
Kelvin Helmholtz instability
Hölmböe instability
Rayleigh-Taylor instability

Methods: normal mode instability  
              Energy of particles  
              (heuristic method)  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Kelvin	Helmholtz	in	the	Atmosphere

U

2

 Rio Nero and Amazone river waters

ocean wind waves shear regions

ocean internal waves jets
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Kelvin Helmholtz (Thorpe 1969)

Time

-  Constant wavelength  

- Amplitude increase  

- reaches a maximum  
(saturation) 

- turbulence

Linear stability 
analyses example

IN THE LABORATORY
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normal mode method
(KH homogeneous fluid)
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( ∆Ep<0 ∆Ep > 0 )

( INSTABILITY WHEN ∆Ek > W )
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Stratified shear flows and instability

Consider the exchange of a fluid parcel with one at another level in
a stably stratified fluid.

How much work W is being done, and how much energy is made
free ?

stability of particles in a stratified fluid

*

Suppose	u(z+η)=u	+δu,	and	a7er	exchange	u=umean=	(u+(u+δu))/2	
Iner<a	effects	are	negligible	on	density,	i.e.		ρ=ρ0		(Boussinesq	approxima;on)

*

(Consider	the	leading	order	density	effects).	
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KE1 =
⇢0

2
[u2 + (u + �u)2] =

⇢0

2
[2u2 + 2u�u + (�u)2]

After exchange of the two particles :

KE2 =
⇢0

2
[2(

u + (u + �u)

2
)2] =

⇢0

2
[2u2 + 2u�u + 1/2(�u)2]

�KE = KE2 � KE1 = �⇢0

4
(�u)2
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The change in buoyancy is

�B = g⇢(z)� g⇢(z + ⌘) = g⇢(z)� g [⇢(z) + ⌘
d⇢

dz
+ ...] ⇡ �g

d⇢

dz
⌘

with ⇢(z) = ⇢(z0) +
⇢0

dz (z � z0) + ... ⇡ ⇢(z0) and the work on a
single particle at the level �z is thus

W =

Z �z

0
�g

d⇢

dz
⌘d⌘ = �g

d⇢

dz

(�z)2

2
,

The work for the exchange is then : W = �g
d⇢
dz (�z)

2.
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There is instability when �KE > W , or

⇢0

4
(�u)2 > �g

d⇢

dz
(�z)2

with

Ri =
�g

⇢
d⇢
dz

(dudz )
2
<

1
4

This is the Richardson criterion for Kelvin Helmholtz instability.
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                       U1, ρ1, z>0                                        
                                                                                                                 

 U2,ρ2  z<0                                  
    
   
     
  δρ = 0, ρ1 = ρ2, Incompressible flow. 

  
   

 The frame is moving with speed C (so that Ui= ±U/2) 

 The basic flow represents a vorticity sheet generated  
 by two parallel flows, of which the instability is driven by  
 inertial forces. 

              Linear stability analyses: perturbation of this basic flow –> 
  

Z

X

   Instability of a vortex sheet

U1,2 =
(U1 + U2)

2
± U1 � U2

2
= C ± U

2

   using Bernoulli
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Define in each layer a velocity potential  ui = grad φi, so that  

  
 with φ1 above the interface  Δφ1=0            (z>ζ) 

     and          φ2 below the interface   Δφ2=0                     (z<ζ)   

U1 =
@�1

@x
U2 =

@�2

@x

   Since we consider potential flows above and below the interface,  
    we may use Bernoulli  for this potential flow 

 (substitute u=!φ in the Euler equations, and note that u x ω=0 ) 

1

2
U

2 + gz +

Z rp

⇢
= H = constant along streamlines

by continuity

For the basic flow 

But since perturbations depend on time, we must use 

@�

@t
+

1

2
U

2 + gz +
P

⇢
= H with U = r�
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at the level z=ζ(x,y,t), that is the interface, we have: 
       

Just above: z > ζ :   φ1 = – ½ U x + φ’1   (= basic flow + perturbation of O(e)) 

Just below: z < ζ :   φ2 =   ½ U x +  φ’2.            

Z

X z=ζ(x,y,t)

– ½ U

+ ½ U

The perturbations 

+ Boundary conditions…. 

interface and flow at infinity —-> 

13

!14

1: Cinematic boundary condition imposes continuity of displacements 
at the interface we take the total derivative D/Dt= ∂t +u.!)  

I                                                                                                        z>ζ  
                     

II                                                                                                                 z<ζ 

 
                                                       

  

In linear approximation  (with z and primes of O(ε)) 

 I                    
  

II  

Interface conditions:  

We follow the Langrangian motion of a  particle near the interface

=
@⇣

@t
+

✓
�1

2
U + u1

◆

z=⇣

@⇣

@x
+ (w1)z=⇣

@⇣

@z

w1 =
@�0

1

@z
=

D⇣

Dt
=

@⇣

@t
+

✓
�1

2
U +

@�0
1

@x

◆

z=⇣

@⇣

@x
+

@�0
1

@z

@⇣

@z

w2 =
@�0

2

@z
=

D⇣

Dt
=

@⇣

@t
+

✓
1

2
U +

@�0
2

@x

◆

z=⇣

@⇣

@x
+

@�0
2

@z

@⇣

@z

=
@⇣

@t
+

✓
1

2
U + u2

◆

z=⇣

@⇣

@x
+ (w2)z=⇣

@⇣

@z

w1 =
@�0

1

@z
=

@⇣

@t
� 1

2
U
@⇣

@x

w2 =
@�0

2

@z
=

@⇣

@t
+

1

2
U
@⇣

@x

See Drazin and Reid page 16-22
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   2: Dynamics boundary condition 
        Continuity of pressure across the vortex sheet 

  

    

    
    

      
          continuity of pressure 

          We obtain after linearisation : 

III     

 I,II,III are linear and can be solved if we represent the sheet displacement 
 

   In Bernoulli

with r�1 = �1

2
U +

@�0
1

@x
and r�2 =

1

2
U +

@�0
2

@x

@�i

@t
+

1

2
(r�i)

2 + gz +
Pi

⇢
= H

(P1 � P2)z=⇣ = 0

✓
@�2

@t
� @�1

@t

◆

z=0

=
1

2
U

✓
@�0

2

@x
+

@�0
1

@x

◆

z=0
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We can now solve the form of ζ*, φ*1, φ*2 with amplitudes A, B1, and  B2  
                
ζ = A e ikx + σt,                
 

φ’1= B1 e–kz e ikx + σt.         φ’2 = B2 ekz e ikx + σt 
     
Substitution in conditions  I  and II:           
  −kB1= (σ −  ½i k U) A 
  −kB2= (σ +  ½i k U) A 

and condition III:      i [σ(B2 − B1)z=0 +  ½ U (B2 k +B1k)z=0 ] e i(kx) =H 

              Consider  perturbations of the form   
 
                                    φ’1, φ’2 =F(z)   e i(kx) + σt and ζ = A e i(kx) + σt 

These are Fourier components or normal modes! What is F(z) ? 

Condition at infinity: the amplitude of the perturbations goes to zero!  

Since Δφ’i=0                φ’i= B1 e–kz + B2 e kz 

φ’i—›0 for z —› + ∞     thus for z>0     B2=0  
φ’i—›0 for z —› – ∞     thus for z<0     B1=0   
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With Im(H)=0 we obtain: 
    
           σ =1/2 ik(U1+U2)  ± 1/2 k(U1– U2)    
             
           for U1= – U2 this reduces to  

                    σ=±kU      
                         

  - exponential growth for any velocity for σ>0 
  - growth rate depends on U

σ= kU

k0
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σ(k) is the dispersion relation showing the variation of  
growth rate with k. For σ>0, k≠0 the sheet is unstable.  
Small wavelengths grow faster than short ones.  

All wave lengths are unstable no matter how small U is!.   
In reality often there is a cutoff for small wavelengths  
as we will see later.

σ=±kU

U0(z) 1/2U0

1/2U0
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Laminar basic flow ;

with layers 1 and 2 of different density

Viscous effets are considered negligible and the fluid is
incompressible.
This flow satisfies the Euler equations, continuity and hydrostatic
balance.
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Perturbations

The basic flow satisfies
The Euler equations, continuity and hydrostatic balance are ;

@~u

@t
+ u.r~u = �rp

⇢
� g r.~u = 0

dp

dz
= �⇢g

We suppose a perturbation of the form

p = P + p
0

⇢ = ⇢i + ⇢0i (i=1,2)

u1 = U0 + u
0
1

u2 = u
0
2

20
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The basic flow is given by

(u1,w1) = (U0, 0) (u2,w2) = (0, 0)
p(z) = P � ⇢1gz (z > 0) p(z) = P � ⇢2gz (z < 0)

Substitue the perturbations (neglect second order terms), so that
we obtain :

r.(Ū0 + ū
0
) = 0

@Ū0 + ū
0

@t
+ (Ū0 + ū

0
)
@(Ū0 + ū

0
)

@x
=

r(P + p
0)

⇢0 + ⇢0

=)

For the upper layer we obtain :
@u0i
@x

+
@w 0

i

@z
= 0 (i = 1, 2) (1)

@u
0
1

@t
+ U0

@u
0
1

@x
= � 1

⇢1

@p
0
1

@x

@u
0
2

@t
= � 1

⇢2

@p
0
2

@x
(2)

@w
0
1

@t
+ U0

@w
0
1

@x
= � 1

⇢1

@p
0
1

@z

@w
0
2

@t
= � 1

⇢2

@p
0
2

@z
(3)

Lower layer:
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We use perturbations of the form

(u0,w 0, p0, ⇣ 0) = (û, ŵ , p̂, ⇣̂)(z)e ikx�i!t

The fonction (û, ŵ , p̂, ⇣̂)(z) can be derived from eqs. (1,2 and 3).
With @(2)

@x + @(3)
@z = �r2

p
0
i and continuity one obtains r2

p
0
i = 0.

Using the expression for the perturbations above yields

@2
p
0
i

@z2 � k
2
p
0
i = 0,

with solutions p
0
i = Aie

kz + Bie
�kz .

Under the condition that perturbations disappear with distance
from the interface z ! ±1 p̂0 ! 0 we obtain

In layer 1 : (u0,w 0, p0, ⇣ 0)1 ⇠ e
�kz

e
i(kx�!t)

In layer 2 : (u0,w 0, p0, ⇣ 0)2 ⇠ e
kz
e
i(kx�!t)

22
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Note : The basic equations provide information about the phase of
the pressure with respect to the vertical motion. Substitution of the
perturbations in the latter equation shows (omitting primes )

�i(! � kU0)w1 = �k

⇢
p1

�i!w2 = �k

⇢
p2

(Vertical velocity is out phase with pressure and velocity, and
horizontal vorticity !y ⇡ �@w

@x = �ikw)
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Interface conditions

I) Kinematic interface condition : particles remain at the interface.
Consider a particle at the interface ⇣(x , t), given by z = ⇣(x , t). By
continuity, the vertical motion of this particle should match the
velocity above and below the interface :

upper layer
D⇣

Dt
=

@⇣

@t
+ U0

@⇣

@x
= w1

lower layer
D⇣

Dt
=

@⇣

@t
= w2

II) Dynamic condition : continuity of forces across the interface.
Here, normal to the interface, pressure and gravity

p1 � p2 = (⇢1 � ⇢2)g⇣ for z = 0

!24

Lagrangian motion of a particle at the interface

force balance  normal to the interface

24
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We consider the motion in the vertical direction :

@⇣

@t
+ U0

@⇣

@x
= w1

@⇣

@t
= w2

p1 � p2 = (⇢1 � ⇢2)g⇣

@w
0
2

@t
= � 1

⇢2

@p
0
2

@z

@w
0
1

@t
+ U0

@w
0
1

@x
= � 1

⇢1

@p
0
1

@z

Substitute the perturbations and write in matrix form to determine
the dispersion relation.
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i(kU0 � !)⇣ �W1 = 0
�i! �W2 = 0

g(⇢2 � ⇢1)⇣ + P1 � P2 = 0

�i!W2 +
k

⇢2
P2 = 0

i(kU0 � !)W1 +
k

⇢1
P1 = 0

Elimination of W1,W2 and P1,P2 provides an equation in ⇣

ζ
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Solution

Sometimes it is easier to write this in the form of a matrix
0

BBBB@

i(kU0 � !) �1 0 0 0
�i! 0 �1 0 0

g(⇢2 � ⇢1) 0 0 1 �1
0 0 �i! 0 k/⇢2
0 i(kU0 � !) 0 k/⇢1 0

1

CCCCA

0

BBBB@

⇣
W1
W2
P1
P2

1

CCCCA
=

0

BBBB@

0
0
0
0
0

1

CCCCA

If Det=0 then nontrivial solution exist. If there are many equations
make use of a program like Python, Maple, Scylab, Matlab, or
Mathematica. This provides the dispersion relation !(k) :

(⇢1 + ⇢2)!
2 � 2kU0⇢1! + k

2
U

2
0⇢1 � kg(⇢2 � ⇢1) = 0.

27

!28

Interpretation 1

! =
kU0⇢1 ± i

q
k2U2

0⇢1⇢2 � kg(⇢2 � ⇢1)(⇢2 + ⇢1)

(⇢1 + ⇢2)

Remind that the form of the perturbation is ⇠ e
i(kx�!t)

I Water-Air interface : U0 = 0 et ⇢1 = 0

From the dispersion relation we obtain Im(!) = 0, and Re(!) :

! = ±
p

kg

!i = 0 ! e
!i t = 1 ! stable.

!r 6= 0 ! surface waves with phase velocity : c =
p

g/k .
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Interpretation 2

! =
kU0⇢1 ± i

q
k2U2

0⇢1⇢2 � kg(⇢2 � ⇢1)(⇢2 + ⇢1)

(⇢1 + ⇢2)

I Stable fluid interface, but without shear
i.e. U0 = 0 and ⇢1 > 0

The dispersion relation reduces to (only Re(!) 6= 0) :

! = ±

s
kg(⇢2 � ⇢1)

(⇢1 + ⇢2)

⇢1 < ⇢2 ! !i = 0 stable (⇢1 > ⇢2 instable)
The phase velocity is for interfacial gravity waves :

c = ±

s
g

k

(⇢2 � ⇢1)

(⇢1 + ⇢2)

=±√g’/k
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Interpretation 3

! =
kU0⇢1 ± i

q
k2U2

0⇢1⇢2 � kg(⇢2 � ⇢1)(⇢2 + ⇢1)

(⇢1 + ⇢2)

I Stable density interface with shear ⇢1 6= ⇢2, U0 6= 0, ⇢2 > ⇢1

There is stability when :

U
2
0  g

|k |⇢1⇢2
(⇢2

2 � ⇢2
1)

There is instability when ±!i 6= 0, i.e. for

4k
2
U

2
0
⇢1⇢2

⇢̄2 � 2kg
�⇢

⇢̄
⇡ 2k(2kU

2
0 � g

�⇢

⇢̄
) > 0

From this expression, derive instability for (a typical length scale L).

Ri =
�g

⇢0

d⇢
dz

(du
dz )

2
<

1
4
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EXERCISE 

Modify the dispersion relation for a surface tension T.  
(note that we only consider the force perpendicular  
to the interface and not the forces tangential to the interface) 

31

La condition de pression linéarisé à l’interface donne

p2 � p1 = (⇥2 � ⇥1)g� � T
d2�

dz2 pour z = 0

⇤ =
kU0⇥1 ± i

�
k2U2

0⇥1⇥2 � kg(⇥2 � ⇥1)(⇥2 + ⇥1)� k3T

(⇥1 + ⇥2)
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e�i!t

growth Re(�i!t) > 0

waves Im(�i!t) 6= 0
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∆ρ>0

U = 0.32 m/s  
T = 0.01 

k

∆ρ from -.2 to .2ω

=|–w| 
unstable

stable
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Re(–iω/U0)

perturbation 
~ei(kx– ωt)

Im(–iω/k)

capillary waves

k=2π/λ

k=2π/λ
internal  
waves

KH
5 10 15 20 25 30

-4

-2

2

4

Graphical representation
∆ρ>0, stable stratification
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comments

R=∆U/2U

36


