ROTATING FLUIDS

ROTATING FLUIDS

- Geophysical flows :
Earth Oceans and atmosphere, mantel convection,

- Astrophysical flows,
Other planetary atmospheres, accretion disks

- Industrial flows :
mixing of chemical compounds in rotating containers,
centrifuges in nuclear power industry
coating of material on disks (so called Spin-coating)
etc.

ROTATING FLUIDS

subjects
*Taylor Proudman theory

*The Ekman layer; Ekman layer instability
* Inertial waves (Rossby waves)

* Shallow water equations
Barotropic instability

Rayleigh criterion circular flow (vortices)

Baroclinic instability

ROTATING FLUIDS (intro)

We consider a homogenous fluid in solid body rotation with density p and
viscosity V, and use the Cartesian coordinate system

X =xi+ yJ7 + zk
with the rotation vector in the k direction, the rotation vector is
Q=0Q,k=(0,0, Q).Suppose a point of mass m at a position x

experiences a force F, then according to the second law of
Newton :
?% = dx = = _
m|—=+2Qx —+QxQxx| =F
dt? dt
resp. acceleration, Coriolis force and centrifugal force

Suppose u(x,t) is the fluid velocity with respect to the inertial system,
the Navier-Stokes equations is with

Qx(Q x X) = -V(3Q2r?), r= VxZty?
O

1
Pl t (@-V)i+2Qxi— V(§Q2r2) = —Vp+pg+uVii




ROTATING FLUIDS

For p =constant, the gravity force can be written as a potential V,
so that the pressure p can be defined as

1
p=E—+-V—7§22r2
p 2

we obtain for the
Navier Stokes equation in a rotating fluid:
ou | ,_ _ _ 2=
— +(@-V)i+2Q xua=-Vp+rvVa

6t —
and continuity (since p=constant) : V- i = 0.
Note :The third lhs term is the Coriolis force.

There is no distance r with respect to the axis of rotation,
The position of the axes r=0 has no importance for the Coriolis force.

ROTATING FLUIDS

In order to make the NS equation dimensionless we often scale with a
characteristic velocity Up , length L, time scale L/U and pressure scale LU2.

x=IX,t=Tt, 0= U, p=pQLUp, Q=Q,k
After substitution (after omitting the primes) :
—— — + Ro(i- V)i +2k x it = —Vp + EV?i
V.-v=0
The non dimensional numbers Ro, E and QT are :

U _ U?/L inertia forces

Ro = QL ~ QU "~ Coriolis force (Rossby number)
v vU/L?  viscous effects
E= 12Q = QU " Coriolis force (Ekman number)

2T
T, is the characteristic flow time QT = 21/Q

ROTATING FLUIDS
Geophysical large scale flows

In order to simplify the NS equation, we can consider the order of
magnitude of these numbers for a particular system.

For example consider a large scale geophysical flow the scales are
very large O(4000Km), velocities of O(20m/s) (JetStream) and the
background rotation f = 10—4. For the Ro-number this implies

Ro ~

N oego=r = 25 ~ 0.05, ie. Ro << L.

(QT);1 << 1

The Ekman number is small in fast rotating and large scale flows
(i.e. viscous effects are small, except in the boundary)

E<<1l
The leading order (dimensionless) geostrophic balance equations are:

2k xi=—Vp V-i=0

i.e. balance between the pressure and the coriolis force. (P is constant along stream lines).

ROTATING FLUIDS
Taylor Proudman theorem

Eliminate the pressure term by taking the curl of 2k x ii = —Vp

2V x (kx i) = -V x (Vp) =0

with the vector identity
Vx(kxb)=k(V-a)+(@-V)k—a(V-k)—(k-V)a
and continuity V-u=0
k-Vi=0 — au_y

This is the Taylor-Proudman theorem stating that, to leading order (Ro«l),
there are no variations in the velocity along the axes of rotation

(Proudman 1916, Taylor 1923).




ROTATING FLUIDS
Taylor Proudman theorem

When the flow is confined between boundaries perpendicular
to the rotation axes, then, since u = v = w = 0 at these boundaries

ou/oz =0 @ = @ =w=0, to leading order 2D flow!
0z 0z

=> Taylor columns O+s U
—_

| S

Q

vortex column

https://www.youtube.com/watch?v=Ans3tnvMy Tk&list=PLOEC6527BE87 | ABA3&index=|9&feature=plpp_video

Busse 1970

ROTATING FLUIDS
Taylor columns
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Taylor columns parallel to the axis of rotation (image source - Yohai Kaspi)




ROTATING FLUIDS
Taylor columns

rising sphere for Ro<<I

ROTATING FLUIDS
inertial waves

In the geostrophic approximation Ro<<|
the equations reduce to the linear relation:

Va=0
ou _ 1
En +2Q x0a=— ;Vp
9*°V2w 9w
—_— 4927 —
g T2 =0

This equation has planar waves as solutions:

Substitution gives
(0°k* —49*m*)w =0

dispersion relation of inertial waves

o2 40%m? _ 402m?
- k2 k2 + 12+ m2

There is a relation between frequency o, and 6
the angle of the propagation with the rotation axis

= i(k-x—ot)
u Re(A)e ~ k the wave vector
p= Re(P)ei(k'i*Ut) and ¢ the frequency
ROTATING FLUIDS
inertial waves
% = cosf
o -
= —k
7 K]
2 5
Cq @Q Cp
=~ analogy with Internal waves
in stratified fluids

(restoring force is gravity)

Inertial waves are
also called
gyroscopic waves
(restoring force=Coriolis force)




Inertial oscillation

V2 1dp
L V=_-2
R +r pdn

When dp/dn = 0 there is a balance between Coriolis force and
centrifugal force.

Fluid parcels move along a circular path with radius R=-V/f
i.e. parcels move in anticyclonic direction

The motion is described: ~ u(t) = Vcos ft, v(t) = —V'sin ft
and V = (u2+ v2)l2
The oscillation has a period 7= 2n/f

See experiment later on.

EKMAN BOUNDARIES

Ekman boundary Fcal%}%n Boundary layers

Consider a geostrophic flow. In the interior the Taylor Proudman
theorem holds, so that Uy = Uj(x,y) and P; = Pj(x,y). At the
boundaries there is adjustment to zero velocity (@i = 0) so that
% # 0, and nonzero vertical velocities.

This thin layer is called the Ekman layer :

Vertical gradients are large : 8% >>1, or % >>1/6 and § << 1.
In the boundary, we have (E for Ekman boundary layer)

8[)5 62UE
o+ —ove = —PELE

WE s Ve Ox * 0z?2
Q Ope | ~0°vE
2UE = 7@ E 822

- apE 82WE

0= %, TE%z

J 8uE aVE 8WE -0

ox Toy T oz

Ekman boundary |%|§/|g}%n Boundary layers

Since wg = O(8) << 1, w(E)/6 = O(1) = FE + E% =0
i.e.

Ope

oz "

Thus the pressure in the Ekman layer Pg must be equal to the
pressure in the interior, P; for which we know that

0P, oP;
oy = 2 o =
v Ox u dy
so that
82uE asz
—2ve=-=2vi+ E 922 2ug :2u/+Eﬁ

We solve this by defining a complex velocity
¢ = (ug + ive) — (u; + ivy) so that
0?9

E@ = 2l¢

(E<<1)




Ekman boundary [Gs@an Boundary layers
With the boundary conditions

z=0: ¢=—(u+iv)
z/0 — 0 ¢—0

the solution is ¢ = —(uj + iv;) exp(—E~2(1 + i)z) with

Ug = u) + exp(fEf%z)[fu, cos(E’%z) —v sin(E’%z)]
VE=v + exp(—E_%z)[u, sin(E_%z) - cos(E_%z)]

Ekman layer thickness is § = E2L = Vv /.
Ekman pumping (with continuity V- Ug =0 and V- U; = 0)
w; = %E%wl

with wy the vorticity in the interior, and when the bottom rotates :

w) = E%(w, 7wb)

NI =

Ekman pumping

Q-AQ
v v
0O-AQ Q
EEREREEEEY [NRRERREREN
Q CQ-AQ
SpIn up SPIn down
bottom rotates AQ faster than bottom rotates AQ slower than
the fluid and spins it up by the fluid and spins it down.
accelerating the fluid in the Ekman pumping into the interior
Ekman boundary layer, vortex cause vortex squeezing, leading to
stretching Ekman pumping to the slower rotation
boundary causes vortex
stretching.

Einstein tea leaves ....

Ekman boundary layers

TQ

A 80

Ro=AQ/Q <<1

For convenience, consider a rotating body of fluid in which a disk
rotates relatively to the rotating frame of reference. We obtain for
the non-dimensionalized (z/4, and %) analytic solution :

U(z) = Vi =—e “cosz
V(z) = VL =1—-e*cosz
oo

Ekman spiral for a faster rotating bottom

Mean velocity profiles for Mean velocity profiles
the Ekman layer flow. plotted as an Ekman spiral.
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for a vortex (spirals at the bottom)

GreenSpacn 561 - TEkiman Cayer tnstability =

278 THE THEORY OF ROTATING FLUIDS

fig. 6.6. The local orientation of these waves is anywhere from o°to |
—8° with respect to the geostrophic flow; the wave lengths vary |
between 258 and 330 and the phase speed is approximately 0'16Vy,
directed radially inward. Fig. 6.7 shows the critical Reynolds
number plotted versus the Rossby number; the relationship is

approximately R = 563+ 58464, (6.3-3) |

Classes A, B unstable )
140 - ]
_ R{P=12454366¢ Y,

Ri

Fig. 6.7. The critical Reynolds number vs. Rossby number for
Class A and Class B instabilities [199]. |

Waves of this family develop first and are very sensitive to the value

of & As ¢ increases, the disturbance ceases to be confined to the |

boundary layer and the effects propagate throughout the interior, |

fig. 6.8, much like the process pictured in fig. 6.4 of the last section.

Since the primary frequency of the disturbance is greater than 20, {

a non-linear wave interaction within the boundary layer resulting in |

a lower frequency wave may be responsible for the interior

excitation. |
Class B waves form an angle of almost exactly 14-6° with respect

to the geostrophic flow. The wavelength is 11-85 and the phase |

B RS ; g Fig. 6.6. A photograph by Faller and Kaylor [47] showing
velocity is 0034V directed radially inward. There is only a slight | Clars R nres end DI o Healler FadiL

depend nce of critical Reynolds number on the Rossby number

given t DE L nubbiclB) (ha ) |
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Indeed, the last cited reference was really the first thorough experi-
mental and theoretical examination of Class B waves.

Itis relativelyeasy to demonstrate that the transient Ekman layer
can go unstable in either spin-up or spin-down. Permanganate
crystals dropped about the periphery of a uniformly rotating
cylindrical container produce a thin annular layer of dyed fluid at
the bottom plate, fig. 6.15(a). During spin-down, this coloured

classes to illustrate the measured wave

10. Diagram of the two instal
le wave front orientations.

ngths, phase veloci

fluid is drawn radially inward by the efflux from the Ekman layer
and within a few revolutions, a series of rolls develop, plate (5). (The |
classification of these waves, A or B, is uncertain.) The waves amplify |
considerably and by the time spin-down is achieved, the dyed fluid
occupies an almost perfectly circular lens, of modest thickness, at

the bottom of the tank. This ‘disk’ is separated from the outer I
wall by a ring of clear fluid drawn down from the vertical surface |
of the cylinder. (The remaining plates of fig. 6.15 concern a spin-

down experiment with a stratified fluid to be discussed shortly) |
Spin-up can exhibit the same type of instability but the techniques
of visnalization must be altered slichtly.

Ekman Layer instability

The Ekman layer instability has been investigated experimentally and theoretically by
Faller JFM 1963-1991 and theoretically by Lilly 1966 see Lingwood 1996, 1997

2

inflection
_— point

crossflow
| — component

Figure 1 Sweptwing bousdary layer pofes.

The instability is related to inflection point instability Cross flow instability
related cross flow over aircraft wings,

NOTE: Similar approaches for von Karman rotating disk flow,
and Bddewadt flow (i.e. rotating fluid above a stationary disk)
see Lingwood JFM 1996, 1997, Saric 2003 Annu.Ann. Rev. Fluid Mech. 2003. 35:413—40




MODELING OF ROTATING FLOWS

barotropic instability

Shallow water approximation
(Geophysical large scale flow)
(suppose for simplicity p = constant and v = 0)
— shallow fluid with L < H, w < u

— hydrostatic balance
— Boussinesq approximation

Du p 1 0p

rewriting the Shallow water equations

Integration of the continuity equation from z=0 to H + 7 gives :

(H+n)% +(H+n)%+ w(n) + w(0) =0

Since w(0) =0 and w(n) = D—? we obtain :

St SelulH 4]+ ()] =0

with h = H + 7 this can be written as

Dh du  Ov

Dt VT pox Q=f12
Dv 1 0p 1
—t+fu=—-———
Dt po Oy L

op h=H+n H

0=—+-—

9z &
ou N ov N ow 0 ]
ax " ay 9z shallow water layer with free surface

Potential vorticity equation Intermezzo

Cross differentiation and substitution of the continuity in the Euler

relations directly gives for the vorticity @ = (0, 0,w;), with

— Ov _ Qu .
Wz = 3x dy

Ow, Ow, Ow, ou Ov

FoY LYy
ot TUax TV, Tt 0
with
Dh ou Ov

— —+—)=0.
Dt + (8X + 8y)
This gives the conservation of potential vorticity :
Dw; w;+ fgh

Dt~ h Dt
or

D wy, + f _0
Dt h -




In a shallow layer

Q=f12
I
1 1 -
n
h=H+n hil |— | | h 2<wz+f> Y
Dt h
ty t2

increase in h involves a change in relative
vorticity w: (increase) in order to keep the
PV constant (note that f = fo + By +yy2 ...)

Shallow water equations and barotropic Instability !

Since L <« H and w < u, d—W—O

Z
Since v = 0, u and v don't vary in z direction : % = % =0.

As a basic state we consider a uniform flow : u = U(y) that

satisfies geostrophic balance, i.e. : fU = —p—loz—c
Perturbations :
u = Uly)+d(xy,t)

= V(x,y,t)
p = Py)+p(xy.t)

ou’ ou’ ,0U 1 0p’
il - i
ot "Vox TVay TV T Thoox
ov’ ov'  ,0U , 1 0p’
ou’ @ 0
Ox Oy
(2)
The last equation admits the use of a streamfunction
S, 0w
Oy’ Ox
so that after cross differentiation we obtain :
0 0\ o d du ., oy
Ge T UVt~ )ax =

( V29 = w, and so deriving the vorticity yields the same result)

A perturbation of the form ¢ = ¢(y) exp[i(Ix — wt)] yields :

- 5) _%)d)—o =w/l
U—ec = C=w

d2¢

P _Pot+ ¥

in which we recognize the Rayleigh equation. It is too difficult to
solve this system for its unstable eigenvalues, and we consider the
less constraining, integral properties. As for Rayleigh's criterion
multiply the ¢ with its complex conjugate ¢* to get with boundary
conditions ¢(y =0) =¢(y =L)=0:

L d( ,dg)

Edbo oo & —F)
- [ (150e o) oy [ ey o

The imaginary part of this expression is :

N
/dy AR i




Stable flow when ¢; = 0.

For ¢; 20 d% f— % must change sign for instability !

Note that for f = 0 we recover Rayleigh |nstab|||ty criterion for a

shear layer with vorticity w, = “’ij

Further we note that in reality f varies with latitude y., i.e
f=fo+By.

A background vorticity gradient thus changes the stability criterion.

Centrifugal instability

Rayleigh criterion for centrifugal instability

was

Inaro

Or wri

o (rv)2 >0

tating fluid this criterion is

a 1 212
- — fr >
” (T'U + B f” ) 0

itten with the vorticity

(v+Qr)(w+202) >0

intermezzo Rossby waves

2 () =0 fiepy

{ N
< <0 Vf
, T
{ 62 [ Yo
Q S
N

W NS \U

intermezzo

Rossby waves example

Dt h

2 (“’Z + f) —0| U=0 = perturbation equation:

0/ot Ay + B oy/ox =0

1}

~ A exp[i(kx+ly —ot)]

k
Dispersion relation 0=- B 5 K] K+ P

Phase speed:

Group speed:

K +1
Cph:a)/k
~  dws 0w~
C,=—i+
<ok T




Baroclinic Instability

Baroclinic instability

Baroclinic instability basics

stratified fluid with vertical shear and rotation
2Q(r)

v(2)
Qv

NN
‘ g
o v‘ l
P~ S —
density surfaces \ Pi Shear + Coriolis
Vp x Vp
2

1 (8p8p 3p6p) :20871)

p? \0z0z 0z 0z 0z

ok

thermal wind relation — =20.Viu




side view
Vertical plane

—— density increasing

low density
high temperature

+
s
B

density decreasing

»

high density
low temperature

A
!
v

Fig. 6.9 A steady basic state giving rise to baroclinic instability. Potential
density decreasing upwards and equatorwards, and the associated horizontal
pressure gradient is balanced by the Coriolis force. Parcel ‘A’ is heavier than
‘C', and so statically stable, but it is lighter than ‘B’. Hence, if ‘A’ and ‘B’ are
interchanged there is a release of potential energy.

a decrease in Potential Energy gives unstable motion

Slanting convection

restoring force due to mass density
excess

A
F,=g¢g '?ab sin ¢
D

within the wedge (red) :

i.e. fluid parcels are accelerated in the
direction of the displacement.
(Unstable), centre of mass is lower =>
potential energy is released.

Outside the wedge

Fo>0
Particles move back to original
position

Baroclinic instability basics
top view: horizontal plane side

PV conservation

N
/ 7 \\ 1 +
VA 7 T
\\glipol-c/ /// _ >
s - \\/\ +/// U _
N e -

v

MODELS :
Phillips model, Eady model, Charney model,

Baroclinic instability Experiments

Q- 364 rad s
South Polar Projection of Earth o
http://photojournal.jpl.nasa.gov/ Regular baroclinic waves, m=5

Hide GAFD 2005




Experiments on Baroclinic instability |

gravity currents |
Q
M ring
R,, | /SOUI’CE

NS

Phillips (1954)

two-layer model

non-dimensional numbers:
Rossby number
Ro=U/fL or ®/2Q <<1

U
Froude number

F=(R/Re)?;

Deformation radius
R&NH/f

/
NH = ,/%H: Vo H

R Deformation radius ~Ry
d Re=NH/f
Phillips (1954) two-layer model
Du_p__10p Du_  10p
E_fv_ p10x Dt fr= P2 Ox
U . 1opDv, . 10p
Dt " pby Dt pdy
3,
f=tfo+By 0=-F-¢
w=0 Ou ov  ow _
g Ox 0Oy 0z
_ () _ ,
F= = g = (RRo)
D
E[w1—F(1/11—1/12)+ﬂy]=0
—_ =

D for — Pl — 1)+ B3] =0

The coupling between the two layers is via the second
term, and depends on the layer depth (pressure)

general procedure: perturbation equations ...

[% + uai] [v% + LR - wl)] + %154 Uy =0
X 2 Ox —
U2 =UxU
9 2| vyt Lr2(y, - M5 _ pry) =
[~ Uae [Tt 3P0 —va)| + G206 - P2y =0
substitute 1; = ReW,e/(kxtly—wt)
[ik(U — ¢)] [—szl + %Fz(w2 - \ul)] + ikWy (B + F2U) =0
[—ik(U + ¢)] [—szz + %Fz(wl - ‘Uz)“ + ikWy(8 — F2U) =0
after substracting and adding the equations we get :
X 3 cases:
(U=c)GF2+ K% — (B + FZU)] Wy — [FA(U—-c¢)/2] ¥, =0
w-ag i A

= 1
[FA(U+c)] v — [(U+ c)(iFZ + K2+ (8- qu)] V=0 p20 = (2)

[A]¥; + [BIY2 =0, [C]¥;+[D]¥; =0 U=0=>(3)

= AD-BC=0




Dispersion relation f=0 (1)

2 273 2_ 273
c:ch[K F] U:Uk[u]

K2 + F2 K2 + F2
0.4
Q(y)
0.3f========">
2
&
U
£02
S
(6]
0.1
.79
w=0 % 1 2

Wavenumber

- Instability for all U

- Wave number cut-off at K>F=2.82/Rq
- No low wavenumber cut-off (k=27/))
- Growth rate is maximum at 1.79/Rq

Growth Rate

Dispersion relation f#0 (2)

1
3 F? F? AKYK*—FY|*®
(::7,/7 14+ 5 £ 5 1+¥ kg = B
K2+ F? 2K2 7 2K?2 kﬁF4 U
0.3
(2}
©
7]
0.2 2
7]
B. 9
..b T
0.1 . =
0
0 1 2 3 4
Wavenumber Wavenumber

Fig. 6.14 Growth rates and wave speeds for the two-layer baroclinic instability
problem, from (6.114), with three (nondimensional) values of B: a, y = 0
(kg =0); b,y =05 (Eﬂ =V2),c,y=1 (fc\,; = 2). As B increases, so does
the low-wavenumber cut-off to instability, but the high-wavenumber cut-off
is little changed. (The solutions are obtained from (6.114), with k; = +/8 and
Uy =-U;=1/4) from Vallis 2009

zero shear U=0 (3)

1
- B F2  F? 4KMKE—FY |*
ke Mt Fake |V R

baroclinic mode 8
Y1+ y2=0 ‘T TRt 2

in the barotropic mode: Rossby waves
Y1 =y 5

N
=]

I

3

F, = L2/(g'h)

Griffiths & Linden Dyn. Atm. Oceans 1981

4




Eady problem (1949) g =0: f/=fo, stratification N

Q

w = 0 rigid no-slip surface ! Basic state :

Uz 0 =
H (2) o
=—p, P8
dUu _ g 9p
w=0 dz  fpoOy
du , Bu  Ou 10p perturbations
o TUgs vy —
ot 0 dy Po Ox
Q+ @+v@+f——l@ u = U@+
ot Yox T Yoy po Oy v o=
SW-equations: 0:—%— 0g w = w
du ov ow _ po= By:2)+r %y,
ox 9y 0z p = Bly,2)+P(xy
9] 0 0 0
9 o o0 0 _,

at " Yox 8 Yoz

z)
+2)

Baroclinic instability (on the Eady problem)

Vorticity equation (after cross differentiation and use of continuity) :

with perturbations and linearized this becomes

Ow’ Ow’ ow'’
at "V ~far 70

for the density equation and hydrostatic balance for the perturbation

op’ Op’ 6/7 _ poN*w op’
ot T Uax By g 0 0z

derive an expression for w’

+0g=0

=

Baroclinic instability (on the Eady problem)

L [(0, 00 duop
YT TN [<6Z+U8x 0z  dz Ox

The pressure perturbation equation becomes:
o .0 f2 0%p’
U %P1 _p
(ar * 8x> [V”" N2 522

Consider a flow between z=0 and z=H, and
p'=P(z) exp(i[kx +ly -wt])

P(z) is solved with Ap=0 and gives:
P=A cosh u(z/H-1/2) + B sinh u(z/H-1/2)
with p2=(N/f)2 (k2+2)H= Rs2 K2
w=0atz=0,H ....

—

K H
7—1—\/(7—‘5 DG = coth)

Growth Rate, kC.

Baroclinic instability (on the Eady problem)

c= % + % (g — tanh 5)(7 — coth )

Ci#0 => instability

1/F=p< 2.4 flow is unstable

04 From Vallis 2009
growth rate ~ U/Rq 1
_ — SN
0.3 2
/ N\ 82
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0.1 \ ®
Y/ | .
. / ‘\ k/Ry minimum shear
0 1 2 3 4 o i 2 3 Us/B > Ra/4
Zonal Wavenumber Wavenumber for ll’lstablllty
0.4 1 = = shear that change
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Charney problem (1947)  p#0 basics

Q)

0.4

Growth Rate, kC.

U(z) Vertical scale depends on vertical
shear h=[(//N)? dU/dy]/p

critical layer: U=c ...

“| Charney 1947
|

“ No short wave cutoff due to

* Green’s modes
(Pedlosky 1986; Vallis 2006)

3 4
Zonal Wavenumber k/ R

Baroclinic instability Quasi geostrophic equations

Stratified fluid and B+0 (Charney I947)

ﬁ = _ 2 alﬂ _ s
Q+aVQ=0  Q=V+py+ - ( 5,) =3z
?—FUV()— (atz:O,H;forw:Oandb:fO%)
perturbations of the form yw= Re A(y,z) eiktx-<)
9% 0.,
(U - )(WJra—(Sa—)—kw)JrQyw—o 0<z<H
0. o) -
(U—c)az—g—O z=0H

As before, integrate by parts and multiply by the complex conjugate to

obtain the condition
H
dy =0
0

2 H Q SU ¢~2
—c; / / ) 5 |¢|2 Z| ‘
Y1 0 ‘ |
critical layer when U —c =0

U — ¢l

=

SU. |9|?
U —¢|

Y2 H Q
—c; Y _1p|%dz +
AI{A T

H
dy=0
0

Instability if

Qy changes sign,
Qy is the opposite or the same sign of U; at resp. z=0,H
Qy =0 and U, has the same sign at the two boundaries

‘WAVE SOURCE

> WAVE PROPAGATION

CRITICAL _
LAYER  — ) U-c=0

WAVE EVANESCENCE <




Potential vorticity equation HOMOGENEOUS FIID
Cross differentiation and substitution of the continuity in the Euler

relations directly gives for the vorticity @ = (0,0, w,), with
_ Ov ou .

Wz = 3y dy *

Oow, Ow, Ow, f(au @) —0

ot TYax TV, T ax T oy
with
Dh ou Ov

o ($+@):0'

This gives the conservation of potential vorticity :
Dw, w;+f Dh

Dt  h Dt
or
D [(w,+f D
Dt ( h ) =0 = thomogeneous

Arnold-Blumen theorem

Consider the potential vorticity equation
9 T — _ o2 9 GO _fE
5 Q+aVQ=0  Q=V"+fy+ (S =Nz

with J(a,b) the Jacobian

5,
5@+ (.Q) =0
0da 0b  0b Ja
For stationary flows J(a,b)=0, i.e there is function f with OQ=f(y).
These can be coherent structures, stationary flow platterns etc.
If the structure has a uniform translation velocity ¢, then we have

with respect to the moving frame of reference v = (x — ct,y)

and functional f Q=f+cy) f'stable or unstable?

Q= fY+cy) fstable or unstable?
Perturbation of v

U(@,y,t) = ¥(x —ct,y) + d(x —ct, y, t)

5 relation for the perturbation ¢
&(V% —S¢) + J (U + ey, VP — 5o — f'¢) + J(¢, V) = 0
Consider the formal stability of f (note f’=9f/0y=0Q/dy) multiply
with — ¢ integrate over the domain, suppose the domain is closed

Q/ ! [(Vo)® + S¢?] dQ + / V2 J(¥+cy, ¢)d2=0

ot Jo 2 Q0

= total (kinetic + potential energy) + ~ total enstrophy
using continuity and boundary conditions, multiplication with

(V2p — S¢?)/f'and integrating...(see e.g Pedlosky, Springer 1987)

(V$)? + S¢2 + %(v% — 5¢)2| a0

0 1
GO =0 Lo =3 [

L@ =0 1) =3 [ |(vor+ 56+ (v - 502 an

if L(¢) definite positive/negative
=> L~ llgl12 = conserved in time

sign of f’determines stability, i.e. increase or decrease in
energy of the system




Q= f(1)+cy)  fstable or unstable?

The same result can be obtained after transformation to the

co-moving frame of reference ¢(z — ct,y,t) = ¢(t)x(z — ct,y)

For stability:
_ Of +cy)

This is a sufficient condition and its violation is a necessary
condition for instability.

In practice this means after a transformation to the co-
moving frame of reference (x-ct) for stability

Maxwell 1855 (letter to Lord Kelvin
alias W. Thomson)
Formal stability ow ~(  Amold 1966a,1966b
stronger than normal mode o Blumen (JAS) 1968
Pedlosky (book) 1987
Ripa JFM 1991, 1993

Example (shown before)

03 w
+
= r
() T
w7 N
754 Y
= (770 a
e st ar — ’(/}
w Jw - w e Fra——
aiL/ <0 a >0

ring with w<0
is unstable

.

Weakness of linear theory

- Only small perturbations

- amplitude grows in time so that nonlinear effect become gradually
more important

- Final state is unknown

Advantage:

- simple technique
- mode decomposition is physically comprehensible
- gives a first understanding about hydrodynamics instability

Non-linear methods and weakly nonlinear methods:
see

- Godreche and Manneville (Saclay 1990)

- Drazin and Reid Ch 7

- Manneville 1990

- Guyon et al 2001

I

Different concepts of instability (Holm et al Phys lett. 1985)
- spectral instability (normal modes)
- linear instability
- formal instability

Linearization and
infinitesimal perturbations

| - nonlinear instability

consider a dynamical system

Spectrally stable: du/dt=X(u)

For a dynamical system u= du/dt= X(u), an equilibrium point U, satisfying X(Ue) = 0 is
called spectrally stable, provided the spectrum of the linearized operator DX(U.) has no
strictly positive real part.

Linearized stability

The equilibrium solution u~is called linearized stable or linearly stable relative

to a norm II~ull on infinitesimal variations~iu provided for every s>0 there is a 3>0 such
that if I!~ul<I3att= 0,then II~ul<Iefort>0,where~uevolvesaccordingto(au)= DX(Ue)~ ~U.

Lyapunov stable... (nonlinear instability)




