

1

Kelvin Helmholtz in the Atmosphere

2

5
stability of particles in a stratified fluid
Stratified shear flows and instability

Consider the exchange of a fluid parcel with one at another level in a stably stratified fluid.*

How much work W is being done, and how much energy is made free? (Consider the leading order density effects).
*Suppose $u(z+\eta)=u+\delta u$, and after exchange $u=u_{\text {mean }}=(u+(u+\delta u)) / 2$ Inertia effects are negligible on density, i.e. $\rho=\rho_{0}$ (Boussinesq approximation)

6

$$
K E_{1}=\frac{\rho_{0}}{2}\left[u^{2}+(u+\delta u)^{2}\right]=\frac{\rho_{0}}{2}\left[2 u^{2}+2 u \delta u+(\delta u)^{2}\right]
$$

After exchange of the two particles :

$$
\begin{gathered}
K E_{2}=\frac{\rho_{0}}{2}\left[2\left(\frac{u+(u+\delta u)}{2}\right)^{2}\right]=\frac{\rho_{0}}{2}\left[2 u^{2}+2 u \delta u+1 / 2(\delta u)^{2}\right] \\
\Delta K E=K E_{2}-K E_{1}=-\frac{\rho_{0}}{4}(\delta u)^{2}
\end{gathered}
$$

The change in buoyancy is
$\Delta B=g \rho(z)-g \rho(z+\eta)=g \rho(z)-g\left[\rho(z)+\eta \frac{d \rho}{d z}+\ldots\right] \approx-g \frac{d \rho}{d z} \eta$
with $\rho(z)=\rho\left(z_{0}\right)+\frac{\rho_{0}}{d z}\left(z-z_{0}\right)+\ldots \approx \rho\left(z_{0}\right)$ and the work on a single particle at the level δz is thus

$$
W=\int_{0}^{\delta z}-g \frac{d \rho}{d z} \eta d \eta=-g \frac{d \rho}{d z} \frac{(\delta z)^{2}}{2}
$$

The work for the exchange is then : $W=-g \frac{d \rho}{d z}(\delta z)^{2}$.

Instability of a vortex sheet

using Bernoull
$U_{1,} \rho_{1}, z>0$

$\delta \rho=0, \rho_{1}=\rho_{2}$, Incompressible flow.

$$
U_{1,2}=\frac{\left(U_{1}+U_{2}\right)}{2} \pm \frac{U_{1}-U_{2}}{2}=C \pm \frac{U}{2}
$$

The frame is moving with speed C (so that $U_{i}= \pm \mathrm{U} / 2$)
The basic flow represents a vorticity sheet generated by two parallel flows, of which the instability is driven by inertial forces.

Linear stability analyses: perturbation of this basic flow ->

There is instability when $\triangle K E>W$, or

$$
\frac{\rho_{0}}{4}(\delta u)^{2}>-g \frac{d \rho}{d z}(\delta z)^{2}
$$

with

$$
R i=\frac{-\frac{g}{\rho} \frac{d \rho}{d z}}{\left(\frac{d u}{d z}\right)^{2}}<\frac{1}{4}
$$

This is the Richardson criterion for Kelvin Helmholtz instability.

10

Define in each layer a velocity potential $\mathbf{u}_{i}=\operatorname{grad} \varphi_{i}$, so that

with	φ_{1}
and	φ_{2}

$$
U_{1}=\frac{\partial \phi_{1}}{\partial x} \quad U_{2}=\frac{\partial \phi_{2}}{\partial x}
$$

above the interface $\quad \Delta \varphi_{1}=0$ (z>弓)
and $\quad \varphi_{2}$

Since we consider potential flows above and below the interface, we may use Bernoulli for this potential flow
(substitute $u=\nabla \varphi$ in the Euler equations, and note that $u \times \omega=0$)

For the basic flow $\frac{1}{2} U^{2}+g z+\int \frac{\nabla p}{\rho}=H=$ constant along streamlines
But since perturbations depend on time, we must use

$$
\frac{\partial \phi}{\partial t}+\frac{1}{2} U^{2}+g z+\frac{P}{\rho}=H \text { with } U=\nabla \phi
$$

at the level $\mathrm{z}=\zeta(\mathrm{x}, \mathrm{y}, \mathrm{t})$, that is the interface, we have:
Just above: $\mathbf{z}>\zeta: \quad \phi_{1}=-1 / 2 U x+\phi_{1} \quad(=$ basic flow + perturbation of $\mathrm{O}(\varepsilon))$
Just below: $\mathbf{z}<\boldsymbol{\zeta}: \phi_{2}=1 / 2 \mathrm{Ux}+\phi_{2}{ }_{2}$.

+ Boundary conditions...

interface and flow at infinity —->

Interface conditions:
See Drazin and Reid page 16-22
We follow the Langrangian motion of a particle near the interface
\qquad

1: Cinematic boundary condition imposes continuity of displacements at the interface we take the total derivative $\left.D / D t=\partial_{t}+u . \nabla\right)$
। $w_{1}=\frac{\partial \phi_{1}^{\prime}}{\partial z}=\frac{D \zeta}{D t}=\frac{\partial \zeta}{\partial t}+\left(-\frac{1}{2} U+\frac{\partial \phi_{1}^{\prime}}{\partial x}\right)_{z=\zeta} \frac{\partial \zeta}{\partial x}+\frac{\partial \phi_{1}^{\prime}}{\partial z} \frac{\partial \zeta}{\partial z} \quad$ z>弓

$$
=\frac{\partial \zeta}{\partial t}+\left(-\frac{1}{2} U+u_{1}\right)_{z=\zeta} \frac{\partial \zeta}{\partial x}+\left(w_{1}\right)_{z=\zeta} \frac{\partial \zeta}{\partial z}
$$

II

$$
\begin{align*}
w_{2}=\frac{\partial \phi_{2}^{\prime}}{\partial z}=\frac{D \zeta}{D t} & =\frac{\partial \zeta}{\partial t}+\left(\frac{1}{2} U+\frac{\partial \phi_{2}^{\prime}}{\partial x}\right)_{z=\zeta}^{z=\zeta} \frac{\partial \zeta}{\partial x}+\frac{\partial \phi_{2}^{\prime}}{\partial z} \frac{\partial \zeta}{\partial z} \\
& =\frac{\partial \zeta}{\partial t}+\left(\frac{1}{2} U+u_{2}\right)_{z=\zeta} \frac{\partial \zeta}{\partial x}+\left(w_{2}\right)_{z=\zeta} \frac{\partial \zeta}{\partial z}
\end{align*}
$$

In linear approximation (with z and primes of $\mathrm{O}(\varepsilon)$)

$$
\begin{array}{ll}
\text { । } & w_{1}=\frac{\partial \phi_{1}^{\prime}}{\partial z}=\frac{\partial \zeta}{\partial t}-\frac{1}{2} U \frac{\partial \zeta}{\partial x} \\
\text { II } & w_{2}=\frac{\partial \phi_{2}^{\prime}}{\partial z}=\frac{\partial \zeta}{\partial t}+\frac{1}{2} U \frac{\partial \zeta}{\partial x}
\end{array}
$$

Consider perturbations of the form

$$
\varphi_{1}^{\prime}, \varphi_{2}^{\prime}=F(z) \mathrm{e}^{i(k x)+\sigma t} \text { and } \zeta=A \mathrm{e}^{i(k x)+\sigma t}
$$

These are Fourier components or normal modes! What is $F(z)$?
Condition at infinity: the amplitude of the perturbations goes to zero!
Since $\Delta \varphi_{i}^{\prime}=0 \quad \varphi_{i}^{\prime}=\mathrm{B}_{1} \mathrm{e}^{-\mathrm{kz}}+\mathrm{B}_{2} \mathrm{e}^{\mathrm{kz}}$
$\varphi^{\prime} \rightarrow 0$ for $\mathbf{z} \longrightarrow+\infty \quad$ thus for $\mathbf{z}>0 \quad \mathbf{B}_{2}=0$
$\varphi_{i}^{\prime} \rightarrow 0$ for $\mathbf{z} \longrightarrow-\infty \quad$ thus for $\mathbf{z}<0 \quad \mathbf{B}_{1}=\mathbf{0}$

We can now solve the form of $\zeta^{*}, \varphi^{*}{ }_{1}, \varphi^{*}{ }_{2}$ with amplitudes A, B_{1}, and B_{2}
$\zeta=\mathbf{A} \mathrm{e}^{\mathrm{ikx}+\sigma \mathrm{t}}$,
$\varphi_{1}^{\prime}=B_{1} e^{-k z} e^{i k x+\sigma t .} \quad \varphi_{2}^{\prime}=B_{2} e^{k z} e^{i k x+\sigma t}$
Substitution in conditions I and II:
$-k B_{1}=(\sigma-1 / 2 k \operatorname{li}) A$
$-k B_{2}=(\sigma+1 / 2 i k U) A$
and condition III: $\quad i\left[\sigma\left(B_{2}-B_{1}\right)_{z=0}+1 / 2 U\left(B_{2} k+B_{1} k\right)_{z=0}\right] e^{i(k x)}=H$

With $\boldsymbol{\operatorname { I m }}(\boldsymbol{H})=\mathbf{0}$ we obtain:

$\sigma=1 / 2 \mathrm{ik}\left(\mathrm{U}_{1}+\mathrm{U}_{2}\right) \pm 1 / 2 \mathrm{k}\left(\mathrm{U}_{1}-\mathrm{U}_{2}\right)$
for $\mathbf{U}_{1}=\mathbf{-} \mathbf{U}_{2}$ this reduces to
$\sigma= \pm k U$

- exponential growth for any velocity for $\sigma>0$ - growth rate depends on U
$\sigma=\boldsymbol{k} \boldsymbol{U}$

$\sigma= \pm k U$

$\sigma(\mathrm{k})$ is the dispersion relation showing the variation of growth rate with k. For $\sigma>0, k \neq 0$ the sheet is unstable Small wavelengths grow faster than short ones

All wave lengths are unstable no matter how small U is! In reality often there is a cutoff for small wavelengths as we will see later

$\overline{\mathrm{van}_{1}}$
(Vertical velocity is out phase with pressure and velocity, and horizontal vorticity $\omega_{y} \approx-\frac{\partial w}{\partial x}=-i k w$)

18

Perturbations

The basic flow satisfies
The Euler equations, continuity and hydrostatic balance are

$$
\frac{\partial \vec{u}}{\partial t}+u \cdot \nabla \vec{u}=-\frac{\nabla p}{\rho}-g \quad \nabla \cdot \vec{u}=0 \quad \frac{d p}{d z}=-\rho g
$$

We suppose a perturbation of the form

$$
\begin{aligned}
p & =P+p^{\prime} \\
\rho & =\rho_{i}+\rho_{i}^{\prime} \quad(\mathrm{i}=1,2) \\
u_{1} & =U_{0}+u_{1}^{\prime} \\
u_{2} & =u_{2}^{\prime}
\end{aligned}
$$

The basic flow is given by

$$
\begin{aligned}
\left(u_{1}, w_{1}\right) & =\left(U_{0}, 0\right) & \left(u_{2}, w_{2}\right) & =(0,0) \\
p(z) & =P-\rho_{1} g z \quad(z>0) & p(z) & =P-\rho_{2} g z \quad(z<0)
\end{aligned}
$$

Substitue the perturbations (neglect second order terms), so that we obtain :

$$
\begin{aligned}
& \nabla \cdot\left(\bar{U}_{0}+\bar{u}^{\prime}\right)=0 \\
& \frac{\partial \bar{U}_{0}+\bar{u}^{\prime}}{\partial t}+\left(\bar{U}_{0}+\bar{u}^{\prime}\right) \frac{\partial\left(\bar{U}_{0}+\bar{u}^{\prime}\right)}{\partial x}=\frac{\nabla\left(P+p^{\prime}\right)}{\rho_{0}+\rho^{\prime}}
\end{aligned}
$$

$$
\Longrightarrow
$$

For the upper layer we obtain: Lower layer:

$$
\begin{array}{l|l}
\frac{\partial u_{i}^{\prime}}{\partial x}+\frac{\partial w_{i}^{\prime}}{\partial z}=0 \quad(i=1,2) & \\
\frac{\partial u_{1}^{\prime}}{\partial t}+U_{0} \frac{\partial u_{1}^{\prime}}{\partial x}=-\frac{1}{\rho_{1}} \frac{\partial p_{1}^{\prime}}{\partial x} & \frac{\partial u_{2}^{\prime}}{\partial t}=-\frac{1}{\rho_{2}} \frac{\partial p_{2}^{\prime}}{\partial x} \tag{2}\\
\frac{\partial w_{1}^{\prime}}{\partial t}+U_{0} \frac{\partial w_{1}^{\prime}}{\partial x}=-\frac{1}{\rho_{1}} \frac{\partial p_{1}^{\prime}}{\partial z} & \frac{\partial w_{2}^{\prime}}{\partial t}=-\frac{1}{\rho_{2}} \frac{\partial p_{2}^{\prime}}{\partial z}
\end{array}
$$

21

Note: The basic equations provide information about the phase of the pressure with respect to the vertical motion. Substitution of the perturbations in the latter equation shows (omitting primes)

$$
\begin{aligned}
-i\left(\omega-k U_{0}\right) w_{1} & =-\frac{k}{\rho} p_{1} \\
-i \omega w_{2} & =-\frac{k}{\rho} p_{2}
\end{aligned}
$$

(Vertical velocity is out phase with pressure and velocity, and horizontal vorticity $\omega_{y} \approx-\frac{\partial w}{\partial x}=-i k w$)

We use perturbations of the form

$$
\left(u^{\prime}, w^{\prime}, p^{\prime}, \zeta^{\prime}\right)=(\hat{u}, \hat{w}, \hat{p}, \hat{\zeta})(z) e^{i k x-i \omega t}
$$

The fonction $(\hat{u}, \hat{w}, \hat{p}, \hat{\zeta})(z)$ can be derived from eqs. (1,2 and 3).
With $\frac{\partial(2)}{\partial x}+\frac{\partial(3)}{\partial z}=-\nabla^{2} p_{i}^{\prime}$ and continuity one obtains $\nabla^{2} p_{i}^{\prime}=0$.
Using the expression for the perturbations above yields

$$
\frac{\partial^{2} p_{i}^{\prime}}{\partial z^{2}}-k^{2} p_{i}^{\prime}=0
$$

with solutions $p_{i}^{\prime}=A_{i} e^{k z}+B_{i} e^{-k z}$.
Under the condition that perturbations disappear with distance
from the interface $z \rightarrow \pm \infty \quad \hat{p^{\prime}} \rightarrow 0$ we obtain
In layer $1:\left(u^{\prime}, w^{\prime}, p^{\prime}, \zeta^{\prime}\right)_{1} \sim e^{-k z} e^{i(k x-\omega t)}$
In layer $2:\left(u^{\prime}, w^{\prime}, p^{\prime}, \zeta^{\prime}\right)_{2} \sim e^{k z} e^{i(k x-\omega t)}$

Interface conditions
Lagrangian motion of a particle at the interface
I) Kinematic interface condition : particles remain at the interface Consider a particle at the interface $\zeta(x, t)$, given by $z=\zeta(x, t)$. By continuity, the vertical motion of this particle should match the velocity above and below the interface :

$$
\begin{aligned}
& \text { upper layer } \frac{D \zeta}{D t}=\frac{\partial \zeta}{\partial t}+U_{0} \frac{\partial \zeta}{\partial x}=w_{1} \\
& \text { lower layer } \frac{D \zeta}{D t}=\frac{\partial \zeta}{\partial t}=w_{2}
\end{aligned}
$$

II) Dynamic condition : continuity of forces across the interface. Here, normal to the interface, pressure and gravity

$$
p_{1}-p_{2}=\left(\rho_{1}-\rho_{2}\right) g \zeta \quad \text { for } z=0
$$

force balance normal to the interface

We consider the motion in the vertical direction :

$$
\begin{aligned}
& \frac{\partial \zeta}{\partial t}+U_{0} \frac{\partial \zeta}{\partial x}=w_{1} \\
& \frac{\partial \zeta}{\partial t}=w_{2} \\
& p_{1}-p_{2}=\left(\rho_{1}-\rho_{2}\right) g \zeta \\
& \frac{\partial w_{2}^{\prime}}{\partial t}=-\frac{1}{\rho_{2}} \frac{\partial p_{2}^{\prime}}{\partial z} \\
& \frac{\partial w_{1}^{\prime}}{\partial t}+U_{0} \frac{\partial w_{1}^{\prime}}{\partial x}=-\frac{1}{\rho_{1}} \frac{\partial p_{1}^{\prime}}{\partial z}
\end{aligned}
$$

Substitute the perturbations and write in matrix form to determine the dispersion relation.

$$
\begin{aligned}
i\left(k U_{0}-\omega\right) \zeta-W_{1} & =0 \\
-i \omega \zeta-W_{2} & =0 \\
g\left(\rho_{2}-\rho_{1}\right) \zeta+P_{1}-P_{2} & =0 \\
-i \omega W_{2}+\frac{k}{\rho_{2}} P_{2} & =0 \\
i\left(k U_{0}-\omega\right) W_{1}+\frac{k}{\rho_{1}} P_{1} & =0
\end{aligned}
$$

Elimination of W_{1}, W_{2} and P_{1}, P_{2} provides an equation in ζ

25

Solution

Sometimes it is easier to write this in the form of a matrix

$$
\left(\begin{array}{ccccc}
i\left(k U_{0}-\omega\right) & -1 & 0 & 0 & 0 \\
-i \omega & 0 & -1 & 0 & 0 \\
g\left(\rho_{2}-\rho_{1}\right) & 0 & 0 & 1 & -1 \\
0 & 0 & -i \omega & 0 & k / \rho_{2} \\
0 & i\left(k U_{0}-\omega\right) & 0 & k / \rho_{1} & 0
\end{array}\right)\left(\begin{array}{c}
\zeta \\
W_{1} \\
W_{2} \\
P_{1} \\
P_{2}
\end{array}\right)=\left(\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right)
$$

If $\operatorname{Det}=0$ then nontrivial solution exist. If there are many equations make use of a program like Python, Maple, Scylab, Matlab, or Mathematica. This provides the dispersion relation $\omega(k)$:

$$
\left(\rho_{1}+\rho_{2}\right) \omega^{2}-2 k U_{0} \rho_{1} \omega+k^{2} U_{0}^{2} \rho_{1}-k g\left(\rho_{2}-\rho_{1}\right)=0
$$

Interpretation 1

$$
\omega=\frac{k U_{0} \rho_{1} \pm i \sqrt{k^{2} U_{0}^{2} \rho_{1} \rho_{2}-k g\left(\rho_{2}-\rho_{1}\right)\left(\rho_{2}+\rho_{1}\right)}}{\left(\rho_{1}+\rho_{2}\right)}
$$

Remind that the form of the perturbation is $\sim e^{i(k x-\omega t)}$

- Water-Air interface : $U_{0}=0$ et $\rho_{1}=0$

From the dispersion relation we obtain $\operatorname{Im}(\omega)=0$, and $\operatorname{Re}(\omega)$:

$$
\omega= \pm \sqrt{k g}
$$

$\omega_{i}=0 \rightarrow e^{\omega_{i} t}=1 \rightarrow$ stable.
$\omega_{r} \neq 0 \rightarrow$ surface waves with phase velocity : $c=\sqrt{g / k}$.

Interpretation 2

$$
\omega=\frac{k U_{0} \rho_{1} \pm i \sqrt{k^{2} U_{0}^{2} \rho_{1} \rho_{2}-k g\left(\rho_{2}-\rho_{1}\right)\left(\rho_{2}+\rho_{1}\right)}}{\left(\rho_{1}+\rho_{2}\right)}
$$

- Stable fluid interface, but without shear
i.e. $U_{0}=0$ and $\rho_{1}>0$

The dispersion relation reduces to (only $\operatorname{Re}(\omega) \neq 0$) :

$$
\omega= \pm \sqrt{\frac{k g\left(\rho_{2}-\rho_{1}\right)}{\left(\rho_{1}+\rho_{2}\right)}}
$$

$\rho_{1}<\rho_{2} \rightarrow \omega_{i}=0$ stable ($\rho_{1}>\rho_{2}$ instable)
The phase velocity is for interfacial gravity waves:

$$
c= \pm \sqrt{\frac{g}{k} \frac{\left(\rho_{2}-\rho_{1}\right)}{\left(\rho_{1}+\rho_{2}\right)}} \quad= \pm \sqrt{ } \mathrm{g}^{\prime} / \mathrm{k}
$$

EXERCISE

Modify the dispersion relation for a surface tension T.
(note that we only consider the force perpendicular to the interface and not the forces tangential to the interface)

Interpretation 3

$$
\omega=\frac{k U_{0} \rho_{1} \pm i \sqrt{k^{2} U_{0}^{2} \rho_{1} \rho_{2}-k g\left(\rho_{2}-\rho_{1}\right)\left(\rho_{2}+\rho_{1}\right)}}{\left(\rho_{1}+\rho_{2}\right)}
$$

- Stable density interface with shear $\rho_{1} \neq \rho_{2}, U_{0} \neq 0, \rho_{2}>\rho_{1}$

There is stability when :

$$
U_{0}^{2} \leq \frac{g}{|k| \rho_{1} \rho_{2}}\left(\rho_{2}^{2}-\rho_{1}^{2}\right)
$$

There is instability when $\pm \omega_{i} \neq 0$, i.e. for

$$
4 k^{2} U_{0}^{2} \frac{\rho_{1} \rho_{2}}{\bar{\rho}^{2}}-2 k g \frac{\Delta \rho}{\bar{\rho}} \approx 2 k\left(2 k U_{0}^{2}-g \frac{\Delta \rho}{\bar{\rho}}\right)>0
$$

From this expression, derive instability for (a typical length scale L).

$$
R i=\frac{-g}{\rho_{0}} \frac{\frac{d \rho}{d z}}{\left(\frac{d u}{d z}\right)^{2}}<\frac{1}{4}
$$

30

La condition de pression linéarisé à l'interface donne

$$
\begin{aligned}
& p_{2}-p_{1}=\left(\rho_{2}-\rho_{1}\right) g \zeta-T \frac{d^{2} \zeta}{d z^{2}} \quad \text { pour } z=0 \\
& \omega=\frac{k U_{0} \rho_{1} \pm i \sqrt{k^{2} U_{0}^{2} \rho_{1} \rho_{2}-k g\left(\rho_{2}-\rho_{1}\right)\left(\rho_{2}+\rho_{1}\right)-k^{3} T}}{\left(\rho_{1}+\rho_{2}\right)} \\
& e^{-i \omega t}
\end{aligned}
$$

growth $\operatorname{Re}(-i \omega t)>0$
waves $\operatorname{Im}(-i \omega t) \neq 0$

33

34

comments

Effect of velocity ratio $R=\frac{\Delta U}{20}$ on vortex sheet profile

$R=1$
$\left(U_{1}+U_{2}\right) / 2$
corvection speed
growth
$\left(U_{1}+U_{2}\right) / 2$
The velocity ratio R is important to the nature of the instability :
For KH flow the interface conditions (pressure / continuity w) impose the dispersion relation :

$$
\left(c-U_{1}\right)^{2}+\left(c-U_{2}\right)^{2}=0
$$

with solution $c \equiv \frac{\omega}{k}=\bar{U} \pm i \frac{\Delta U}{2}=\bar{U}(1 \pm i R)$ and $c_{r}=\bar{U}$ the propagation speed of the waves.

