

An open-source multi-dimensional two-phase flow model for sediment transport applications

THESIS symposium University of Delaware, DE (US)

LEGI, Grenoble Institute of Technology, CNRS, Grenoble, France

PedFoam

Julien CHAUCHAT, Cyrille BONAMY and Antoine MATHIEU

A brief history of openFOAM: Field Operation And Manipulation

- A set of top level classes for finite volume on unstructured grids

- User defined solvers based on top level classes: algorithms are written in a math-like syntax

Example: PISO algorithm for incompressible Navier-Stokes equations

Equations

The solver uses the **PISO** algorithm to solve the continuity equation:

$$\nabla \cdot \mathbf{u} = 0$$

and momentum equation:

$$\frac{\partial}{\partial t}(\mathbf{u}) + \nabla \cdot (\mathbf{u} \otimes \mathbf{u}) - \nabla \cdot (\nu \nabla \mathbf{u}) = -\nabla p$$

Where:

- Velocity $\mathbf{u} =$
- Kinematic pressure

The PISO algorithm consists in building an elliptic equation for the pressure to ensure the velocity field is divergence free (not shown here)

//set up the linear algebra for the momentum equation. The flux of U, phi, is treated explicity //using the last known value of U.

```
fvVectorMatrix UEqn
 fvm::ddt(U)
 + fvm::div(phi, U)
 - fvm::laplacian(nu, U)
);
```

// solve using the last known value of p on the RHS. This gives us a velocity field that is // not divergence free, but approximately satisfies momentum. See Eqn. 7.31 of Ferziger & Peric solve(UEqn == -fvc::grad(p));

A brief history

twoPhaseEulerFoam

sedFOAM-1.0

Henrik Rusche PhD at IC

Zhen Cheng PhD at UD

2011

2002

T.-J. Hsu, Z. Cheng, Y. Kim, A. Salimi Tarazouj, B. Tsai

PennState X. Liu

S. Bateman

J. Chauchat, C. Bonamy, T. Nagel, A. Mathieu, H. Rousseau

P. Higuera (U. Singapore) G. Keetels (U. Delft)

Sediment transport during floods

Motivations

Scour around hydraulic structures

Modeling approaches

Conventional model

Pros

- Simple
- Applicable at large-scale

Cons

- Empirical formulas
 - Iarge scatter
 - Missing physics
- Arbitrary separation between bed-load and suspended-load

Modeling approaches

Pros

- Simple
- Applicable at large-scale

Cons

- Empirical formulas
 - Iarge scatter
 - Missing physics
- Arbitrary separation between bed-load and suspended-load

Jenkins and Hanes JFM (1998)

 $\Phi_{_{max}}$

Eulerian-Eulerian two-phase flow equations

$$\frac{\partial \epsilon}{\partial t} + \nabla \cdot \left(\epsilon \vec{u^f}\right) = 0$$

$$\rho_f \left[\frac{\partial \epsilon \vec{u^f}}{\partial t} + \nabla \cdot \left(\epsilon \vec{u^f} \otimes \vec{u^f}\right)\right] = \nabla \cdot \overline{\sigma^f} - n\vec{f} + \epsilon \rho_f \vec{g}$$

Governing equations

Fluid phase equations

$$\frac{\partial \epsilon}{\partial t} + \nabla . \left(\epsilon \vec{u^f} \right) = 0$$

$$\rho_f \left[\frac{\partial \epsilon \vec{u^f}}{\partial t} + \nabla . \left(\epsilon \vec{u^f} \otimes \vec{u^f} \right) \right] = -\nabla p^f + \nabla . \vec{\tau^f} - n\vec{f} + \epsilon \rho_f \vec{g}$$

Solid phase equations

$$\frac{\partial \phi}{\partial t} + \nabla . \left(\phi \vec{u^p} \right) = 0$$

$$\rho_p \left[\frac{\partial \phi \vec{u^p}}{\partial t} + \nabla . \left(\phi \vec{u^p} \otimes \vec{u^p} \right) \right] = -\nabla p^p + \nabla . \overline{\tau^p} + n\vec{f} + \phi \rho_p \vec{g}$$

Details of the flow at the particle scale are missing due to averaging

Need to model grain-scale physics

Effective fluid stress

= include particle perturbations

Fluid-particle interactions

= fluid flow at the particle scale

Granular stresses

= particle-particle interactions

Fluid-particle interactions

$$\vec{nf} = n\vec{f_B} + n\vec{f_D} + \dots$$

Generalized buoyancy

Stokes drag around a single particle

x particle number density: n nf_D x hindrance function

$$\cdot \left(-p^f \overline{\overline{I}} + \overline{\tau^f} \right)$$

Jackson (2000)

Archimede Local fluid acceleration

$$\frac{\rho^p}{p} \left(\vec{u^f} - \vec{u^p} \right)$$

where t_p is the particle response time

$$f_D = 3 \pi d_p \eta^f \left(\vec{u^f} - \vec{u^p}\right)$$

$$= \phi \rho^p \frac{18 \eta^f}{\rho^p d_p^2} (1 - \phi)^{-2.65} \left(\vec{u^f} - \vec{u^p}\right)^{-1/2}$$

$$= 1/t_p$$

sedFoam: a 3D two-phase numerical model for sediment transport

- Finite Volume Method
- PISO algorithm for pressure-velocity coupling
- Based on twoPhaseEulerFoam from H. Rusche (2002) implemented in OF-2.4
- Publically available on github: https://github.com/SedFoam/sedfoam
- Fluidfoam: a python pre/post-processing package for OpenFOAM https://bitbucket.org/sedfoam/fluidfoam
- sedFOAM-3.1 is available and is compatible with OF5.x, OF6, OF7, OF1712+ to OF1906+

Chaushat at al (2017) Casasiantific Madal Davalanmant

	luchal et al. (2017) - Geoscientific Model Development		😐 🗢 🔹 🔘 🛛	Hub - SedFcans/Sedfcans: S: 🔀 🕂 🕂			
	Geoscientific Model Development An interactive open-access journal of the European Geosciences Union		(←) → ଫ ଘ	① A GitHub, Inc. (US) https://www.inc.	/githuts.com/SedFoam/sedfoam ss Explore Marketplace Pri	icing Scarch	···· マ ☆】 (ペ Rechercher 図 Sign in or Sign up
8+ (mm)	EGU.eu EGU Journals EGU Highlight Articles Contact Imprint						
Sebrnit a manuscript Ranuscript tracking	https://doi.org/10.5194/gmd-2017-101 Discussion pathology 2017. This work is distributed under the Creative Commons Attribution 3.0 License.	Copernicus Publications		Code () Issues ()	[1] Pull requests (2) [11] Projects	• • Insights	atch 6 📌 Star 6 Y Fork 6
About Editorial board Articles	Model description paper O7 Jun	rics Search articles Search 2017 Author • Q			Joir	n GitHub today	Dismiss
Special issues Highlight articles Subscribe to alerts Peer review	SedFoam-2.0: a 3D two-phase flow numerical model for sediment transport Julien Chauchat ¹ , Zhen Cheng ^{2,a} , Tim Nagel ¹ , Cyrille Bonamy ¹ , and Tian-Jian Hsu ² ² University of Grenoble Alpes, LEGI, G-INP, CNRS, F-38000 Grenoble, France ² Civil and Environmental Engineering. Center for Applied Coastal Research, University of Delaware, Newark.	ew Download			GitHub is home to over 28 and review code, manag	million developers working together to host ge projects, and build software together.	
For authors For editors and referees User ID	DE 19711, USA ^a now at: Applied Ocean Physics & Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA Received: 22 Apr 2017 – Accepted for review: 05 Jun 2017 – Discussion started: 07 Jun 2017	Short summary This manuscript presents the development and validation of a community two-phase flow		SedFoam solver for Open	Foam toolbox Thttp://servforge.legi	i.grenoble-inp.fr	
New user? + Lost login? Follow	Abstract. In this paper, a three-dimensional two-phase flow solver, SedFoarn-2.0, is presented for sediment transport applications. The solver is extended upon twoPhaseEulerFoam available in the 2.1.0 release of the open-source CFD toolbox OpenFOAM. In this approach the sediment phase is modeled as a continuum, and constitutive laws have to be prescribed for the sediment stresses. In the proposed solver two different inter-granular stress models are implemented: the kinetic theory of granular flows and the dense granular flow rheology $\mu(1 For the fluid stress, laminar or turbulent flow regimes can be simulated and three different turbulence models are available for sediment$	Citation BibTeX EndNote		() 12 commits Branch: master = New put	¥ 1 branch I request	े 2 releases 🏭 1 contribu	ettor
🗩 @EGU_GMD	transport: a simple mixing length model (one-dimensional configuration only), a k - ϵ and a k - ω model. The numerical implementation is fit	st Share		CyrilleBonamy log debug	+ small debug in pEqn.H		Latest commit 329bbb2 25 days ago
Journal metrics	demonstrated by two validation test cases, sedimentation of suspended particles and laminar bed-load. Two applications are then investig to illustrate the capabilities of SedFoam-2.0 to deal with complex turbulent sediment transport problems with different combinations of in	ter- 🤷 🚟 💆 💼		TurbulenceModels	major RELEASE : OpenFOAM 2.4.0	0 => OpenFCAM 5.0 (or v1805) + algorithm	
	granular stress and turbulence models.	💟 🖪 👯 🔝		ill doc	major RELEASE : OpenFOAM 2.4.0) => OpenFCAM 5.0 (or v1805) + algorithm	3 months ago
IF 3.458			J	ille solver	log debug + small debug in pEqn.	Н	25 days ago
IF 5-year	Citation: Chauchat, J., Cheng, Z., Nagel, T., Bonamy, C., and Hsu, TJ.: SedFoam-2.0: a 3D two-phase flow numerical model for sedime transport. Geosci. Model Dev. Discuss https://doi.org/10.5194/amd-2012-101. in review. 2012.	nt	11	tutorials	major RELEASE : OpenFOAM 2.4.0	0 => OpenFOAM 5.0 (or v1805) + algorithm	3 months ago

Installation and technical aspects

BOOT DIRECTLY FROM USB-STICK

AT LAPTOP STARTUP, BOOT FROM THE USB-STICK : F2 OR DEL OR (DEPENDING OF LAPTOP)

• ADVANTAGES :

- NO DOWNLOAD
- NO VIRTUALISATION -> FASTEST
- NO VIRTUALBOX SOFTWARE

DISADVANTAGES:

- IO ACCESS NOT VERY FAST
- NO FULL CONTROL
- NOT RECOMMENDED FOR MAC

BOOT USB-STICK VIA VIRTUALBOX

- ADVANTAGES : ► NO DOWNLOAD
- NO FULL CONTROL

VIRTUALBOX 6.0 NEEDED (CF. README_USB.TXT)

NO STARTUP PROBLEMS

• DISADVANTAGES : ▶ IO ACCESS NOT VERY FAST

RECOMMENDED FOR MAC

LAUNCH PRE-DOWNLOADED VIRTUAL MACHINE

- **VIRTUALBOX 6.0 NEEDED** (CF. README_FULL.TXT)
- **ADVANTAGES**:
- ► FULL CONTROL
- ► VERY FAST
- **DISADVANTAGES**:
 - RISK OF BREAKING THE VM
- DOWNLOAD NEEDED
- **RECOMMENDED FOR SPEED**

SPECIFICATIONS OF THE ENVIRONMENT

- Linux OS : Ubuntu
- Username : lubuntu
- Password : lubuntu
- OpenFoam v1812 (ESI version)
- Python 3.7
- Latest official sedfoam
- Latest official fluidfoam
- Important tools :
 terminal, python notebook

- Directory of openfoam sources : /opt/openfoam/1812plus/
- Directory of sedfoam (sources, tutorials, turbulent models, post processing functions...):
 /home/lubuntu/Documents/sedfoam

Linux Survival Guide

- To launch terminal, just click on icon of the desktop or icon of launch bar
- List of useful classical commands/tools in terminal :
 - **cd** : change directory;
 - example : cd /home/lubuntu/Documents/sedfoam
 - **S** : list directory contents of files and directories; example : Is /home/lubuntu/Documents
 - **touch** : create empty file;

example : touch /home/lubuntu/Documents/empty.file

- **rm**: remove file or directory (**-r** option needed for directory); example : rm /home/lubuntu/Documents/empty.file
- **gedit** : classical editor to modify files

other editors : vi, emacs, nano, atom, vscode...

- **Paraview** : visualisation tools (very useful for 3D output)
- To launch python notebook, just type : jupyter-lab in terminal
- List of shortcuts for notebook :
 - shift+return : execute the notebook box
 - return : go to the line

Test case 1: Sedimentation of particles at low particulate-Reynolds number Polystyrene beads in silicon oil

Physical parameters: LMSGC experiment - MRI measurements Pham Van Bang et al. (2006)

Fluid phase:

- ► $\eta_f = 20.10^{-3}$ Pa s (200 x water) ► $d = 0.29 \pm 0.03$ mm
- $\rho_f = 0.95 \text{ kg m}^{-3}$

Model ingredients:

- Stokes drag + hindrance function

where P_0 is a modulus (in Pa) and ϕ_{rlp} is the random loose packing fraction

Numerical parameters:

• Ny= 120 ; $\Delta t=0.2$ s; first order schemes

- Solid phase:
 - $\rho_p = 1.05 \text{ kg m}^{-3}$ $\bullet \phi^0 = 0.48$

(
$$\forall m \quad \forall$$
)
Pa) and ϕ_{mlm} is the random loose nacking frac

Johnson & Jackson (1987)

Test case 1: run the case

- Open a terminal
- Open the jupyter-notebook:
 - jupyter-lab THESIS.ipynb &
- Follow the steps!

cd /home/lubuntu/Documents/sedfoam/tutorials/

Test case 1: run the case

17

Test case 1: Sedimentation of particles at low particulate-Reynolds number

The dense granular flow rheology depends on $p^p =>$ essential to predict it accurately

Test case 2: Laminar bed-load

Index-matching experiments

- Particles: $d_p=2mm PMMA$; $\rho_p/\rho_f = 1.2$
- Fluid: Triton X-100
- Re ~ 1

(Aussillous et al., JFM 2013)

Analytical solution

- Einstein viscosity
- Coulomb friction: μ = constant
- Parabolic velocity profile

(Ouriemi et al., JFM 2009)

Governing equations

Fluid phase equations

$$\frac{\partial \epsilon}{\partial t} + \nabla \cdot \left(\epsilon \vec{u^f}\right) = 0$$

$$\rho_f \left[\frac{\partial \epsilon \vec{u^f}}{\partial t} + \nabla \cdot \left(\epsilon \vec{u^f} \otimes \vec{u^f}\right)\right] = -\nabla p^f + \nabla \cdot \vec{\tau^f} - n\vec{f} + \epsilon \rho_f \vec{g}$$

Solid phase equations

$$\frac{\partial \phi}{\partial t} + \nabla . \left(\phi \vec{u}^{\vec{p}} \right) = 0$$

$$\rho_p \left[\frac{\partial \phi \vec{u}^{\vec{p}}}{\partial t} + \nabla . \left(\phi \vec{u}^{\vec{p}} \otimes \vec{u}^{\vec{p}} \right) \right]$$

Details of the flow at the particle scale are missing due to averaging

➡ Need to model grain-scale physics

Effective fluid stress

= include particle perturbations

Fluid-particle interactions

= fluid flow at the particle scale

Granular stresses

 $\nabla p^p + \nabla . \overline{\overline{\tau^p}} + n \vec{f} + \phi \rho_p \vec{g}$

= particle-particle interactions

Granular stresses: particle-particle interactions

Dense granular flow rheology: $\mu(I)$

Represent frictional-collisional interactions in dense granular flows

Shear stress

$$\overline{\overline{\tau^p}} = \mu(I)p^p \ \frac{\overline{\overline{S^p}}}{\left|\left|\overline{\overline{S^p}}\right|\right|} \tag{4}$$

with
$$\overline{\overline{S^p}} = \nabla \vec{u^p} + (\nabla \vec{u^p})^T - \nabla \vec{v^p}$$

Visco-plastic rheology: contain a yield stress (need regularization) and a non-linear viscous term

Particle pressure

$$p^{p} = \left(\frac{b \phi}{\phi_{m} - \phi}\right)^{2} \rho^{p} d_{p}^{2} \left|\left|\nabla\right|\right|$$

Shear-induced pressure: lead to bed decompaction (Maurin et al., 2016)

+ pressure due to enduring contact (Johnson & Jackson, 1987)

Control parameter = Inertial number: $I = \frac{1}{2}$

$$\frac{||v^{u^{p}}||}{\sqrt{p^{p}/\mu}}$$

Effective fluid stress

Effective viscosity models depends on volume fraction

- Einstein (1906) model: $\eta_e = \eta^f \left(1 + \frac{5}{2}\phi\right)$
- Krieger-Dougherty (1957) model:

$$\eta_e = \eta^f \left(1 - \frac{\phi}{\phi_{max}} \right)^{-\overline{2}\phi_r}$$

5

Viscosity increases with volume fraction

$$\nabla \vec{u^f} + (\nabla \vec{u^f})^T - \frac{2}{3}tr(\nabla \vec{u^f})$$
 the velocity shear rate

Test case 2: Laminar bed-load

the granular bed.

- Modify the input files (see NoteBook) and run the model
- Numerical parameters: Ny=120, Δt =0.2 s, first order schemes

• Once the particles are deposited we set a streamwise pressure gradient to drive the fluid flow above

Test case 2: Laminar bed-load with Coulomb rheology

- Comparison with analytical solution: Coulomb rheology + Einstein viscosity model
 - Numerical implementation of granular flow rheology is validated
- Numerical parameters: Ny=200; first order schemes

Test case 2: Laminar bed-load with μ (I) rheology

- Comparison with numerical solution: $\mu(I)$ rheology + Einstein viscosity model
 - Numerical implementation of granular flow rheology is validated
- Numerical parameters: Ny=120; first order schemes

Test case 2: Laminar bed-load with μ (I) rheology and dilatancy law

- Numerical solution: μ(I) rheology + phi(I) + Einstein viscosity model
- Numerical parameters: Ny=120; first order schemes

Favre-averaged two-phase flow equations

Concentration fluctuations $\phi'_k = \phi_k - \langle \phi \rangle$ Fluid phase equations $\frac{\partial \langle \epsilon \rangle}{\partial t} + \nabla \cdot \left(\langle \epsilon \rangle \vec{u^f} \right) = 0$ **Solid phase equations** $\frac{\partial \langle \phi \rangle}{\partial t} + \nabla \cdot \left(\langle \phi \rangle \vec{u^p} \right) = 0$

Fluid turbulence modeling

Reynolds shear stress:

$$\overline{\overline{R^f}} = \rho^f (1 - \langle$$

Eddy viscosity models:

• Tw

$$\begin{array}{ll} \hline \text{Drag damping term} & \text{Density stratification term} \\ \hline \text{Modified TKE equation: } \rho^f \frac{Dk}{Dt} = P + D - \rho^f \varepsilon - \frac{\rho^p \langle \phi \rangle}{(1 - \phi)t_p} \left(2k - \frac{\langle \phi \Delta \vec{u^f} \Delta \vec{u^p} \rangle}{\langle \phi \rangle} \right) - (\rho^p - \rho^f) \frac{\nu_t^f}{\sigma_s} \frac{\nabla \langle \phi \rangle}{\langle 1 - \phi \rangle} . \vec{g} \\ \hline \text{correlations between fluid and sediment velocity fluctuations: } & \frac{\langle \phi \Delta \vec{u^f} \Delta \vec{u^p} \rangle}{\langle \phi \rangle} = 2e^{-BSt}k \quad \text{(Cheng et al., 2017)} \end{aligned}$$

• Large Eddy Simulation: Dynamic Smagorinsky

Drift velocity model: $\vec{u_d} = \frac{\langle \phi' \Delta u^f \rangle}{\langle \phi' \Delta u^f \rangle}$ $u_t^J \nabla \langle \phi \rangle$ • Gradient diffusion model: $\vec{u_d} =$ where σ_c is a turbulent Schmidt number $\sigma_c \langle \phi \rangle$

Drift velocity is equivalent to Reynolds flux in Rouse profile (Chauchat, 2018)

 S^{f} $\langle \phi \rangle$

Granular stress modeling

Kinetic Theory of Granular Flows = analogy with molecular gases

Collisional and kinetic stresses: $\overline{R^p} = 2 \ \eta^p \ \overline{S}$

- $\eta^p = f_n(\phi, e) \ \rho^p \ d \ \Theta^{1/2}$ • Shear viscosity:
- $\lambda = f_{\lambda}(\phi, e) \ \rho^p \ d \ \Theta^{1/2}$ • bulk viscosity:
- Collisional pressure: $p^p = f_p(\phi, e) \ \rho^p \ \Theta$

 \blacksquare Depend on the granular temperature: $\Theta = \langle \Delta \vec{u^p} \Delta \vec{u^p} \rangle$ counterpart of the TKE for a fluid

• Transport equation for the granular temperature:

$$\frac{3}{2}\rho^p \Big[\frac{\partial\phi\Theta}{\partial t} + \nabla \cdot \big(\phi\vec{u^p}\Theta\big)\Big] = \big(-p^p\overline{\overline{I}} + R^p\big)\nabla \cdot \vec{u^p} - \nabla \cdot \vec{q} - \gamma + \frac{\phi\rho^p}{(1-\phi)t^p}(2e^{-BSt}k - 3\Theta)$$

$$\overline{S^p} + \lambda \ tr(\nabla . \vec{u^p})$$

Jenkins and Savage (1983); Ding and Gidaspow (1990)

Application to unidirectional sheet-flow

- ► d=3mm, s~1.2 / h=0.17m ; Slope=0.005 ; θ=0.5
- Acoustic Concentration and Velocity Profiler (Hurther et al., CE 2011)
- Collocated velocity and concentration measurements at 100Hz and 3mm resolution 30

Sheet flow experiment of Revil-Baudard et al. JFM (2015, 2016)

Application to sheet-flow: Eulerian-Eulerian simulations

	Turbulence model	Granular stress model
1D	k- <i>ɛ</i>	µ(I) rheology
1D	k-ε	Kinetic Theory
3D	LES	Kinetic Theory

Chauchat et al. GMD (2017) ; Cheng et al. AWR (2018)

y(m)

-0.2

-0.4

Sediment flux and transport layer thickness

- Wide range of Shields number: $\theta = 0.1-3.5$

Comparison of Eulerian-Eulerian model predictions with experimental data

• Wide range of particle properties: medium sand - 2.6mm acrylic - 3mm PMMA particles

Chauchat (2018); Nagel (PhD Thesis)

Test case 3: Application to scour around a pipeline

Non-structured grid: N~200 000 cells

 $(\Delta x \sim \Delta y \sim 0.75 - 3 \text{ mm})$

- D=0.05m, Re_D=4.3 10⁴
- Medium sand: d=360 μ m, ϱ_s =2650 kg/m³, θ_0 =0.33
- $\mu(I)$ rheology + two-equation turbulence models

3 stages of scour below a pipeline: onset, tunneling, lee-wake erosion

Mathieu et al. Water (2019)

Test case 3: Applications to scour around a pipeline

- $k-\varepsilon$ model is not able to reproduce vortex shedding
- We developed a hybrid $k-\varepsilon/k-\omega$ model to simulate both the tunneling and the lee-wake erosion stages.
 - $k-\varepsilon$ behavior in the near bed region
 - ► k-ω behavior near solid walls
- More work has to be done on turbulence modeling...

Mathieu et al. Water (2019)

Test case 3: Applications to scour around a pipeline

Mathieu et al. Water (2019)

Test case 4: Applications to scour around a bridge pile

- **3D scour:** 5 million cells
 - ► 600s of dynamics = 110 000 CPU hours
 - ~ 20 days on 224 CPUs ~ 12 yrs on 1CPU
- D=0.1m, Re_D=4.6 10⁴
- Medium sand: $d=260\mu m$, $\varrho_s=2650 \text{ kg/m}^3$
- Live-bed configuration: $\theta_0=0.2$
- $\mu(I)$ rheology + k-omega Wilcox 2006

Nagel et al. ADWR (in prep.)

Test case 4: Applications to scour around a bridge pile

Nagel et al. ADWR (in prep.)

- Open-source framework for two-phase flow modeling of sediment transport
- Basic validation on fundamental problems: sedimentation & laminar bed-load
- Turbulence modeling using « classical » 2 equations models: $k-\varepsilon \& k-\omega$ models
- Granular stress models: µ(I) and Kinetic Theory
- Validation on sheet-flows: vertical structure + sediment flux and transport layer thickness Vs θ
- Application to multi-dimensional problems: scour around a pipeline and « bridge pier »

Perspectives

- Develop more reliable turbulence models to account for the presence of sediment particles
- Develop accurate sub grid scale models for LES A. Mathieu PhD 2018-2021
- Implement extended kinetic theory and better elastic stress models
- Develop a multi-class model to reproduce grain size sorting mechanisms H. Rousseau PhD 2018-2021
- Implement dilatancy and pore-pressure coupling B. Tsai PhD (UD)
- Perform ripple migration simulations to disentangle suspended/bedload/near bed suspended load A. Salimi PhD (UD)
- Develop a free surface resolving two-phase flow model (Kim et al., 2018)

Conclusions

Numerical algorithm for the pressure-velocity coupling

The algorithm is based on the following steps:

1. Solve for
$$\{\phi\}_{j}^{n+1}$$
 using $\frac{\partial \phi}{\partial t} + \frac{\partial \phi w_{p}}{\partial z}$

- 2. Solve for $\{\epsilon\}_{j}^{n+1}$ using $\epsilon = 1 \phi$
- 3. Solve for intermediate velocities $\{w_f\}_i^*$ and $\{w_s\}_j^*$
- 4. Solve for the pressure $\{p_f\}_i^*$ using the poisson equation
- 5. Correct the velocities $\{w_f\}_{j}^{n+1}$ and $\{w_s\}_{j}^{n+1}$ using the new pressure

There are different methods for solving the pressure-velocity coupling, they are almost all based on predictor-corrector algorithm. In the following the PISO (Pressure Implicit with Splitting of Operators) algorithm is detailed.

The PISO algorithm requires the momentum equations to be written in a semi-discretized form. We start by writing the fluid phase momentum equation in the phase intensive form:

$$\frac{\partial w_f}{\partial t} + w_f \frac{\partial w_f}{\partial z} = -\frac{\partial p_f}{\rho_f} \frac{\partial p_f}{\partial z} - g - \frac{\phi \rho_p}{\epsilon \rho_f t_p} \left(w_f - w_s \right)$$

The semi-discrete form of the equation can be written in matrix form as:

$$\left[A^{f}\right]_{ij}\left\{w_{f}\right\}_{j}^{*} = \left\{H^{f}\right\}_{j} - \frac{1}{\rho_{f}}\frac{\partial\left\{p_{f}\right\}_{j}^{*}}{\partial z}$$

where $[A^f]_{ij}$ contains implicit advection and drag terms, $\{H^f\}_i$ contains explicit source terms including temporal derivative, gravity, explicit drag term (solid phase contribution) and the index j represents the j^{st} grid node in the mesh.

where Δt the time step.

For example, using a first order Euler scheme for the time derivative, the vector $\{H^f\}_j \text{ can be written as: } \{H^f\}_j = \frac{1}{\Delta t} \{w_f\}_j^n - g + \frac{\{\phi\}_j^{n+1} \rho_p}{\{\epsilon\}_j^{n+1} \rho_f t_p} \{w_s\}_j^n$

$$[A^f]_{ij} = -\frac{\{w_f\}_j^n}{\Delta z} \delta_{i j-1} + \left(\frac{\{w_f\}_j^n}{\Delta z}\right)$$

where $\delta_{i,j}$ is the Kronecker symbol and Δz the grid size assumed uniform for simplicity. In matrix form, it reads:

$$\left[A^{f}\right] \times \left\{w_{f}\right\}^{n+1} = \begin{bmatrix} \ddots & & \\ \frac{\left\{w_{f}\right\}_{j}^{n}}{\Delta z} \\ \vdots \\ \vdots \end{bmatrix}$$

1. Velocity predictor step Using the discretized momentum equation, the predictor step for the fluid phase can be written formally as:

$$\{w_f\}_j^* = [A^f]_{ij}^{-1} \{H^f\}_j$$

This step requires the inversion of the matrix $[A^f]_{ij}$.

Using a first order Upwind scheme, the matrix coefficients $[A^f]_{ij}$ are given by:

$$\frac{\delta_{j}}{\delta_{i}} + \frac{\{\phi\}_{j}^{n+1} \rho_{p}}{\{\epsilon\}_{j}^{n+1} \rho_{f} t_{p}} \delta_{i j}$$

$$\frac{\{w_f\}_j^n}{\Delta z} + \frac{\{\phi\}_j^{n+1} \rho_p}{\{\epsilon\}_j^{n+1} \rho_f t_p} \left[\begin{pmatrix} \vdots \\ \{w_f\}_{j-1} \\ \{w_f\}_j \end{pmatrix}^{n+1} \\ \vdots \end{pmatrix}^{n+1} e^{-1} e$$

$$[A^s]_{ij} \{w_s\}_j^* = \{H^s\}_j - \frac{1}{\rho_p} \frac{\partial \{p_f\}}{\partial z}$$

where the term $\{H^s\}$ also contains the particle pressure contribution:

$$\{H^s\}_j = \frac{1}{\Delta t} \{w_s\}_j^n - g + \frac{1}{t_p} \{w_f\}$$

Using the discretized momentum equation, the predictor step for the solid phase can be written formally as:

$$\{w_s\}_j^* = [A^s]_{ij}^{-1} \{H^s\}_j$$

$$\{w_{f}\}_{j}^{**} = \{w_{f}\}_{j}^{*} - \frac{\left[A^{f}\right]_{ij}^{-1}}{\rho_{f}} \frac{\partial \{p_{f}\}_{j}^{*}}{\partial z}$$
$$\{w_{s}\}_{j}^{**} = \{w_{s}\}_{j}^{*} - \frac{\left[A^{s}\right]_{ij}^{-1}}{\rho_{p}} \frac{\partial \{p_{f}\}_{j}^{*}}{\partial z}$$

Similarly, the solid phase momentum equation in matrix form can be written as: * j

nj

The velocity correction equations integrate the fluid pressure gradient correction and provide the corrected velocity fields $\{w_f\}_j^{**}$ and $\{w_s\}_j^{**}$:

2. Pressure solution

The corrected velocity fields should be divergence-free for the volume-averaged mixture velocity: $\{w_m\}_j^{**} = \{\epsilon\}_j^{n+1} \{w_f\}_j^{**} + \{\phi\}_j^{n+1} \{w_s\}_j^{**}$

$$\partial \{$$

$$\Leftrightarrow \frac{\partial}{\partial z} \left(\{\epsilon\}_j^{n+1} \{w_f\}_j^{**} + \{\phi\}_j^{n+1} \{w_s\}_j^{**} \right) = 0$$

$$\Leftrightarrow \frac{\partial}{\partial z} \left[\left(\frac{\{\epsilon\}_j^{n+1}}{\rho_f \left[A^f \right]_{ij}} + \frac{\{\phi\}_j^{n+1}}{\rho_p \left[A^s \right]_{ij}} \right) \frac{\partial \left\{ p_f \right\}_j^*}{\partial z} \right] = \frac{\partial}{\partial z} \left(\{\epsilon\}_j^{n+1} \left\{ w_f \right\}_j^* + \{\phi\}_j^{n+1} \left\{ w_s \right\}_j^* \right)$$

Using a staggered grid for between the pressure and the velocity to avoid Rhie and Chow oscillations, the Poisson equation can be discretized as:

$$\Rightarrow \frac{1}{2\Delta z} \left[\left(\frac{\{\epsilon\}_{j+1}^{n+1}}{\rho^{f} \left[A^{f}\right]_{ij}} + \frac{\{\phi\}_{j+1}^{n+1}}{\rho^{p} \left[A^{s}\right]_{ij}} \right) \frac{\left\{p_{f}\right\}_{j+1}^{*} - \left\{p_{f}\right\}_{j}^{*}}{\Delta z} - \left(\frac{\{\epsilon\}_{j}^{n+1}}{\rho^{f} \left[A^{f}\right]_{ij}} + \frac{\{\phi\}_{j}^{n+1}}{\rho^{p} \left[A^{s}\right]_{ij}} \right) \frac{\left\{p_{f}\right\}_{j}^{*} - \left\{p_{f}\right\}_{j-1}^{*}}{\Delta z} \right] }{\Delta z} \right] \\ = \frac{\left\{\epsilon\}_{j+1}^{n+1} \left\{w^{f}\right\}_{j+1}^{*} + \left\{\phi\}_{j+1}^{n+1} \left\{w^{p}\right\}_{j+1}^{*} - \left(\left\{\epsilon\}_{j}^{n+1} \left\{w^{f}\right\}_{j}^{*} + \left\{\phi\}_{j}^{n+1} \left\{w^{p}\right\}_{j}^{*} \right\} \right\} \right)}{\Delta z} \right] }{\Delta z}$$

$$\frac{w_m\}_j^{**}}{\partial z} = 0$$

3. Velocity corrector step

Using the newly computed pressure field $\{p_f\}_i^*$, the velocity correction equations can be used to correct the velocity fields:

$$\{w_{f}\}_{j}^{**} = \{w_{f}\}_{j}^{*} - \frac{\left[A^{f}\right]_{ij}^{-1}}{\rho_{f}} \frac{\partial \{p_{f}\}_{j}^{*}}{\partial z}$$
$$\{w_{s}\}_{j}^{**} = \{w_{s}\}_{j}^{*} - \frac{\left[A^{s}\right]_{ij}^{-1}}{\rho_{p}} \frac{\partial \{p_{f}\}_{j}^{*}}{\partial z}$$

Remarks:

- double sweep algorithm can be used Thomas (1995) however for associated with the previous equation.
- toolbox openFOAM. The 3D version of this Gravity driven settling: presented in Chauchat et al. (2017).

1. In one-dimensional problems the solution of this equation is cheap and a simple three-dimensional problems this can become very expensive as Bi-Conjugate Gradient algorithms might become necessary to resolve the algebraic system

2. The algorithm presented above is implemented in sedFOAM an open-source Eulerian-Eulerian two- phase flow model developed under the open-source CFD sedimentation of non-cohesive particles in the viscous regime algorithm is