
THESIS symposium
University of Delaware, DE (US)

Julien CHAUCHAT, Cyrille BONAMY and Antoine MATHIEU
LEGI, Grenoble Institute of Technology, CNRS, Grenoble, France

An open-source multi-dimensional two-phase flow model
for sediment transport applications

A brief history of openFOAM: Field Operation And Manipulation

1998

- A set of top level classes for finite volume on unstructured grids

- User defined solvers based on top level classes: algorithms are written in a math-like syntax

FOAM

Henry Weller

JASAK Hrvoje

Nabal Ltd

Imperial College (UK)

2004

Example: PISO algorithm for incompressible Navier-Stokes equations

//set up the linear algebra for the momentum
equation. The flux of U, phi, is treated explicity
//using the last known value of U.

 fvVectorMatrix UEqn
 (
 fvm::ddt(U)
 + fvm::div(phi, U)
 - fvm::laplacian(nu, U)
);

// solve using the last known value of p on the
RHS. This gives us a velocity field that is
// not divergence free, but approximately satisfies
momentum. See Eqn. 7.31 of Ferziger & Peric
 solve(UEqn == -fvc::grad(p));

The PISO algorithm consists in building an elliptic equation for the pressure to ensure the velocity field is divergence free

(not shown here)

A brief history

 4

2002 2019

2011 2015

Zhen Cheng PhD at UD

sedFOAM-1.0
Tim Nagel PhD at LEGI

sedFOAM-2.0 sedFOAM-3.xtwoPhaseEulerFoam

Henrik Rusche PhD at IC

collaboration UD/LEGI

2014

J. Chauchat, C. Bonamy, T. Nagel, A. Mathieu, H. Rousseau

T.-J. Hsu, Z. Cheng, Y. Kim, A. Salimi Tarazouj, B. Tsai

X. Liu P. Higuera (U. Singapore)

G. Keetels (U. Delft)

S. Bateman

Antoine Mathieu PhD at LEGI

Yeulwoo Kim PhD at UD

Ali Salimi PhD at UD
Benjamin Tsai PhD at UD

Motivations

Luijendijk et al. CE (2017)

Sand Engine - The Netherland

Sediment transport during floods

Storms at coast

Scour around hydraulic structures

O. Link (UdeC, Chili)

Salmon River during the 1964 flood

 5

Modeling approaches

Pros
• Simple

• Applicable at large-scale

Cons
• Empirical formulas

‣ large scatter

‣ Missing physics

• Arbitrary separation between
bed-load and suspended-load

Pros
• Resolve continuously sediment

transport profile

• Incorporate fine-scale

processes:

‣ Turbulence

‣ Particle-particle interactions

• No arbitrary separation

Cons
• Very expensive

• Limited to ‘small scale’

applications

Jenkins and Hanes JFM (1998) 6

Modeling approaches

Pros
• Simple

• Applicable at large-scale

Cons
• Empirical formulas

‣ large scatter

‣ Missing physics

• Arbitrary separation between
bed-load and suspended-load

Pros
• Resolve continuously sediment

transport profile

• Incorporate fine-scale

processes:

‣ Turbulence

‣ Particle-particle interactions

• No arbitrary separation

Cons
• Very expensive

• Limited to ‘small scale’

applications

Jenkins and Hanes JFM (1998) 7

Eulerian-Eulerian two-phase flow equations

Local mass & momentum conservation for a fluid-particle mixture

r.~u = 0 and
d⇢~u

dt
+r.(⇢~u⌦ ~u) = r.� + ⇢~g

@✏

@t
+r.

⇣
✏ ~uf

⌘
= 0

Fluid phase mass and momentum equations

⇢f

"
@✏ ~uf

@t
+r.

⇣
✏ ~uf ⌦ ~uf

⌘#
= r.�f � n~f + ✏⇢f~g

@�

@t
+r.

�
� ~up

�
= 0

Solid phase mass and momentum equations

⇢p

@� ~up

@t
+r.

�
� ~up ⌦ ~up

��
= r.�p + n~f + �⇢p~g

Local spatial averaging
Jackson (2000)

Vf
x

L

hfif (~x, t) = 1

✏

Z

Vf (t)
f(~y, t)GL(|~x� ~y|)dVy

vp
x

L

hfip(~x, t) = 1

�

X

p

Z

vp

f(~y, t)GL(|~x� ~y|)dvy

GL is a 3D door function

 8

Governing equations

⇢f

"
@✏ ~uf

@t
+r.

⇣
✏ ~uf ⌦ ~uf

⌘#
= �rpf +r.⌧f � n~f + ✏⇢f~g

@✏

@t
+r.

⇣
✏ ~uf

⌘
= 0

@�

@t
+r.

�
� ~up

�
= 0

⇢p

@� ~up

@t
+r.

�
� ~up ⌦ ~up

��
= �rpp +r.⌧p + n~f + �⇢p~g

Fluid phase equations

Solid phase equations

Fluid-particle interactions
= fluid flow at the particle scale

Granular stresses
= particle-particle interactions

Effective fluid stress
= include particle perturbations

Details of the flow at the particle scale are missing due to averaging

➡ Need to model grain-scale physics

 9

Fluid-particle interactions

Generalized buoyancy
Jackson (2000)

nfB = �r.
⇣
�pfI + ⌧f

⌘
n~f = n ~fB + n ~fD + ...

Stokes drag around a single particle

x particle number density: n

x hindrance function

fD = 3 ⇡ dp ⌘f
⇣
~uf � ~up

⌘

nfD =
� ⇢p

tp

⇣
~uf � ~up

⌘
Drag

 where tp is the particle response time

nfD = �⇢p
18 ⌘f

⇢p d2p
(1� �)�2.65

| {z }
=1/tp

⇣
~uf � ~up

⌘

 10

Archimede Local fluid acceleration

sedFoam: a 3D two-phase numerical model for sediment transport
• Finite Volume Method

• PISO algorithm for pressure-velocity coupling

• Based on twoPhaseEulerFoam from H. Rusche (2002) implemented in OF-2.4

• Publically available on github: https://github.com/SedFoam/sedfoam

• Fluidfoam: a python pre/post-processing package for OpenFOAM https://bitbucket.org/sedfoam/fluidfoam

• sedFOAM-3.1 is available and is compatible with OF5.x, OF6, OF7, OF1712+ to OF1906+
Chauchat et al. (2017) - Geoscientific Model Development

 11

BOOT DIRECTLY 
FROM USB-STICK

• AT LAPTOP STARTUP, BOOT
FROM THE USB-STICK :  
 F2 OR DEL OR …
(DEPENDING OF LAPTOP) 

• ADVANTAGES :
‣ NO DOWNLOAD
‣ NO VIRTUALISATION -> FASTEST
‣ NO VIRTUALBOX SOFTWARE 

• DISADVANTAGES :
‣ IO ACCESS NOT VERY FAST
‣ NO FULL CONTROL  

• NOT RECOMMENDED FOR MAC

BOOT USB-STICK
VIA VIRTUALBOX

• VIRTUALBOX 6.0 NEEDED  
(CF. README_USB.TXT) 

• ADVANTAGES :
‣ NO DOWNLOAD
‣ NO STARTUP PROBLEMS

• DISADVANTAGES :
‣ IO ACCESS NOT VERY FAST
‣ NO FULL CONTROL 

• RECOMMENDED FOR MAC

LAUNCH PRE-
DOWNLOADED

VIRTUAL
MACHINE

• VIRTUALBOX 6.0 NEEDED  
(CF. README_FULL.TXT) 

• ADVANTAGES :
‣ FULL CONTROL
‣ VERY FAST

• DISADVANTAGES :
‣ RISK OF BREAKING THE VM
‣ DOWNLOAD NEEDED

• RECOMMENDED FOR SPEED

Installation and technical aspects

• Linux OS : Ubuntu

• Username : lubuntu

• Password : lubuntu

• OpenFoam v1812 (ESI version)

• Python 3.7

• Latest official sedfoam

• Latest official fluidfoam

• Important tools : 
terminal, python notebook

• Directory of openfoam sources : 
/opt/openfoam/1812plus/

• Directory of sedfoam (sources, tutorials, turbulent
models, post processing functions…) : 
/home/lubuntu/Documents/sedfoam

SPECIFICATIONS OF THE ENVIRONMENT

• To launch terminal, just click on icon of the desktop or icon of launch bar

• List of useful classical commands/tools in terminal :

• cd : change directory;

example : cd /home/lubuntu/Documents/sedfoam

• ls : list directory contents of files and directories;

example : ls /home/lubuntu/Documents

• touch : create empty file;

example : touch /home/lubuntu/Documents/empty.file

• rm : remove file or directory (-r option needed for directory);

example : rm /home/lubuntu/Documents/empty.file

• gedit : classical editor to modify files

other editors : vi, emacs, nano, atom, vscode…

Linux Survival Guide

• Paraview : visualisation tools (very useful for
3D output)

• To launch python notebook, just type :
jupyter-lab in terminal

• List of shortcuts for notebook :

• shift+return : execute the notebook box

• return : go to the line

Test case 1: Sedimentation of particles at low particulate-Reynolds number
Polystyrene beads in silicon oil

Model ingredients:
• Stokes drag + hindrance function

• Particle pressure due to enduring contacts:

where is a modulus (in Pa) and is the random loose packing fraction

Numerical parameters:
• Ny= 120 ; Δt=0.2 s; first order schemes

pp = P0
(�� �rlp)

5

(�m � �)3

P0

Johnson & Jackson (1987)

�rlp

 15

• Open a terminal

cd /home/lubuntu/Documents/sedfoam/tutorials/

• Open the jupyter-notebook:

jupyter-lab THESIS.ipynb &

• Follow the steps!

!16

Test case 1: run the case

!17

Test case 1: run the case

Excess pore pressure:

Mixture momentum balance:

The dense granular flow rheology depends on pp => essential to predict it accurately

ϕ

pe = pf � ⇢f g y

D⇢mwm

Dt
= �dpf

dy
� ⇢mg � dpp

dy

Chauchat et al. GMD (2017) 18

Test case 1: Sedimentation of particles at low particulate-Reynolds number

Test case 2: Laminar bed-load

Index-matching experiments
• Particles: dp=2mm PMMA ; ⍴p/⍴f = 1.2

• Fluid: Triton X-100

• Re ~ 1

(Aussillous et al., JFM 2013) 19

Analytical solution
• Einstein viscosity

• Coulomb friction: μ = constant

• Parabolic velocity profile

(Ouriemi et al., JFM 2009)

Governing equations

⇢f

"
@✏ ~uf

@t
+r.

⇣
✏ ~uf ⌦ ~uf

⌘#
= �rpf +r.⌧f � n~f + ✏⇢f~g

@✏

@t
+r.

⇣
✏ ~uf

⌘
= 0

@�

@t
+r.

�
� ~up

�
= 0

⇢p

@� ~up

@t
+r.

�
� ~up ⌦ ~up

��
= �rpp +r.⌧p + n~f + �⇢p~g

Fluid phase equations

Solid phase equations

Fluid-particle interactions
= fluid flow at the particle scale

Granular stresses
= particle-particle interactions

Effective fluid stress
= include particle perturbations

Details of the flow at the particle scale are missing due to averaging

➡ Need to model grain-scale physics

 20

Control parameter = Inertial number:

Granular stresses: particle-particle interactions

Dense granular flow rheology: μ(I) (GDR Midi, 2004)

Represent frictional-collisional interactions in dense granular flows

• Shear stress (Jop et al., 2006)

with

Visco-plastic rheology: contain a yield stress (need regularization) and a non-linear viscous term
0 1 2 3 4 50.5

0.6

0.7

0.8

0.9

I

µ

I =

����r ~up
���� dpp

pp/⇢p

µ(I) = µs +
µ2 � µs

I0/I + 1

⌧p = µ(I)pp
Sp

����Sp
����

• Particle pressure

Shear-induced pressure: lead to bed decompaction (Maurin et al., 2016)

 + pressure due to enduring contact (Johnson & Jackson, 1987)

0 1 2 3 4 50.2

0.3

0.4

0.5

0.6

0.7

I

q

�(I) =
�m

1 + b I
pp =

✓
b �

�m � �

◆2

⇢pd2p
����r ~up

����2

 21

Sp = r ~up + (r ~up)T � 2

3
tr(r. ~up)

Effective fluid stress

Shear stress: with the velocity shear rate

Effective viscosity models depends on volume fraction

• Einstein (1906) model:

• Krieger-Dougherty (1957) model:

‣ Viscosity increases with volume fraction

0 0.1 0.2 0.3 0.4 0.5 0.6
10

0

10
1

10
2

10
3

10
4

!
"

e
ff
/"

Effective viscosity

Einstein

Krieger−Dougherty⌘e = ⌘f
✓
1 +

5

2
�

◆

⌘e = ⌘f
✓
1� �

�max

◆�
5

2
�max

⌧f = ⌘e Sf

 22

Sf = r ~uf + (r ~uf)T � 2

3
tr(r. ~uf)

• Once the particles are deposited we set a streamwise pressure gradient to drive the fluid flow above
the granular bed.

• Modify the input files (see NoteBook) and run the model

• Numerical parameters: Ny=120, Δt=0.2 s, first order schemes

 23

Test case 2: Laminar bed-load

-dP/dx

Test case 2: Laminar bed-load with Coulomb rheology

• Comparison with analytical solution: Coulomb rheology + Einstein viscosity model

‣ Numerical implementation of granular flow rheology is validated

• Numerical parameters: Ny=200; first order schemes

Chauchat et al. GMD (2017) 24

Test case 2: Laminar bed-load with μ(I) rheology

• Comparison with numerical solution: μ(I) rheology + Einstein viscosity model

‣ Numerical implementation of granular flow rheology is validated

• Numerical parameters: Ny=120; first order schemes

Chauchat et al. GMD (2017) 25

Test case 2: Laminar bed-load with μ(I) rheology and dilatancy law

• Numerical solution: μ(I) rheology + phi(I) + Einstein viscosity model

• Numerical parameters: Ny=120; first order schemes

Chauchat et al. GMD (2017)

 26

Fluid phase equations

Solid phase equations

@h✏i
@t

+r.

✓
h✏i ~fuf

◆
= 0

@h�i
@t

+r.
⇣
h�i ~fup

⌘
= 0

⇢p

@h�i ~up

@t
+r.

⇣
h�i ~fup ⌦ ~fup

⌘�
= �rhppi+r.

⇣
⌧p +Rp

⌘
� h�irhpf i+ h�i⇢p

tp

✓
~fuf � ~fup + ~ud

◆
+ h�i⇢p~g

⇢f

2

4@h✏i ~fuf

@t
+r.

✓
h✏i ~fuf ⌦ ~fuf

◆3

5 = �h✏irhpf i+r.
⇣
⌧f +Rf

⌘
� h�i⇢p

tp

✓
~fuf � ~fup + ~ud

◆
+ h✏i⇢f~g

Favre-averaged two-phase flow equations

Favre-averaging: Ensemble averaging Favre-average velocities

 Concentration fluctuations Velocity fluctuations

h�i = lim
N!1

NX

k=1

�k
~fuf =

h(1� �) ~uf i
1� h�i

�0
k = �k � h�i � ~uf = ~uf � ~fuf

Kinetic shear stress

Turbulent shear stress

Drift velocity

 27

Fluid turbulence modeling

Reynolds shear stress:

Eddy viscosity models:

• Two-equation models: k-𝜀 or k-⍵ models

➡ Modified TKE equation:

correlations between fluid and sediment velocity fluctuations: (Cheng et al., 2017)

• Large Eddy Simulation: Dynamic Smagorinsky

Drag damping term Density stratification term

Rf = ⇢f (1� h�i) ⌫ft Sf

Drift velocity model:

• Gradient diffusion model: where 𝜎c is a turbulent Schmidt number

Drift velocity is equivalent to Reynolds flux in Rouse profile (Chauchat, 2018)

~ud =
h�0� ~uf i

h�i

~ud = �⌫ft
�c

rh�i
h�i

 28

⇢f
Dk

Dt
= P +D � ⇢f"� ⇢ph�i

(1� �)tp

2k � h�� ~uf� ~upi

h�i

!
� (⇢p � ⇢f)

⌫ft
�s

rh�i
h1� �i .~g

h�� ~uf� ~upi
h�i = 2e�BStk

Granular stress modeling

Kinetic Theory of Granular Flows = analogy with molecular gases

Collisional and kinetic stresses:

• Shear viscosity:

• bulk viscosity:

• Collisional pressure:

➡ Depend on the granular temperature: counterpart of the TKE for a fluid

• Transport equation for the granular temperature:

Jenkins and Savage (1983); Ding and Gidaspow (1990)

Rp = 2 ⌘p Sp + � tr(r. ~up)

⌘p = f⌘(�, e) ⇢
p d ⇥1/2

� = f�(�, e) ⇢
p d ⇥1/2

⇥ = h� ~up� ~upi

3

2
⇢p
h@�⇥

@t
+r.

�
� ~up⇥

� i
=

�
� ppI +Rp

�
r. ~up �r.~q � � +

�⇢p

(1� �)tp
(2e�BStk � 3⇥)

pp = fp(�, e) ⇢
p ⇥

 29

Sheet flow experiment of Revil-Baudard et al. JFM (2015, 2016)

‣ d=3mm, s~1.2 / h=0.17m ; Slope=0.005 ; 𝜽=0.5

‣ Acoustic Concentration and Velocity Profiler (Hurther et al., CE 2011)

‣ Collocated velocity and concentration measurements at 100Hz and 3mm resolution

Application to unidirectional sheet-flow

0 0.2 0.4 0.6 0.8

0

5

10

15

20

25

z/
d p

<u> (ms−1)

(a)

0 0.2 0.4 0.6
φ

(b)

0 0.5 1
π/πmax; Π/qs.

(c)

0 1 2 3
ρf<u’w’>, τ (N/m2)

(d)

0.5 0.6 0.7 0.8

101

0 0.2 0.4 0.6 0.8

0

5

10

15

20

25

z/
d p

<u> (ms−1)

(a)

0 0.2 0.4 0.6
φ

(b)

0 0.5 1
π/πmax; Π/qs.

(c)

0 1 2 3
ρf<u’w’>, τ (N/m2)

(d)

0.5 0.6 0.7 0.8

101

 30

0.0 0.2 0.4 0.6 0.8 1.0
U(m.s−1)

0

5

10

15

20

25

z/
d p

k-ϵ+µ(I)B = 1

experiment

0.0 0.2 0.4 0.6
α

10−6 10−4 10−2

α

0 1 2 3
τxz(Pa)

0.000 0.002 0.004 0.006 0.008 0.010
TKE (m2/s2)

0.0 0.2 0.4 0.6 0.8 1.0
U(m.s−1)

0

5

10

15

20

25

z/
d p

k-ϵ+µ(I)B = 1

k-ϵ+KT B=0.25

experiment

0.0 0.2 0.4 0.6
α

10−6 10−4 10−2

α

0 1 2 3
τxz(Pa)

0.000 0.002 0.004 0.006 0.008 0.010
TKE (m2/s2)

0.0 0.2 0.4 0.6 0.8 1.0
U(m.s−1)

0

5

10

15

20

25

z/
d p

k-ϵ+µ(I)B = 1

k-ϵ+KT B=0.25

LES + KT

experiment

0.0 0.2 0.4 0.6
α

10−6 10−4 10−2

α

0 1 2 3
τxz(Pa)

0.000 0.002 0.004 0.006 0.008 0.010
TKE (m2/s2)

Application to sheet-flow: Eulerian-Eulerian simulations

Chauchat et al. GMD (2017) ; Cheng et al. AWR (2018)

φ

Simulations Turbulence model Granular stress model
Run 1 1D k-𝜀 µ(I) rheology

Run 2 1D k-𝜀 Kinetic Theory
Run 3 3D LES Kinetic Theory

 31

Sediment flux and transport layer thickness

• Meyer-Peter and Müller (1948):

• Comparison of Eulerian-Eulerian model predictions with experimental data

• Wide range of particle properties: medium sand - 2.6mm acrylic - 3mm PMMA particles

• Wide range of Shields number: 𝜽 = 0.1-3.5

Chauchat (2018); Nagel (PhD Thesis)

qsq
(s� 1)gd3p

= 8 (✓ � ✓c)
3/2

 32

Test case 3: Application to scour around a pipeline

3 stages of scour below a pipeline: onset, tunneling, lee-wake erosion

• Non-structured grid: N~200 000 cells

 (Δx~Δy ~ 0.75 - 3 mm)

• D=0.05m, ReD=4.3 104

• Medium sand: d=360μm, ϱs=2650 kg/m3, 𝜽0=0.33

• µ(I) rheology + two-equation turbulence models
Mathieu et al. Water (2019) 33

Test case 3: Applications to scour around a pipeline

• k-𝜀 model is not able to reproduce vortex shedding

• We developed a hybrid k-𝜀/k-⍵ model to simulate both the
tunneling and the lee-wake erosion stages.

‣ k-𝜀 behavior in the near bed region

‣ k-⍵ behavior near solid walls

• More work has to be done on turbulence modeling…

Mathieu et al. Water (2019)

 34

t=11 s

t=18 s

t=25 s

Test case 3: Applications to scour around a pipeline

Mathieu et al. Water (2019)
 35

• 3D scour: 5 million cells

‣ 600s of dynamics = 110 000 CPU hours

‣ ~ 20 days on 224 CPUs ~ 12 yrs on 1CPU

• D=0.1m, ReD=4.6 104

• Medium sand: d=260μm, ϱs=2650 kg/m3

• Live-bed configuration: 𝜽0=0.2

• µ(I) rheology + k-omega Wilcox 2006
Nagel et al. ADWR (in prep.)

Test case 4: Applications to scour around a bridge pile

 36

Test case 4: Applications to scour around a bridge pile

Nagel et al. ADWR (in prep.)

 37

Conclusions
‣ Open-source framework for two-phase flow modeling of sediment transport

‣ Basic validation on fundamental problems: sedimentation & laminar bed-load

‣ Turbulence modeling using « classical » 2 equations models: k-𝜀 & k-⍵ models

‣ Granular stress models: μ(I) and Kinetic Theory

‣ Validation on sheet-flows: vertical structure + sediment flux and transport layer thickness Vs 𝜽

‣ Application to multi-dimensional problems: scour around a pipeline and « bridge pier »

‣ Develop more reliable turbulence models to account for the presence of sediment particles

‣ Develop accurate sub grid scale models for LES - A. Mathieu PhD 2018-2021

‣ Implement extended kinetic theory and better elastic stress models

‣ Develop a multi-class model to reproduce grain size sorting mechanisms - H. Rousseau PhD 2018-2021

‣ Implement dilatancy and pore-pressure coupling - B. Tsai PhD (UD)

‣ Perform ripple migration simulations to disentangle suspended/bedload/near bed suspended load - A. Salimi PhD (UD)

‣ Develop a free surface resolving two-phase flow model (Kim et al., 2018)

Perspectives

!39

Numerical algorithm for the pressure-velocity coupling

The algorithm is based on the following steps:

1. Solve for {�}n+1
j using

@�

@t
+

@�wp

@z
= 0

2. Solve for {✏}n+1
j using ✏ = 1� �

3. Solve for intermediate velocities
�
wf

 ⇤
j
and {ws}⇤j

4. Solve for the pressure
�
pf
 ⇤
j
using the poisson equation

5. Correct the velocities
�
wf

 n+1
j

and {ws}n+1
j using the new pressure

There are di↵erent methods for solving the pressure-velocity coupling, they are almost all based
on predictor-corrector algorithm. In the following the PISO (Pressure Implicit with Splitting of
Operators) algorithm is detailed.

!40

Pressure Implicit with Splitting of Operators (PISO) algorithm

The PISO algorithm requires the momentum equations to be written in a
semi-discretized form. We start by writing the fluid phase momentum equation in the
phase intensive form:

@wf

@t
+ wf

@wf

@z
= �

⇢f

@pf

@z
� g �

� ⇢p

✏⇢f tp

�
wf � ws

�

The semi-discrete form of the equation can be written in matrix form as:

⇥
A

f
⇤
ij

�
wf

 ⇤
j
=
�
H

f

j
�

1

⇢f

@
�
pf
 ⇤
j

@z

where
⇥
A

f
⇤
ij

contains implicit advection and drag terms,
�
H

f

j
contains explicit

source terms including temporal derivative, gravity, explicit drag term (solid phase
contribution) and the index j represents the j

st grid node in the mesh.

For example, using a first order Euler scheme for the time derivative, the vector
�
H

f

j
can be written as:

�
H

f

j
=

1

�t

�
wf

 n
j
� g +

{�}n+1
j ⇢p

{✏}n+1
j ⇢f tp

{ws}nj

where �t the time step.

!41

Pressure Implicit with Splitting of Operators (PISO) algorithm

Using a first order Upwind scheme, the matrix coe�cients
⇥
A

f
⇤
ij

are given by:

⇥
A

f
⇤
ij

= �

�
wf
 n
j

�z
�i j�1 +

 �
wf
 n
j

�z
+

{�}n+1
j ⇢p

{✏}n+1
j ⇢f tp

!
�i j

where �i j is the Kronecker symbol and �z the grid size assumed uniform for
simplicity. In matrix form, it reads:

h
A

f
i
⇥
�
wf
 n+1

=

2

6666664

. . .
. . .

�

�
wf
 n
j

�z

�
wf
 n
j

�z
+

{�}n+1
j ⇢p

{✏}n+1
j ⇢f tp

. . .
. . .

3

7777775

0

BBBBB@

...�
wf

j�1�

wf

j

...

1

CCCCCA

n+1

1. Velocity predictor step
Using the discretized momentum equation, the predictor step for the fluid phase can
be written formally as:
�
wf
 ⇤
j
=
⇥
A

f
⇤�1
ij

�
H

f

j

This step requires the inversion of the matrix
⇥
A

f
⇤
ij
.

!42

Pressure Implicit with Splitting of Operators (PISO) algorithm

Similarly, the solid phase momentum equation in matrix form can be written as:

[As]ij {ws}⇤j = {Hs}j �
1

⇢p

@
�
pf
 ⇤
j

@z

where the term {Hs} also contains the particle pressure contribution:

{Hs}j =
1

�t
{ws}nj � g +

1

tp

�
wf

 n
j

Using the discretized momentum equation, the predictor step for the solid phase can
be written formally as:
{ws}⇤j = [As]�1

ij {Hs}j

The velocity correction equations integrate the fluid pressure gradient correction and
provide the corrected velocity fields

�
wf

 ⇤⇤
j

and {ws}⇤⇤j :

�
wf

 ⇤⇤
j

=
�
wf

 ⇤
j
�

⇥
A

f
⇤�1
ij

⇢f

@
�
pf
 ⇤
j

@z

{ws}⇤⇤j = {ws}⇤j �
[As]�1

ij

⇢p

@
�
pf
 ⇤
j

@z

!43

Pressure Implicit with Splitting of Operators (PISO) algorithm

2. Pressure solution
The corrected velocity fields should be divergence-free for the volume-averaged
mixture velocity: {wm}⇤⇤j = {✏}n+1

j

�
wf
 ⇤⇤
j

+ {�}n+1
j {ws}⇤⇤j

@ {wm}⇤⇤j
@z

= 0

,
@

@z

⇣
{✏}n+1

j

�
wf
 ⇤⇤
j

+ {�}n+1
j {ws}⇤⇤j

⌘
= 0

,
@

@z

"
{✏}n+1

j

⇢f
⇥
Af
⇤
ij

+
{�}n+1

j

⇢p [As]ij

!
@
�
pf
 ⇤
j

@z

#
=

@

@z

⇣
{✏}n+1

j

�
wf
 ⇤
j
+ {�}n+1

j {ws}⇤j
⌘

Using a staggered grid for between the pressure and the velocity to avoid Rhie and
Chow oscillations, the Poisson equation can be discretized as:

,
1

2�z

2

64

0

B@
{✏}n+1

j+1

⇢f
h
Af

i

ij

+
{�}n+1

j+1

⇢p [As]ij

1

CA

n
pf

o⇤
j+1

�
n
pf

o⇤
j

�z
�

0

B@
{✏}n+1

j

⇢f
h
Af

i

ij

+
{�}n+1

j

⇢p [As]ij

1

CA

n
pf

o⇤
j

�
n
pf

o⇤
j�1

�z

3

75

=

{✏}n+1
j+1

n
wf

o⇤
j+1

+ {�}n+1
j+1

�
wp ⇤

j+1 �
✓
{✏}n+1

j

n
wf

o⇤
j

+ {�}n+1
j

�
wp ⇤

j

◆

�z

!44

Pressure Implicit with Splitting of Operators (PISO) algorithm

3. Velocity corrector step

Using the newly computed pressure field
�
pf
 ⇤
j
, the velocity correction equations can

be used to correct the velocity fields:

�
wf

 ⇤⇤
j

=
�
wf

 ⇤
j
�

⇥
A

f
⇤�1
ij

⇢f

@
�
pf
 ⇤
j

@z

{ws}⇤⇤j = {ws}⇤j �
[As]�1

ij

⇢p

@
�
pf
 ⇤
j

@z

Remarks:

1. In one-dimensional problems the solution of this equation is cheap and a simple
double sweep algorithm can be used Thomas (1995) however for
three-dimensional problems this can become very expensive as Bi-Conjugate
Gradient algorithms might become necessary to resolve the algebraic system
associated with the previous equation.

2. The algorithm presented above is implemented in sedFOAM an open-source
Eulerian-Eulerian two- phase flow model developed under the open-source CFD
toolbox openFOAM. The 3D version of this Gravity driven settling:
sedimentation of non-cohesive particles in the viscous regime algorithm is
presented in Chauchat et al. (2017).

