
ROTATING FLUIDS

- Geophysical flows :  
   Earth Oceans and atmosphere, mantel convection, 
 
 - Astrophysical flows,  
   Other planetary atmospheres, accretion disks 
  
- Industrial flows :  
  mixing of chemical compounds in rotating containers, 
  centrifuges in nuclear power industry  
  coating of material on disks (so called Spin-coating)
  etc.  
 

ROTATING FLUIDS

subjects
* Taylor Proudman theory

* The Ekman layer;  Ekman layer instability 

* Inertial waves (Rossby waves)

* Shallow water equations  
  Barotropic instability  
 
  Rayleigh criterion circular flow (vortices) 

  Baroclinic instability 

ROTATING FLUIDS

We consider a homogenous fluid in solid body rotation with density ρ and 
viscosity ν, and use the Cartesian coordinate system

with the rotation vector in the k direction, the rotation vector is
 Ω = Ωz k = (0, 0, Ωz ). Suppose a point of mass m at a position x 
experiences a force F,  then according to the second law of 
Newton :

resp. acceleration, Coriolis force and centrifugal force

Suppose u(x,t) is the fluid velocity with respect to the inertial system, 
the Navier-Stokes equations is with

ROTATING FLUIDS (intro)



Note : The third lhs term is the Coriolis force. 
There is no distance r with respect to the axis of rotation, 

The position of the axes r=0 has no importance for the Coriolis force.

we obtain for the 
Navier Stokes equation in a rotating fluid:

For ρ =constant, the gravity force can be written as a potential V, 
so that the pressure p can be defined as

ROTATING FLUIDS

'

After substitution (after omitting the primes) :

In order to make the NS equation dimensionless we often scale with a 
characteristic velocity U0 , length L, time scale L/U and pressure scale LU2. 

The non dimensional numbers Ro, E and ΩT are :

T, is the characteristic flow time 

ROTATING FLUIDS

The leading order (dimensionless) geostrophic balance equations are:

The Ekman number is small in fast rotating and large scale flows
(i.e. viscous effects are small, except in the boundary)

In order to simplify the NS equation, we can consider the order of 
magnitude of these numbers for a particular system.

For example consider a large scale geophysical flow  the scales are 
very large O(4000Km), velocities of O(20m/s) (JetStream) and the 
background rotation f ≈ 10−4. For the Ro-number this implies

i.e. balance between the pressure and the coriolis force. (P is constant along stream lines).

ROTATING FLUIDS
Geophysical large scale  flows

=0

This is the Taylor-Proudman theorem stating that, to leading order (Ro«1), 
there are no variations in the velocity along the axes of rotation

                                      (Proudman 1916, Taylor 1923). 

and continuity

with the vector identity

Eliminate the pressure term by taking the curl of

=0

ROTATING FLUIDS  
Taylor Proudman theorem 



When the flow is confined between boundaries perpendicular 
to the rotation axes, then, since u = v = w = 0 at these boundaries

                   

Ω+ε

Ω

=> Taylor columns 
∂u/∂z =0

vortex column obstacle

to leading order 2D flow!

ROTATING FLUIDS  
Taylor Proudman theorem 

U

ROTATING FLUIDS 
Taylor columns 

• http://www.youtube.com/playlist?
list=PL0EC6527BE871ABA3

WATCH  
http://web.mit.edu/hml/ncfmf.html    
https://www.youtube.com/watch?v=Ans3tnvMyTk&list=PL0EC6527BE871ABA3&index=19&feature=plpp_video  



rising sphere for Ro<<1

ROTATING FLUIDS  
Taylor columns 

In the geostrophic approximation  Ro<<1
the equations reduce to the linear relation:

r.ū = 0

⇥ū

⇥t
+ 2�⇥ ū =� 1

�
rp

This equation has planar waves as solutions: 

ROTATING FLUIDS 
inertial waves

k the wave vector
and σ the frequency

ū = Re(A)ei(k̄·x̄��t)

p = Re(P )ei(k̄·x̄��t)

@2r2w

@t2
+ 4⌦2 @

2w

@z2
= 0

Substitution gives

dispersion relation of inertial waves

�2 =
4⌦2m2

k2
=

4⌦2m2

k2 + l2 +m2

�
�2k2 � 4⌦2m2

�
w = 0

There is a relation between frequency σ, and θ  
the angle of the propagation with the rotation axis

�

2⌦
= cos ✓

Ω

σ

θ

≈ analogy with Internal waves 
in stratified fluids

(restoring force is gravity) 

Inertial waves are 
also called 

gyroscopic waves
(restoring force=Coriolis force)  

�

2⌦
= cos ✓

ROTATING FLUIDS 
inertial waves 

cp =
�

|k̄|
k̂

cg =
2

|k̄|
⌦̄� c̄p



Inertial oscillation

When dp/dn = 0 there is a balance between Coriolis force and 
centrifugal force. 

Fluid parcels move along a circular path with radius R= –V/f 
i.e. parcels move in anticyclonic direction

The motion is described: 

                            and V = (u2 + v2)1/2 

V 2

R
+ fV = �1

�

dp

dn

u(t) = V cos ft , v(t) = �V sin ft

The oscillation has a period T= 2π/f  

See experiment later on.

EKMAN BOUNDARIES

Ekman boundary layers
Consider a geostrophic flow. In the interior the Taylor Proudman
theorem holds, so that ŪI = UI (x , y) and PI = PI (x , y). At the
boundaries there is adjustment to zero velocity (ū = 0) so that
@ū
@z

6= 0, and nonzero vertical velocities.

This thin layer is called the Ekman layer :

Vertical gradients are large : @
@z

>> 1, or @
@z

>> 1/� and � << 1.
In the boundary, we have (E for Ekman boundary layer)

�2vE = �@pE

@x
+ E

@2uE

@z2

2uE = �@pE

@y
+ E

@2vE

@z2

0 =
@pE

@z
+ E

@2wE

@z2

@uE

@x
+

@vE

@y
+

@wE

@z
= 0

Ekman Boundary layers

δ

δ

• ROTATING FLUIDS

TextTextTextText

Ekman boundary layers
Since wE = O(�) << 1, w(E )/� = O(1) =⇥ PE

� + E wE
�2 = 0

i.e.
⇧pE

⇧z
= 0

Thus the pressure in the Ekman layer PE must be equal to the
pressure in the interior, PI for which we know that

�2vI = �⇧PI

⇧x
2uI = �⇧Pi

⇧y

so that

�2vE = �2vI + E
⇧2uE

⇧z2 2uE = 2uI + E
⇧2vE

⇧z2

We solve this by defining a complex velocity
⇥ = (uE + ivE )� (uI + ivI ) so that

E
⇧2⇥

⇧z2 = 2i⇥

Ekman Boundary layers

(E<<1)



Ekman boundary layers
With the boundary conditions

z = 0 : � = �(uI + ivI )

z/� ! 1 : � ! 0

the solution is � = �(uI + ivI ) exp(�E� 1
2 (1 + i)z) with

uE = uI + exp(�E� 1
2 z)[�uI cos(E� 1

2 z)� vI sin(E� 1
2 z)]

vE = vI + exp(�E� 1
2 z)[uI sin(E� 1

2 z)� vI cos(E� 1
2 z)]

Ekman layer thickness is � = E
1
2 L =

p
⌫/⌦.

Ekman pumping (with continuity r · UE = 0 and rh · UI = 0)

wI =
1
2E

1
2!I

with !I the vorticity in the interior, and when the bottom rotates :

wI =
1
2
E

1
2 (!I � !b)

Ekman Boundary layers

spin up spin down

Ω

Ω–∆Ω

bottom rotates ∆Ω faster than 
the fluid and spins it up by 
accelerating the fluid in the 
Ekman boundary layer, vortex 
stretching Ekman pumping to the 
b o u n d a r y c a u s e s vo r t e x 
stretching.

Ω

bottom rotates ∆Ω slower than 
the fluid and spins it down. 
Ekman pumping into the interior 
cause vortex squeezing, leading to 
slower rotation

Ω–∆Ω
Ekman pumping

Einstein tea leaves ....

Ω–∆ΩΩ

Ekman boundary layers

For convenience, consider a rotating body of fluid in which a disk
rotates relatively to the rotating frame of reference. We obtain for
the non-dimensionalized (z/�, and U

V�
) analytic solution :

U(z) =
U

V⇥
= �e�z cos z

V (z) =
V
V⇥

= 1 � e�z cos z

Ω

∆Ω
Ro=∆Ω/Ω <<1 

Mean velocity profiles for 
the Ekman layer flow.

 Mean velocity profiles 
plotted as an Ekman spiral.

dye drop falling verically in the Ekman layer 

side view top view 

Ekman spiral for a faster rotating bottom



for a vortex (spirals at the bottom)

A

  Ekman Layer instability     

• Ekman layer instability

A

B

B

Ekman Layer instability

The Ekman layer instability has been investigated experimentally and theoretically by 
Faller JFM 1963-1991 and theoretically by Lilly 1966 see  Lingwood 1996, 1997

Ekman Layer instability

The instability is related to inflection point instability Cross flow instability 
related cross flow over aircraft wings,  

NOTE: Similar approaches for von Karman rotating disk flow, 
and Bödewadt flow (i.e. rotating fluid above a stationary disk) 

see Lingwood JFM 1996, 1997, Saric 2003 Annu. Ann. Rev. Fluid Mech. 2003. 35:413–40 



`   MODELING OF ROTATING FLOWS  
                         

barotropic instability

Shallow water approximation 
(Geophysical large scale  flow)

H

η

h=H+η

shallow water layer with free surface

Ω=f/2

rewriting the Shallow water equations

Integration of the continuity equation from z=0 to H + � gives :

(H + �)
⇥u
⇥x

+ (H + �)
⇥v
⇥y

+ w(�) + w(0) = 0

Since w(0) = 0 and w(�) = D�
Dt we obtain :

⇥�

⇥t
+

⇥

⇥x
[u(H + �)] +

⇥

⇥y
[v(H + �)] = 0

with h = H + � this can be written as

Dh
Dt

+ h(
⇥u
⇥x

+
⇥v
⇥y

) = 0

.

Potential vorticity equation Intermezzo
Cross differentiation and substitution of the continuity in the Euler
relations directly gives for the vorticity !̄ = (0, 0,!z), with
!z = @v

@x
� @u

@y
:

@!z

@t
+ u

@!z

@x
+ v

@!z

@y
+ f (

@u
@x

+
@v
@y

) = 0

with
Dh
Dt

+ h(
@u
@x

+
@v
@y

) = 0.

This gives the conservation of potential vorticity :

D!z

Dt
=

!z + f
h

Dh
Dt

or
D
Dt

✓
!z + f

h

◆
= 0

                                 



η

h=H+η

Ω=f/2

ωz

h1 h2

t1 t2

increase in h involves a change in relative 
vorticity ωz (increase) in order to keep the 
PV constant (note that f = f0 + βy +γy2 …)

In a shallow layer • Barotropic instability (on uniform flow)Shallow water equations and barotropic Instability

Since L ⇥ H and w ⇥ u, ⇥w
⇥z = 0

Since � = 0, u and v don’t vary in z direction : ⇥u
⇥z = ⇥v

⇥z = 0.

As a basic state we consider a uniform flow : u = U(y) that
satisfies geostrophic balance, i.e. : fU = � 1

�0
dP
dy

Perturbations :

u = U(y) + u�(x , y , t)
v = v �(x , y , t)
p = P(y) + p�(x , y , t)

!

• Barotropic instability (on uniform flow)
⇧u
⇧t

�
+ U

⇧u
⇧x

�
+ v �⇧U

⇧y
� fv � = � 1

�0

⇧p
⇧x

�

⇧v
⇧t

�
+ U

⇧v
⇧x

�
+ v �⇧U

⇧y
+ fu� = � 1

�0

⇧p
⇧y

�

⇧u
⇧x

�
+

⇧v
⇧y

�
= 0

(2)

The last equation admits the use of a streamfunction

u� = �⇧⇥

⇧y
, v � =

⇧⇥

⇧x

so that after cross di⌦erentiation we obtain :

(
⇧

⇧t
+ U

⇧

⇧x
)⇥2⇥ +

d
dy

(f � dU
dy

)
⇧⇥

⇧x
= 0

( ⇥2⇥ = ⇤, and so deriving the vorticity yields the same result)

   

A perturbation of the form ⇥ = �(y) exp[i(lx � ⇤t)] yields :

d2�

dy2 � l2�+
d
dy (f � dU

dy )

U � c
� = 0 c = ⇤/l

in which we recognize the Rayleigh equation. It is too di�cult to
solve this system for its unstable eigenvalues, and we consider the
less constraining, integral properties. As for Rayleigh’s criterion
multiply the � with its complex conjugate �� to get with boundary
conditions �(y = 0) = �(y = L) = 0 :

�
⇤ L

0

�
|d�
dy

|2 + l2|�|2
⇥

dy +

⇤ L

0

d
dy (f � dU

dy )

U � c
|�|2dy = 0

The imaginary part of this expression is :

ci

⇤ L

0

d
dy

(f � dU
dy

)
|�|2

|U � c|2 dy = 0



Barotropic instability

(see Atmospheric and Oceanic Fluid Mechanics, Vallis 2007)

Stable flow when ci = 0.
For ci 6= 0 d

dy
(f � dU

dy
) must change sign for instability !

Note that for f = 0 we recover Rayleigh instability criterion for a
shear layer with vorticity !z = d

2
U

dy2 .

Further we note that in reality f varies with latitude y., i.e.
f = f0 + �y .

A background vorticity gradient thus changes the stability criterion.

  

  

Rayleigh criterion for centrifugal instability 
was

Centrifugal instability

d

dr
(rv)2 � 0

In a rotating fluid this criterion is 

(v + �r)(� + 2�) � 0

Or written with the vorticity

d

dr
(rv +

1

2
fr2)2 � 0

Rossby waves

z

H

ω

ω<0

ω=0

N

S

y0

ω>0

∇f

y0

N

S

f=f0+βy

intermezzo

Cg

κ 
Cph

Dispersion relation 

Phase speed:  

Group speed: € 

ω ≅ −
kβ

k 2 + l2
K = k 2 + l2

  

€ 

! 
C g =

∂ω
∂k

ˆ i + ∂ω
∂l

ˆ j 

Cph = ω/k

Rossby waves       example

U=0 perturbation equation:  
∂/∂t ∆ψ  + β ∂ψ/∂x = 0

⇒

ψ ~ A exp[i(kx+ly –ωt)]

intermezzo



`                     Baroclinic Instability  
                       

Baroclinic instability

v(z)

2Ω v

2Ω(r)

basicsBaroclinic instability 

stratified fluid with vertical shear and rotation

g

ρi

piρi fu’ρ’

thermal wind relation

Shear + Coriolisdensity surfaces



Slanting convection
side view

Vertical plane

restoring force due to mass density 
excess

Fp = g
��ab
�̄

sin⇥

within the wedge (red) :
Fp<0

i.e. fluid parcels are accelerated in the 
direction of the displacement.  
(Unstable), centre of mass is lower => 
potential energy is released. 

Outside the wedge 
Fp>0

Particles move back to original 
position 

Vallis 2009

a decrease in Potential Energy gives unstable motion

+

_

PV conservation

+ _

_
+ U2

U1

top view: horizontal plane

MODELS :
Phillips model, Eady model, Charney model,  

Baroclinic instability basics

side

dipole
dipole

 Baroclinic instability Experiments

review of Hide, GAFD 2011

    

cold

South Polar Projection of Earth  
http://photojournal.jpl.nasa.gov/

cold

warm

Hide GAFD 2005



Experiments on Baroclinic instability I

~Rd ~Rd

gravity currents I

Deformation radius 
Rd=NH/f 

non-dimensional numbers:  

Rossby number  
Ro=U/fL  or ω/2Ω <<1 

Froude number   
F= (R/Rd)2 ; 

Deformation radius 
Rd=NH/f 

NH =

r
g0

H
H =

p
g0H

H

Ω(y)

ρ2

ρ1 U1

free surface

Phillips (1954)

two-layer model

Phillips (1954) two-layer model

U2H

Ω(y)

ρ2

ρ1 U1

free surface

The coupling between the two layers is via the second 
term, and  depends on the layer depth (pressure) 

general procedure: perturbation equations ...

= ( R/Rd )2
R

⇒

⇒

β≠0 ⇒ (2)

β=0 ⇒ (1)

⇒

⇒

⇒

U=0 ⇒ (3)

U1,2 =U±U 

3 cases:

2



Ω(y)

ρ2

ρ1

U2

U1

H

Dispersion relation β=0 (1)

- Instability for all U 
- Wave number cut-off at K>F=2.82/Rd 
- No low wavenumber cut-off (k=2π/λ) 
- Growth rate is maximum at 1.79/Rd

1.79

Dispersion relation β≠0 (2)

β

from Vallis 2009

c = � �

K2 + F 2

8
<

:1 +
F 2

2K2
± F 2

2K2

"
1 +

4K4(K4 � F 4)

k4�F
4

# 1
2

9
=

; k� =

r
�

U

in the barotropic mode: Rossby waves 
ψ1 = ψ2

zero shear U=0 (3)

baroclinic mode 
ψ1 + ψ2=0

c = � �

K2

c = � �

K2 + F 2 γ=h1/h2

= f2L2/(g’h1)

Griffiths & Linden Dyn. Atm. Oceans 1981 

λm



perturbations:

SW-equations:

Eady problem (1949)

H

β =0: f=f0 , stratification N

Basic state :

⇒

rigid no-slip surface !

Baroclinic instability (on the Eady problem)

Vorticity equation (after cross differentiation and use of continuity) :

with perturbations and linearized this becomes

for the density equation and hydrostatic balance for the perturbation

derive an expression for w’ ⇒

Baroclinic instability (on the Eady problem)

The pressure perturbation equation becomes: 

Consider a flow between z=0 and z=H, and 
p’=P(z) exp(i[kx +ly -ωt])

P(z) is solved with ∆p=0 and gives: 
P= A cosh µ(z/H–1/2) + B sinh µ(z/H–1/2)
with µ2 =(N/f)2 (k2+l2)H= Rd2 K2 
w=0 at z=0,H ….

c =
U0

2
± U0

µ

r
(
µ

2
� tanh

µ

2
)(
µ

2
� coth

µ

2
)

Baroclinic instability (on the Eady problem)

Ci ≠0 => instability < 2.4 flow is unstable

Phillips model

From Vallis 2009

2 layers

4

8

growth rate ~ U/Rd

R
d2 

U
/β

minimum shear 
Us/β > Rd/4 

for instability 
          = shear that changes  

sign in PV in  
the domain

c =
U0

2
± U0

µ

r
(
µ

2
� tanh

µ

2
)(
µ

2
� coth

µ

2
)

1/F=µ



Charney problem (1947)

 Vertical scale depends on vertical 
shear h=[(f/N)2 dU/dy]/β

Charney 1947

No short  wave cutoff  due  to 
Green’s modes  

(Pedlosky 1986; Vallis 2006)

basicsbasics
Ω(y)

h

critical layer: U=c ...

β ≠ 0

Stratified fluid and  β≠0 (Charney 1947) 

Baroclinic instability Quasi geostrophic equations

As before, integrate by parts and multiply by the complex conjugate to 
obtain the condition 

⇤

⇤t
Q+ ū.rQ = 0 Q = r2⇥ + �y +

⇤

⇤z
(S

⇤⇥

⇤z
) S =

f2
0

N2

⇤b

⇤t
+ ū.rb = 0 (at z = 0, H; for w = 0 and b = f0

⇥

⇤z
)

perturbations of the form ψ= Re A(y,z) eik(x–ct)

(U � c)(
⇥2�̃

⇥t2
+

⇥

⇥z
(S

⇥�̃

⇥z
)� k2�̃) +Qy�̃ = 0 0 < z < H

(U � c)
⇥�̃z

⇥z
� ⇥�̃

⇥z
= 0 z = 0, H

�ci

Z
y2

y1

8
<

:

Z
H

0

Qy

|U � c|2 |�|
2dz +

"
SUz|⇥̃|2
|U � c|

#H

0

9
=

; dy = 0

critical layer when U – c = 0       ==>

Instability if

Qy changes sign, 
Qy  is the opposite or the same sign of Uz at resp. z=0,H
Qy =0 and  Uz has the same sign at the two boundaries

�ci

Z
y2

y1

8
<

:

Z
H

0

Qy

|U � c|2 |�|
2dz +

"
SUz|⇥̃|2
|U � c|

#H

0

9
=

; dy = 0

U – c = 0 



Notes on nonlinear instability

Arnold-Blumen approach of 
energy and enstrophy 

(formal stability criterion)

Potential vorticity equation Intermezzo
Cross differentiation and substitution of the continuity in the Euler
relations directly gives for the vorticity !̄ = (0, 0,!z), with
!z = @v

@x
� @u

@y
:

@!z

@t
+ u

@!z

@x
+ v

@!z

@y
+ f (

@u
@x

+
@v
@y

) = 0

with
Dh
Dt

+ h(
@u
@x

+
@v
@y

) = 0.

This gives the conservation of potential vorticity :

D!z

Dt
=

!z + f
h

Dh
Dt

or
D
Dt

✓
!z + f

h

◆
= 0

HOMOGENEOUS FLUID

 D 
Dt= Qhomogeneous

Arnold-Blumen theorem

For stationary flows J(a,b)=0, i.e there is function f with Q=f(ψ). 
These can be coherent structures, stationary flow platterns etc. 
If the structure has a uniform translation velocity c,  then we have 
with respect to the moving frame of reference  

and functional f

with J(a,b) the Jacobian

Consider the potential vorticity equation 

⇤

⇤t
Q+ ū.rQ = 0 Q = r2⇥ + �y +

⇤

⇤z
(S

⇤⇥

⇤z
) S =

f2
0

N2

⇥

⇥t
Q+ J(�, Q) = 0

J(a, b) =
⇥a

⇥x

⇥b

⇥y
� ⇥b

⇥x

⇥a

⇥y

� = �(x� ct, y)

f stable or unstable?Q = f(� + cy)f

Consider the formal stability of f (note f’=∂f/∂ψ=∂Q/∂ψ) multiply 
with – φ integrate over the domain, suppose the domain is closed 

 relation for the perturbation φ 

Perturbation of ψ 
⇥(x, y, t) = ⇥̄(x� ct, y) + �(x� ct, y, t)

⇤

⇤t
(r2�� S�) + J(⇥̄ + cy,r2�� S�� f 0�) + J(�,r2�) = 0

⇤

⇤t

Z

�

1

2

⇥
(r�)2 + S�2

⇤
d�+

Z

�
r2� J(⇥̄ + cy,�) d� = 0

        = total (kinetic + potential  energy) + ~ total enstrophy
using continuity and boundary conditions, multiplication with 
(r2�� S�2)/f 0and integrating…(see e.g Pedlosky, Springer 1987)

⇥

⇥t
L(�) = 0 L(�) =

1

2

Z

�


(r�)2 + S�2 +

1

f 0 (r
2�� S�)2

�
d�

Q = f(� + cy)f f stable or unstable?

⇥

⇥t
L(�) = 0 L(�) =

1

2

Z

�


(r�)2 + S�2 +

1

f 0 (r
2�� S�)2

�
d�

if L(φ) definite positive/negative 
 
=> L~ ||φ||2 = conserved in time 

sign of  f’ determines stability, i.e. increase or decrease  in 
energy of the system



This is a sufficient condition  and its violation is a necessary 
condition for instability. 
In practice this means after a transformation to the co-
moving frame of reference (x-ct) for stability

The same result can be obtained after transformation to the 
co-moving frame of reference �(x� ct, y, t) = �̂(t)⇥(x� ct, y)

Q = f(� + cy)f f stable or unstable?

For stability: 

f 0 =
⇥f(� + cy)

⇥�
> 0f f

⇤⇥

⇤�
> 0

Maxwell 1855 (letter to Lord Kelvin  
                      alias W. Thomson)  
Arnold 1966a,1966b 
Blumen (JAS) 1968 
Pedlosky (book) 1987 
Ripa JFM 1991, 1993

Formal stability 
stronger than normal mode

Example (shown before)

+
–

ω ω

+
– r

ω

ψ
⇤⇥

⇤�
> 0@!

@ 
 0

–

+

ring with ω<0 
is unstable

ψ

ω

Weakness of linear theory

- Only small perturbations
- amplitude grows in time so that nonlinear effect become gradually  
  more important
- Final state is unknown

Advantage:

- simple technique
- mode decomposition is physically comprehensible 
- gives a first understanding about hydrodynamics instability 

Non-linear methods and weakly nonlinear methods: 
see 
- Godreche and Manneville (Saclay 1990)
- Drazin and Reid Ch 7
- Manneville 1990
- Guyon et al 2001 
….

Spectrally stable:  
For a dynamical system u= du/dt= X(u), an equilibrium point Ue satisfying X(Ue) = 0 is 
called spectrally stable, provided the spectrum of the linearized operator DX(Ue) has no 
strictly positive real part.  

Linearized stability 
The equilibrium solution u~is called linearized stable or linearly stable relative 
to a norm II~uII on infinitesimal variations~iu provided for every s>0 there is a 3>0 such 
that if I!~uI<l3att= 0,then II~uI<Iefort>0,where~uevolvesaccordingto(au)= DX(Ue)~ ~U. 

Lyapunov stable… (nonlinear instability)

Linearization  and 
infinitesimal perturbations

Different concepts of instability (Holm et al Phys lett. 1985)
- spectral instability (normal modes)
- linear instability 
- formal instability
- nonlinear instability

consider a dynamical system  
du/dt=X(u)


