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INTRODUCTION to HYDRODYNAMIC INSTABILITY 

- 2019 Stability course 26/9/2019  

- Literature  

- Some observations of instability  

- Equations dimensional analyses & simplications  

- Concepts for  linear stability analyses  

- Various flow Examples of calculations.   

 Instability course 2019  

-         Basic approach and equations; normal mode approach.  

–   Shear flow instability in the presence of density differences   
   Kelvin Helmholtz , Hölmböe, Rayleigh-Taylor, Orr Sommerfeld equations     
   Rayleigh and Fjörtöft criterions  

–  Geophysical instabilities: rotational, baroclinic-barotropic, etc,  

– Centrifugal instability (Taylor Couette, Görtler, Dean, curved boundaries)�

–  Convective instabilities  
   Rayleigh Bénard convection (différence de densité)  
   Double diffusion  (heat and density diffusion) 

–  Capillary instability (jets, Plateau Rayleigh.)  

– … 
–  Interfacial Instabilities (Laurent Davoust) 
–  Magneto HydroDynamic Instability 

–  Nonlinear instability 



- Instabilité Hydrodnamique ; Hydrodynamic instability 
Francois Charru, EDP, 2007; En anglais CUP, 2011. 

- Introduction to Hydrodynamic Stability  
Drazin, P.G. & W.H. Reid, Cambridge University Press.  
(1981) and (2000) 

- Hydrodynamic and Hydromagnetic stability  
 Chandrasekhar, S. (1961) Dover 

Further advanced reading 
-Stability and Transition in Shear Flows, 
P.J. Schmid & D.S. Henningson, Springer, 2001 

-Hydrodynamics and Nonlinear instabilities, edited by 
Godrèche, C. & P. Manneville (1998) Cambridge University 
Press, Aléa Saclay collection. 

What do we learn from the stability of a flow 

1) Is an exact solution stable or unstable ? 

2) Very stable  … you may find it more often in nature  

3) Very unstable…does this flow exists at all, and if it does,  
- under which conditions it is unstable  
- is there a threshold for instability,  
- does the unstable state tends to a stationary state. 

    

Intro 

Some examples 
of unstable flows
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Intro 



Van Dyke 

Album of  

Fluid motion

Intro Reynolds Pipeflow 

!10Kelvin Helmholtz (Thorpe 1969)

Time

-  Constant wavelength  

- Amplitude increase  

- reaches a maximum  
(saturation) 

- turbulence

!12From:BYUSplashLab 

http://splashlab.byu.edu

Intro 



Pression versus capillary force 

The most dangerous wave length λmax appears 
in the flow and its amplitude grows with ω(λ) 

«cutoff wavelength» λc and 0 

Intro 

Example  (Rayleigh-Plateau) 

ω(λ)

λλcλmax

Intro DOUBLE DIFFUSION

Intro 

 unstable stratification 
(salted - fresh water) 

instabilité de 
Rayleigh Taylor

ρ1

ρ2<ρ1

van Dyke album

g

Intro 

Gull 1975: RT in Crab Nebula
ρ1

ρ2

impulsive
accelleration Richtmyer Meshkov instability



Instability Mecanism:

    Instability: growth of the amplitude of the  
                  perturbation of an initially balanced flow

     
     Which balances are there ?

    external forces or internal  forces

   External Forces
    

– Unstable density distributions (under gravity)
– Centrifugal force 
– Coriolis force  
– Magneto-Hydro-Dynamic Force 
– Surface tension  

…

     

 Internal Forces:  

– Balance between inertia and pressure force(ν=0)

– In shear flows, instability may depend on vorticity 
dynamics, vortex line stretching and compression.  
 
(Viscous effects often stabilise due to the diffusion of 
momentum; Definition of Reynolds:  
Re=UL/ν ≈ Inertia/viscosity)

Instability Mecanism:

The initial state represents a solution of the equations… 

EQUATIONS
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Before calculating the stability of a flow,  we need to know  
the basic flow that is perturbed.

Equations are often:                                 

1) balance of momentum
Euler equations 

     Navier Stokes equations Vorticity equations

2) Conservation of mass, 
    Energy or Volume 

Derived

Scaled equations
Dimensional analyses.

–> Simplifications
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Euler equations : 

@⇢

@t
+r.(⇢~u) = 0 with r.~u = 0 gives

D⇢

Dt
=

@⇢

@t
+ ~u .r⇢ = 0

+ energy equation  
+ boundary conditions

NS equations : 

D⇢

Dt
=

@⇢

@t
+ ~u .r⇢ = 0

no mass diffusion

+ energy equation  
+ boundary conditions

@~u

@t
+ ~u .r~u = �1

⇢
rp� g~k + ⌫r2~u

@~u

@t
+ ~u .r~u = �1

⇢
rp� g~k
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@t
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@

@r
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v✓
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@

@z

In cylindrical coordinates

� = r2 =
1

r

@

@r

✓
r
@

@r

◆
+

1

r2
@2

@✓2
+

@2

@z2

In cartesian coordinates

� = r2 =
@2

@x2
+

@2

@y2
+

@2

@z2

D

Dt
=

@

@t
+ vx

@

@x
+ vy

@

@y
+ vz

@

@z
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In most cases we reduce the equations, using geometric constraints, 
and/or the dominating force balances. 

Balances of forces can be highlighted using scaling arguments (see 
later dimensional analyses).
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Simplifications of equations 

- dominating balance between flow forces (as above)  

- geometrically confined or limited flows  

- in 2D or quasi two dimensional flows e.g. geophysical flows  
that are confined in one direction  
(e.g. shallow water -saint venant equations)  

Simplifications 
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Boussinesq approximation
@~u

@t
+ ~u .r~u = �1

⇢
rp� g~k

For small density variations ∆ρ=ρ2  – ρ1    ≈ 1% we use the Boussinesq 
approximation, i.e.  only density variations in z are considered

The inertia effect on density, i.e. ∆ρ ∂u/∂t  is neglected and only the  
effect of the gravitational acceleration  

g ∆ρ (or often g’=g ∆ρ/ρmean ) 
on ∆ρ taken into account.

Simplifications 

Hydrostatic balance

@p

@z
= �⇢g

If the aspect ratio H/L is small, than we have for horizontal density 
perturbations, to leading order

Bernoulli equation

r.~u = 0

Suppose a homogeneous, barotropic flow, no density effects, and neglect
viscous effect (ν=0)  so that we have the Euler equations: 

Introduce a gravitational potential Φgr with gk = grad Φgr  so that 

@~u

@t
+ ~u .r~u = �1

⇢
rp� g~k

�gr = �gz

For the nonlinear term we use the vector identity 

(~u.r)~u =
1

2
r(~u.~u) + (r⇥ ~u)⇥ ~u

and obtain for the Euler equation
@~u

@t
+ ~! ⇥ ~u+r(

1

2
U2)�r�gr +

1

⇢
rp = 0

@~u

@t
+ ~! ⇥ ~u = �r

✓
1

2
U

2 � �gr +

Z rp

⇢

◆
= rH

vorticity = U2 = |~u.~u|~! ⌘ r⇥ ~u With p=p(ρ) we may write: 

H is a scalar potential function. We consider a few cases: 

(A) 

2) irrotational : ! = 0 we can introduce the velocity potential ~u = r�

f(t)  is a function of time, and U2 can be written as r�.r�

@�

@t
+

1

2
U2 + gz +

Z rp

⇢
= f(t) in the entire flow field

3) Steady & irrotational flow:

1

2
U

2 + gz +

Z rp

⇢
= H = constant in the entire flow field

equations 3) and (A) above are known as the Bernoulli equation ! 

4) Steady flow with H= constant: 
     The Euler equation becomes: ! ⇥ ~u = 0

In 2D flows this implies:
In 3D flows                               These are known as Beltrami flows. 

! = 0
! is parallel to ~u

1) Steady flow: ~! ⇥ ~u = �rH

Since                                                   along a streamline, we obtain:  
1

2
U

2 + gz +

Z rp

⇢
= H = constant along streamlines

~u⇥ (r⇥ ~u) = ~u⇥ ~! ⌘ 0

PERTURBATION OF 
EQUATIONS 

AND LINEARIZATION

LAPLACE & FOURIER 
TRANSFORMS



In linear stability analyses, one supposes a steady basic state U0
that is perturbed with a perturbation v0, which is restricted to be
infinitesimal. The precise meaning of ’infinitesimal’ depends on the
physical context and the particular experiment.

For instance, one may expand its amplitude A in a Taylor series :

A = A0 + ✏A1 + ✏2A2 + ...

where A0 is the amplitude of the basic flow, and the small
parameter ✏ is a small number that is characteristic for the system
under consideration. For instance, when the Reynolds number
Re >> 1 characterizes the flow, ✏ can be chosen as ✏ = 1/Re.

To know which numbers do characterize the flow we may use, e.g.
physical arguments or dimensional analyses.

The perturbation equations are obtained after inserting the
time-dependent perturbation. With v of order ✏ we consider leading
and first order, i.e. :

u(x, t) = U0(x) + v(x, t),

P(x, t) = P0(x) + p(x, t)

in the equations of motion.

For the Euler equations (viscosity ⌫ = 0), the steady fields must
satisfy

(U0 ·r)U0 = �rP0

and continuity
r · U0 = 0.

the linear approximation : 

?

Linearization and making use of the basic state U0 gives

@v
@t

= �(U0 ·r)v � (v ·r) · U0 �rp (1)

and
r · v = 0

with initial conditions v(x, 0) = v0(x) and boundary conditions.
Subsequently we choose a perturbation amplitude in the form of
periodic waves.

(Note that the basic state is subtracted from the equations to
obtain the perturbation equations)

Time is eliminated by the Laplace transform of the system with
respect to t, seeking solutions of the form

v̂k(r , t) = v̂k(r)e
sk t

where sk = s(k) = !R(k) + i!i (k) is a complex constant to be
determined with the stability analyses ; its value may be different
for each different k .
The velocity v̂ is to be found from the initial basic velocity field,
and the transformed system of ordinary differential equations in r ,
and the boundary conditions in r .



The choice of the perturbation function depends on the flow
geometry and initial conditions. For a system limited in z and open
in x-direction , the perturbation is

⇠ v̂(z)e i(kx+sk t)

(e.g. Kelvin-Helmholtz v̂(z) is determined with r2v = 0) ;
For a Poiseuille flow in r-direction and open in x we must analyse
perturbations of the form

⇠ v̂(r)e i(sk t+kx+n✓) and sk = !R + i!i

Derivatives in x and ✓ in the equations of motion are transformed
into ik and in, repectively, whereas differentiation in the r -direction,
@r , leads to an ordinary differential equation in r that needs to be
solved with the boundary conditions.

The perturbation function 

The choice of the symmetry of the disturbance depends on the
geometry of the system. For flows with a symmetry axis, for
example in the case of a Poiseuille flow, one would take

v̂(x , r , ✓, t) =
1X

n=�1

Z 1

�1
v̂k,n(r , t)e

ikx+in✓dk

with p, v etc. functions of r . We analyse an arbitrary function in
terms of two-dimensional periodic waves with amplitude v̂(x , r , ✓)
where k =

p
k2 + n2 is the wave number associated with the

disturbance v̂k,n.

Bessel equations and 
Bessel functions as solutions

The choice of the symmetry of the disturbance depends on the
geometry of the system. For flows with a symmetry axis, for
example in the case of a Poiseuille flow, one would take

v̂(x , r , ✓, t) =
1X

n=�1

Z 1

�1
v̂k,n(r , t)e

ikx+in✓dk

with p, v etc. functions of r . We analyse an arbitrary function in
terms of two-dimensional periodic waves with amplitude v̂(x , r , ✓)
where k =

p
k2 + n2 is the wave number associated with the

disturbance v̂k,n.

Other boundary geometries 

For problems with a spherical geometry one would take

v̂(x , r , ✓, t) =
1X

l=0

m=+lX

m=�l

v̂ml (r , t)Ym
l (✓,�)

where Ym
l (✓,�) represent spherical harmonics. Now, the behaviour

of the system with respect to modes l and m has to be
investigated. Thus, in all cases the disturbance is expanded in a
suitable set of normal modes in accordance with flow geometry.

Legendre functions

Other boundary geometries 

The system of the Hagen-Poiseuille flow U = V (1� z2/d2)ēx takes
the form of an eigenvalue relation

F (s, k , n,V , d , ⌫) = 0

and eigenfunctions v̂ , p. (⌫ is the kinematic viscosity ⌫ = µ/⇢).
This so-called method of normal modes makes use of small
disturbances that are resolved into modes which satisfy the linear
system and therefore may be treated separately. The use of the
Laplace Fourrier transform, thus reduces the equations of motion to
an ordinary equation or even an algebraic equation in the
parameters of F .

Some concepts



The solution of the ODE (or PDE) + boundary conditions provides
the dispersion relation for s

s = sn(R , k)

where k is the wave number and R the set of control parameters,
such as for instance the Reynolds number in the case of the
Poiseuille flow.
The fastest growing mode kc appears the first, and the critical
value above which instability occurs.
Because the system is linear, the real and imaginary parts are
separate solutions. For stability analyses we are generally interested
in the real part of the solutions i.e.

v̂k(r , t) = Re{v̂k(r)esk t}

without explicitly mentioning it.

The dispersion relation Some concepts

The growth rate :
(suppose s = !R + i!i and perturbations ⇠ est the real part !R the
exponential growth and the imaginary part !i , the sinusoidal part).

for !R < 0 the flow is stable
for !R = 0 the flow is neutrally stable ,
for !R > 0 there is exponential growth.

A flow is marginally stable when !R = 0 for critical values on which
the eigenvalue !R depends, but !R > 0 for some neighbouring
values of the parameters.
On a neutral curve !R = 0, but !R is not positive for any of the
neighbouring parameters.

The dispersion relation, and stability interpretation Some concepts

TWO  EXAMPLES

Surface waves

Kelvin Helmholtz 
!40

class exercise : surface waves perturbation and linearisation:

- Consider a basin at rest in hydrostatic balance   
u’=(u’, w’) whereas p=p0(x,z)+p’  and ρ=ρ0.  

- Use Bernouilli  
Give the expressions for the leading order O(1) balance and second 
order O(ε) balance. 

- Derive the dispersion relation 

ρ0

hydrostatic balanceρ1 <<ρ0   –> ρ1 ≈ 0

dp0
dz

= �⇢g

EXAMPLE 1



                                                         
                                                                                                                 

                          
    
   
     
  δρ = 0, ρ1 = ρ2, Incompressible flow. 

  
   

  
The frame is moving with speed C (so that Ui= ±U/2) 

  Instability of a vortex sheet

U1,2 =
(U1 + U2)

2
± U1 � U2

2
= C ± U

2

Z

X

i=1 

i=2

   U1, ρ1   

U2,ρ2       

Basic flow : vorticity sheet generated by two parallel flows.  
The instability is driven by inertial forces. 

EXAMPLE 2

Velocity potential in each layer u =
@�

@x
u = r� w =

@�

@z

Note below: upper layer has index i=1, lower layer has index i=2 

Potential flow above and below the interface, we may use  Bernoulli, ! = 0

@�i

@t
+

1

2
(r�i)

2 + gz +
Pi

⇢
= 0

Continuity r.u = 0 r2� = 0 Laplace equationi

Z

X z=ζ(x,y,t)

– ½ U

+ ½ U

(Kinematic interface condition) 

wi =
D⇣

Dt
=

@⇣

@t
+

@�i

@x

@⇣

@x
+

@�i

@z

@⇣

@z

with velocity potential

Interface conditions

At the interface: the vertical velocity w  = vertical interface displacement 
                            particles at interface remain at the interface 

wi =
D⇣

Dt
=

@⇣

@t
+ ui

@⇣

@x
+ wi

@⇣

@z



Forces at the interface are in balance. Here, only pressure, and no 
tangential forces  

  

 With Bernoulli

   (Dynamic boundary condition) 

@�i

@t
+

1

2
(r�i)

2 + gz +
Pi

⇢
= 0

@�1

@t
+

1

2
(r�1)

2 =
@�2

@t
+

1

2
(r�2)

2

(P1 � P2)z=⇣ = 0

n

z=ζ

z = ⇣

w1 =
@�0

1

@z
=

@⇣

@t
� 1

2
U
@⇣

@x

w2 =
@�0

2

@z
=

@⇣

@t
+

1

2
U
@⇣

@x

  
Linear approximation : keep O(ε) terms,  
                                        neglect O(ε2) terms: 

w1 =
@�0

1

@z
=

D⇣

Dt
=

@⇣

@t
+

✓
�1

2
U +

@�0
1

@x

◆

z=⇣

@⇣

@x
+

@�0
1

@z

@⇣

@z

w2 =
@�0

2

@z
=

D⇣

Dt
=

@⇣

@t
+

✓
1

2
U +

@�0
2

@x

◆

z=⇣

@⇣

@x
+

@�0
2

@z

@⇣

@z

wi =
D⇣

Dt
=

@⇣

@t
+

@�i

@x

@⇣

@x
+

@�i

@z

@⇣

@z

Basic flow + perturbation The perturbations 

above the interface �1 = �1b + ✏�0
1 + ... with �1b = �1

2
Ux

below the interface �2 = �2b + ✏�0
2 + ... with �1b =

1

2
Ux

Substitute in the kinematic interface condition 

⇣ = O(✏)

   In dynamic boundary condition 

@�1

@t
+

1

2
(r�1)

2 =
@�2

@t
+

1

2
(r�2)

2

with r�1 = �1

2
U +

@�0
1

@x
and r�2 =

1

2
U +

@�0
2

@x

z = ⇣

✓
@�2

@t
� @�1

@t

◆

z=⇣

=
U

2

✓
@�0

2

@t
+

@�0
1

@t

◆

z=⇣

w1 =
@�0

1

@z
=

@⇣

@t
� 1

2
U
@⇣

@x

w2 =
@�0

2

@z
=

@⇣

@t
+

1

2
U
@⇣

@x

r2�i = 0

From the three conditions we have: 

Laplace equation

Kinematic BC

Dynamic BC

✓
@�2

@t
� @�1

@t

◆

z=⇣

=
U

2

✓
@�0

2

@t
+

@�0
1

@t

◆

z=⇣



perturbations:  

With F(z) the vertical dependence to determine, and A the amplitude 

The wave form is sinusoidal, with spacing λ=2π/k  

With the Laplace transform, eσt   exponential decay or growth is supposed

Condition at infinity: the amplitude of the perturbations goes to zero 

�i = F (z) exp(ikx+ �t) and ⇣ = A exp(ikx+ �t)

r2�i = 0
d2�i

dx2
+

d2�i

dz2
= 0

d2F

dz2
� k2F = 0

�i = B1e
�kz +B2e

kz

�i ! 0 z ! +1 thus for z > 0 B2 = 0

�i ! 0 z ! �1 thus for z < 0 B1 = 0

We can now solve the form of ζ*, φ*1, φ*2 with amplitudes A, B1, and  B2  
                
ζ = A e ikx + σt,                
 

φ’1= B1 e–kz e ikx + σt.         φ’2 = B2 ekz e ikx + σt 

     
Substitution in conditions  I  and II:           
  −kB1= (σ −  ½i k U) A 
  −kB2= (σ +  ½i k U) A 

and condition III:      i [σ(B2 − B1)z=0 +  ½ U (B2 k +B1k)z=0 ] e i(kx) =0 

                                            σ =1/2 ik(U1+U2)  ± 1/2 k(U1– U2)    
             
 for U1= – U2 this reduces to  

                    σ=±kU

σ(k) is the dispersion relation showing the variation of growth rate with k.  
For σ>0, k≠0 the sheet is unstable. Small wavelengths grow faster than short ones. 

                                 
  - exponential growth for any velocity for σ>0 
  - growth rate depends on U

σ= kU

k0

All wave lengths are unstable no matter how small U is!.   
In reality often there is a cutoff for small wavelengths  
as we will see later.

σ=±kU

U0(z) 1/2U0

1/2U0



SCALING

Buckingham theorem:   find dimensionless numbers

Scaling 

For this Poisseuille flow the parameter a to determine is the
pressure gradient

dp

dx
= f (U, d , ⇢, µ)

we have the dimensions :

[
dp

dx
] = ML�2T�2

[U] = LT�1

[D] = L

[⇢] = ML�3

[µ] = ML�1T�1

In this case U, D, and ⇢ are independent ([µ] = [⇢][u][D]), so that
k = 3, m = 1 and n = 4 and so ⇧ = �(⇧1)

Scaling 

n=4 governing parameters with V ,D, ⇢ independent and one
dependent parameters µ. So

⇧1 =
µ

UD⇢

(this is 1/Re) and ⇧ the dimensionless pressure gradient

⇧ =
1

(U2D�1⇢)

dp

dx

We thus obtain :

⇧ = (U2D�1⇢)�1 dp

dx
= �(⇧1) = �(1/Re)

and � the function to determine. Whatever the individual values of
d ,U, µ or ⇢ are, this function is universal. Here � is determined
experimentally, see picture.

Scaling 



We have length scale d, velocity scale U0 –> pressure P/ρ~ U2  

�1

⇢

@p

@z
+ ⌫

1

r

@

@r

✓
r
@uz

@r

◆
= 0

�@p0

@z
+

1

Re

1

r

@

@r

✓
r
@uz

@r

◆
= 0

Flow solution 

Pressure -viscous force balance:

uz = �Re
@p

@z
(1� (r/d)2)

with p’ u, z and r 
dimensionless

amplitude~ 
pressure drop and Re

Consider the case of a steady laminar flow in a tube 

@~u

@t
+ ~u .r~u = �1

⇢
rp� g~k + ⌫r2~u

ur=uθ=0, axisymmetric flow, and developed flow, i.e. ∂uz/∂z=0, 
so that ∂u/∂t=0, and no slip condition at the walls. 

Uz(r) d
r

z

Scaling and Dimensionless equations  

π

For stability of Poisseuille flow see e.g. Drazin & Reid. 

Role of viscosity and generation of vorticity in the boundary layer play 
an important role (discussed in shear layer instability).  

Similarity analyses, Barenblatt 1996 : Scaling, self-similarity, and intermediate asymptotics, CUP

Scaling 

Methods : 

-  Normal mode analyses  
   Gives information about instability growth rate, and  
   corresponding  wave lengths in the linear approach. 

-  Energy balance of  potential and/or kinetic Energy; 
   Considering the motion of particles.
  

Intro 

T1

T2, T2 > T1

g

Force/Volume = ρ . acceleration = g ρ α ∆T  
suppose that the particle accelerates during a time τΑ, going from z=0 to h 

Diffusion opposes the motion due to:   
• Vorticity diffusion: the velocity gradient is damped by viscosity ν
• Temperature gradient diffusion with  
   Thermal conductivity κ=X/C and X heat conductivity and  C the capacity 

   Dimensions of diffusion are:     --->

€ 

α = −
1
ρ
∂ρ
∂T

0

h

€ 

∂
∂t
(...) =∇2(...) ~ l

2

t

Thermal expansion coefficient

Heuristic scaling in convection 



The characteristic times of diffusion are:  

τν= h2/ν … for vorticity diffusion 
τθ= h2/κ … for heat diffusion 

There is a competition between the  acceleration (τA) opposed by 
diffusion effects. The ratio in time scales determines stability: 

Ra= τντθ/τA
2 =   

  (Rayleigh number) 

  Ra>1 convection 

  Ra<1 stable… in reality Ra>673 or higher 

(but the number is right)         

€ 

αgΔTh3

κν

Intro 

(⇥1 � ⇥2)gdz =
1

2
(⇥1 � ⇥2)g�(x)dx

Z d

0

g

2
(⇥1 � ⇥2)�(x) +

T

2

✓
d�

dx

◆2

dx

Gravity potential energy:  

Energy ∆E= <0 unstable and for >0 stable 

Interfacial instability 

Balancing forces:  
- Surface tension minimizes the surface 
- Gravity increases the surface ρ2

ρ1

ξ(x)

g

d

Surface-tension (vertical):  T(dl - dx) = T [ (dx2+ dξ2)1/2 - dx] 
      = T{[1+ (dξ/dx)2 ]1/2-1}dx ≈ ½ T(dξ/dx)2 

dl dξ
dx

Surface tension T

dξ/dx<<1

Consider the flow energy

Intro 
Interfacial instability Normal mode decomposition 

 Discrete number of modes:      

with k=nπ/d 
  
   Instability when –(ρ2-ρ1)g+Tk2<0      ∆ρ=ρ2-ρ1 

That is the case when   k2< ∆ρg/T  —> nπ/d < (∆ρg/T)1/2  
      

       take n=2 : λ? 
      2π/λ < (∆ρg/T)1/2 for instability 
      ∆ρ=0.2g/cm3 , T=70.10-3N/m  

                λ=(∆ρg/T)-1/2= 1.6cm

€ 

ξ = ξke
ikx

k
∑

€ 

ξ ∝ sin nπx
d

€ 

ΔE = ξk
1
2
ρ1 − ρ2( )g +

T
2
k 2

& 

' ( 
) 

* + k
∑

ρ1

ρ2

n=1 n=2

Intro 
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Home exercise:  A NORMAL MODE TOY PROBLEM
Suppose there is a  balance represented by the 1D equation: 

with basic state f=0, and boundary conditions f(0)=f(1)=0. 

1. Is the basic state a solution of the equation ? 
2. Perturb the basic flow by adding a perturbation f’  
 
                  

3. Substitute, separate O(0), O(e), …and consider order e only 
4. What happens at O(0) ? Consider the equation for O(e). 

5. Use the Laplace transformation f’(t)= F(y) es(k)t  and solve F(y)  
with the boundary conditions.  

6. What is the dispersion relation and what does this relation show ?

@f(y)

@t
= f(y)� f(y)2 +

1

�

@2f(y)

@y2

f(x, t) = f̄ + ✏f 0(x, t) + ✏2...


