution
The corrected velocity fields should be divergence-free for the volume-averaged
mixture velocity: {wm}⇤⇤j = {✏}n+1

j

�
wf
 ⇤⇤
j

+ {�}n+1
j {ws}⇤⇤j

@ {wm}⇤⇤j
@z

= 0

,
@

@z

⇣
{✏}n+1

j

�
wf
 ⇤⇤
j

+ {�}n+1
j {ws}⇤⇤j

⌘
= 0

,
@

@z

" 
{✏}n+1

j

⇢f
⇥
Af
⇤
ij

+
{�}n+1

j

⇢p [As]ij

!
@
�
pf
 ⇤
j

@z

#
=

@

@z

⇣
{✏}n+1

j

�
wf
 ⇤
j
+ {�}n+1

j {ws}⇤j
⌘

Using a staggered grid for between the pressure and the velocity to avoid Rhie and
Chow oscillations, the Poisson equation can be discretized as:

,
1

2�z

2

64

0

B@
{✏}n+1

j+1

⇢f
h
Af

i

ij

+
{�}n+1

j+1

⇢p [As]ij

1

CA

n
pf

o⇤
j+1

�
n
pf

o⇤
j

�z
�

0

B@
{✏}n+1

j

⇢f
h
Af

i

ij

+
{�}n+1

j

⇢p [As]ij

1

CA

n
pf

o⇤
j

�
n
pf

o⇤
j�1

�z

3

75

=

{✏}n+1
j+1

n
wf

o⇤
j+1

+ {�}n+1
j+1

�
wp ⇤

j+1 �
✓
{✏}n+1

j

n
wf

o⇤
j

+ {�}n+1
j

�
wp ⇤

j

◆

�z
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3. Velocity corrector step

Using the newly computed pressure field
�
pf
 ⇤
j
, the velocity correction equations can

be used to correct the velocity fields:

�
wf

 ⇤⇤
j

=
�
wf

 ⇤
j
�

⇥
A

f
⇤�1
ij

⇢f

@
�
pf
 ⇤
j

@z

{ws}⇤⇤j = {ws}⇤j �
[As]�1

ij

⇢p

@
�
pf
 ⇤
j

@z

Remarks:

1. In one-dimensional problems the solution of this equation is cheap and a simple
double sweep algorithm can be used Thomas (1995) however for
three-dimensional problems this can become very expensive as Bi-Conjugate
Gradient algorithms might become necessary to resolve the algebraic system
associated with the previous equation.

2. The algorithm presented above is implemented in sedFOAM an open-source
Eulerian-Eulerian two- phase flow model developed under the open-source CFD
toolbox openFOAM. The 3D version of this Gravity driven settling:
sedimentation of non-cohesive particles in the viscous regime algorithm is
presented in Chauchat et al. (2017).


