
Instability of Parallel Shear Flows

Free shear flows Bounded shear flows

plane Couette flow
with U=U0 y/L

plane Poiseuille flow
with U=U0 [1-(2y/L)2]

Poiseuille pipe flow
with U=U0 [1-(r/R)2]

Blasius boundary layer
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Refs.: Drazin & Reid 2004, Ch4p124-165; Godreche & Manneville 1998, Ch2.; Schlichting& Gersten 2000

free shear layer 
with U=U0 tanh (y/L)

jets (Bickley jet)
with U=U0 sech2 (y/L)

wakes 

heated wall 
(free convection)
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Reynolds stress

The Reynolds stress is a mechanism of  energy (or 
momentum) transfer from the mean flow to the 
perturbations.  This stress is able to sustain or amplify 
the perturbations. 

Two criteria can be explained with the transfer of 
momentum by the Reynolds stress:  

- The Rayleigh inflection-point, and the Fjörtöft criteria.

( Viscous effects generally damp the perturbations… 
But near the boundary, they may destabilise the flow.)

Reynolds stress

The Navier-Stokes perturbation equations are:
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Suppose that the flow is steady (i.e. ∂/∂t=0), with continuity, i.e. ∂ui/∂xi=0, and 2D flow we obtain
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The quantity with u and  v the velocity perturbations,�⇢uv (in general � ⇢uiuj )

is called the Reynolds Stress.  This term is responsible for the transport of momentum 
from the mean flow to the  perturbations.

Reynolds stress 

The Blasius boundary layer flow
Stress exerted by the turbulent fluctuations on the mean flow; these fluctuations transport 
mean momentum, and in doing so, may render the mean flow unstable  

The turbulence transfers momentum and in doing so changes dU/dy
This may be stabilising or destabilising ! 

for v < 0 
      at the position y – δy the mean velocity is U(y – δy) <U(y) 
      the particle moves relatively faster than its ambient u>0, 
      again the correlation uv<0

on average uv<0 so that the term ∂  (–ρuv) >0
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Consider a particle in a shear flow

v and u are the perturbation velocities 
for v > 0 
   at the position y+ δy the mean velocity is U(y+ δy) >U(y) 
   so that the particle moves relatively slower than its ambient.
   The perturbation to the horizontal velocity U, is u<0,  
   therefore the correlation uv<0



Consider an inviscid (incompressible) parallel flow with U = U(y)
and P0(x , t) = P0, ⇢=constant, ~u = (u, v ,w).

The dimensionless Euler equations :
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Perturbations have the form
~U(x , t) = U(y)~ex + ~u(~x , t)

P(~x , t) = P0 + p(~x , t)

so that we obtain for the perturbation equation (as usual)
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Normal modes are taken of the form :

~u(~x , t) = Re{~̂u(y)ei(kxx + kzz � !t)} p(~x , t) = Re{p̂(y)ei(kxx + kzz � !t)}

Reynolds stress (Rayleigh’s and Fjörtöft’s criteria)

U(y)
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U(y1)=U(y2)=0

The perturbation equations are :

ikx + ikz +
dv̂
dy

= 0

ikx [U(y)� c] û +
dU
dy

v̂ = ikx p̂

ikx [U(y)� c] v̂ =
dp
dy

ikx [U(y)� c] ŵ = ikz p̂

and c = !/kx is the complex phase velocity.
Boundary conditions are v̂(y1) = 0 and v̂(y2) = 0.

Find solutions of the dispersion relation D(k ,!) = 0 in 3D !

Use Squires theorem , and transform the 3D stability problem into
the equivalent 2D problem !

Squires theorem : (see Drazin & Reid 1981 ; Godreche et Manneville 1998).
"To obtain the minimal critical Reynolds number for instability, it is
sufficient to consider only two dimensional perturbations."

Use the appropriate transformation of variables.
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so that the perturbation equations become
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Intermezzo
For the 2D case, the dispersion relation is

D̃(k̃ , !̃) = 0

with wavenumber k̃ and !̃ = k̃ !̃
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From the 2D relation for (k̃ , !̃) we can obtain the properties of the
3D waves (~k ,!). For the growth rate, !i , we note that
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and thus always !i (2D)> !i (3D).
For stability we can thus consider the 2D problem !

Intermezzo



The 2D stability problem (⌫ = 0).
Introduce the streamfunction �
with u = @�

@y and v = �@�
@x and vorticity ⌦ = @v
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@y = �r2�.

Conservation of vorticity implies :
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Perturbations : are of the form �(x , y , t) =
R
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Normal modes : � = Re{�(y)e i(kx�!t)}

u = Re{d�(y)
dy

e i(kx�!t)}

v = �Re{ik�(y)e i(kx�!t)}

Boundary condition : �(y1) = �(y2) = 0 below e ik(x – Ct )

... we obtain Rayleighs equation (U � c)
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If � is a solution, then so is its complex conjugate.
Integration of (1) from y1 to y2 gives
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Explanation for stability

velocity vorticity 

‘discrete vortex 
elements’ 

exchange particles
f1 and f2 

vorticity anomaly



assume	Rayleigh’s	criterion

Notes
•The mechanism to explain the Rayleigh inflection point theorem of shear  

flows, does not apply to the Fjörtöft criterion (see Orszag & Patera 1981).  

•one can derive the Rayleigh criterion from conservation of momentum  
(see Bayly J. Fluid Mech. 1988, and Godreche & Manneville 1998).  
This approach shows that the Reynolds stress term plays an important  
role for the mechanisms of shear instability.  

• The inflection point theorem works equally for bounded and unbounded flows.  

• A similar approach is possible also for the Fjörtöft criterion,   
based on energy conservation (viscous effects are neglected).

• These are NECESSARY conditions for instability but NOT SUFFICIENT :  
 - not all flows with inflexion point are unstable, but if the flow is unstable,  
   then it must have an inflection point. 

    Counter examples are: 
- U=sin (z)  with inflexion points at zs=nπ but stable flow  

(check Fjortoft and Rayleigh’s criterion)
- Rayleigh’s shear flow, i.e. U= z/b (for |z|<b) with |z|≤1 

                                    U= –1 for z< – b ; U=1 for z<b  
No inflection point, but this flow is unstable (see course 2)

|Ω(y)|

velocity vorticity

Rayleigh: U 00(z) = 0

Fjortoft: U 00(U � Us)  0 and U(z) = Us

Which flows are unstable ? And in case ∂ρ/∂z≠0 ? 

Flow on curved Boundaries 



Favorable and adverse pressure gradients.
Flows over any non-flat surface may provoke an adverse or
favourable pressure gradient. If there is a return flow it may
generate an inflection point, so that Rayleigh’s and Fjörtöft
criteria apply.

The boundary layer equation is :
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Boundary layer flows over obstacles show reverse flows 
that lead to an  inflection point in the velocity profile

boundary 
layer δ

reverse flow

Example?

Sharks  
control the BL

Critical layers Drazin & Reid p 133.

In Rayleigh’s equation

This is a singular point. The region around is called the critical layer. 
Solutions of the Rayleigh equation are now given by

Solutions found by Tollmien (1929) and others (see 
Drazin & Reid, Godreche & Manneville 1998 ...)

and after substitution and integration

If U’’ does not go to zero at y=yc, then φ’⟶ ∞.  This means that there is 
a singular layer of vorticity at y=yc . 
This singularity can be smoothed out by viscosity, and if not we may see —> 
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the so-called ‘cat’s eye’ pattern of vortices

Kelvin cat’s eye pattern of the streamlines near the critical level as viewed by an observer moving with the wave. (Drazin & 
Reid p141) 

The stream function is (A is the amplitude of the wave) 

so that near the level yc
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vortex street, row of line vortices 

for large z

This layer can be represented by a row of line equidistant vortices of equal 
strength (see Lamb 1932 art.156), distance d  and strength A.  
The wave number can be represented by k=2π/d.
 
In the complex plane z=x+iy and w=φ+iψ the potential and streamfunction. 

Flow is unstable (Lamb 1932)   
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Derive : 

Parallel flow over a boundary, viscous effects

δ boundary layer thickness due to the diffusion of vorticity from the boundary 
(selfsimilar solutions, see Batchelor 1969).

For a velocity U, layer thickness  δ (in y-), and plate length l (in x-direction) we can 
estimate the terms in the Navier-Stokes equation: 

   ∂u/∂x ~ U/l   

the inertia terms Χ: 
ρ u ∂u/∂x ~ρ U2/l

∂τ/∂y ~ μ ∂2u/∂y2 (friction)
for laminar flow = viscous terms
µ ∂2u/∂y2 ~µ U/δ2
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From the exact solution (see e.g. Batchelor 1969. or Schlichting p. 116 
it can be shown that δ=5 √ (νt) 



Parallel flow instability with Reynolds number  

(a)

z

U

U(z)

(b)

U(z)

U

Blasius boundary 
layer profile

no inflection point,  or 
it is at the boundary 

z

cross-
section

Re=Uδ/ν

kδ δ~(νt)½ boundary 
layer thickness

(a)

(b)

0 kδ

Re(iω)

unstable

unstable

viscous 
effects

inviscid 
effects

Re(iω)

inflection point

 (see Drazin & Reid §31.5 & §32 )
Tolmien ’29 Rec=420;  Schlichting ’33 Rec=575, Lin ’45 421;  Jordinson ’70:  Rec=520

the Rayleigh regions are governed by the Rayleigh equation; 
the Stokes and critical layer by viscous effects

Stokes Layer

critical layer
U – c = 0

O[δ(Re)]

O[δ(Re)]

y

x

Rayleigh region

Rayleigh region

yc

0

copyright © ONERA 1996-2006 Cantwell, et al (1978)

Viscous effects and the turbulent boundary layer

Schlichting et al, „Grenzschichttheorie“, 
Springer Verlag, 2006



Energy equation of the perturbed flow

Basic flow + ui ; multiply the NS equations with ui’…. (bar for spatial average) …
which for  two dimensional flow these equations reduce to (long calculations)
(primes are omitted)

A is the transfer of energy by the mean flow and B the transfer of energy 
by the perturbations. 
When integrated over the entire flow domain,  A and B become zero.

C input of energy via the shear stress (also called the Reynolds Stress)
D energy dissipation due to viscous effects
and thus we can write the equations as a balance between three terms 
T, C and D 
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Consider the instability for a region of just one wavelength long.  
We can thus write
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Kinetic energy

Reynolds shear stress  
Work done against the 
mean shear flow

Dissipation 
(with vorticity ζ’  and µ=ν/ρ)

the mechanical balance between the redistribution of energy by the Reynolds shear 
stress and the dissipation term N is:
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= ⇢M � µN

@E
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The sign of the right-hand side of this equation determines whether the energy 
of the disturbance increases or decreases. Large µ implies stable flow.

The ratio of the two terms can be written as  

ρM/νN  = Re M’/N’ 

Re the Reynolds number and M’ and N’ the dimensionless form of M and N 

When Re M’/N’ <1, i.e. when the Reynolds number is below the ratio M’/N’, 
the disturbance will dissipate. 

The least value of N’/M’ yields a critical Reynolds number, Rec above which 
the flow will be unstable 

illustration: instability of the Stokes boundary layer

In some cases, the viscosity in the boundary layer is capable of rendering
the flow unstable. We consider the example of C.C. Lin (1955). 
Calculate the Reynolds stress for the vorticity equation of an 
oscillating boundary, of frequency ω.

Estimate the different advection terms inside the Stokes layer

⇠ ei(kx�!t)Perturbations of the form 

Stokes boundary flow
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Estimate the different advection terms: 
Inside the Stokes layer is δ = δ0  so that  ζ’ ≈ –∂u’/∂y we obtain ζ’δ0 ~ u’.  
with continuity  du/dx+dv/dy=0 so that v’ ~ k δ0 u’=k δ02 ζ’    
Comparing the two advection terms to the time derivative:

⇠ ei(kx�!t)Perturbations of the form 
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⇠ k�20U⇣ 0

!⇣ 0�2
⇠ U

C

�20
�2

(writing derivatives as indices, 
and C=ω/k, and ζy’~U/δ2)

In the boundary layer U is small ––> U/C<<1  
both advection terms can therefore be neglected ! 
Since  ζ’xx/ζ’yy ~ (kδ)2<<1  we consider only y dependence:  

Stokes boundary flow
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Schlichting p72-76

The velocities can be obtainedδ is the depth of 
penetration of 
the viscous wave
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and using continuity

Stokes boundary flow
With the boundary conditions: 

     y=0       ζ’=Aei(kx–ωt)    with A the oscillation amplitude 

                                                        y⟶∞,    ζ’⟶0 

the solutions are then given by

ζ’= A e–y/δ   ei(y/δ+θ) = A e–y/δ   ei (y/δ + kx – ωt)  

for y=0 we have a sinusoidal motion, for large y the motion amplitude tends to zero

rewrite: ζ’= A eiθ eαy  with α= (–1+i)/δ0  and θ=(kx – ωt)

damping with height

oscillatory motion

Stokes boundary flow
shear stress ...

In the boundary layer we can approximate, with y/δ<<1  (and thus αy<<1) 
using Taylor expansions, we can write 
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Note that u’ and v‘ have their origin from viscous effects. For sufficiently small viscous effects , 
the induced shear stress will be large enough (ρM>µN) and thus provoke instability

The Reynolds stress is defined as  u’v’ . The time average over a period of these two sinusoidal 
functions can be written as … >>>
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α= (–1+i)/δ0  and θ=(kx – ωt)

How ?

consider solutions of the form: u(y)= U0 exp[i(ky–nt)]  
this gives      in=νk2      so that        k=(i+1)/δ

solution:  u(y) = U0 e–y/δ ei(y/δ–nt) 

damping for y=0 we recover the sinusoidal motion

In the moving (oscillating) frame of reference:

solution:  u(y) = U0 sin(nt) – U0 sin(nt – y/δ ) e–y/δ

or:  u(y) = U0 A sin(nt +ψ) 

Stokes second problem) see e.g.Schlichting p72-76

oscillating plate 
no slip at the wall:   
for t>0  y=0 u(0,t)=U0 sin nt

In the  oscillating frame 
of reference we can write 
the horizontal velocity 
in the form of (suppose θ=ωt):



A

y/δ

overshoot at every  
n=2π/T   

U max = (1+ ε) Uo  ε ≈ 0.1

after half a cycle τ=T/2 and a diffusion time                   at the corresponding height  

after one oscillation the maximum speed will exceed the amplitude U0

consider the vorticity ∂u/∂y of this flow 
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@ū
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[sin ⌧ � sin(⌧ � y/�)e�y/�] = cos ⌧ � cos(⌧ � y/�)e�y/�

�2

⌫
⇠ T

2
the velocity perturbation due the vorticity is in phase with the velocity variation

the pressure variation is transmitted instantaneously 
after ∆t=T/2 at a height δ2~ νT/2 the two (p and u) will be in phase

far from the plate we have so that 
another way to see this is to consider the pressure: 

refs. Schlichting 1969 p72-76
Godrèche&Manneville p232- 241

t=0 t=T/2

∂u/∂y

Viscosity gives the fluids a memory:  
the inertia given to the fluid an instant 
before has not disappeared; a cycle later, 
newly generated motion is added;  
this changes the phase φ at the level y 
accumulative effect in time 

Orr-Sommerfeld equation

(U � c)(�00 � k2�)� U 00� =
1

ik Re

⇥
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⇤

which include viscous effects, and so there is dissipation due to viscous effects.
Also the critical layer appear for the same values yc but is now opposed by 
viscous effects. 
 
Approaches include often asymptotic analyses and eigenvalues for instability are 
often calculated numerically and has been considered by Heisenberg 1924, 
Schlichting 1933 and Tollmien 1947. This is reported in the book of Lin 1955, and 
Drazin & Reid 1981chapters 4 and 5, and is left for further reading. 

The above example is a heuristic demonstration, and not a full analytical 
proof, for which one should consider the Orr-Sommerfeld equation: 

+ appropriate boundary conditions for φ


