
Kelvin Helmholtz instability
Hölmböe instability
Rayleigh-Taylor instability

Methods: normal mode instability  
              Energy of particles  
              (heuristic method)  

1

Kelvin	Helmholtz	in	the	Atmosphere

U

2

 Rio Nero and Amazone river waters

ocean wind waves shear regions

ocean internal waves jets
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Kelvin Helmholtz (Thorpe 1969)

Time

-  Constant wavelength  

- Amplitude increase  

- reaches a maximum  
(saturation) 

- turbulence

Linear stability 
analyses example

IN THE LABORATORY
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normal mode method
(KH homogeneous fluid)
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( ∆Ep<0 ∆Ep > 0 )

( INSTABILITY WHEN ∆Ek > W )

g

z

ρ
ρ(z)

1
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z

ρ
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1

ρ’
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Stratified shear flows and instability

Consider the exchange of a fluid parcel with one at another level in
a stably stratified fluid.

How much work W is being done, and how much energy is made
free ?

stability of particles in a stratified fluid

*

Suppose	u(z+η)=u	+δu,	and	a7er	exchange	u=umean=	(u+(u+δu))/2	
Iner<a	effects	are	negligible	on	density,	i.e.		ρ=ρ0		(Boussinesq	approxima;on)

*

(Consider	the	leading	order	density	effects).	
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KE1 =
⇢0

2
[u2 + (u + �u)2] =

⇢0

2
[2u2 + 2u�u + (�u)2]

After exchange of the two particles :

KE2 =
⇢0

2
[2(

u + (u + �u)

2
)2] =

⇢0

2
[2u2 + 2u�u + 1/2(�u)2]

�KE = KE2 � KE1 = �⇢0

4
(�u)2
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The change in buoyancy is

�B = g⇢(z)� g⇢(z + ⌘) = g⇢(z)� g [⇢(z) + ⌘
d⇢

dz
+ ...] ⇡ �g

d⇢

dz
⌘

with ⇢(z) = ⇢(z0) +
⇢0

dz (z � z0) + ... ⇡ ⇢(z0) and the work on a
single particle at the level �z is thus

W =

Z �z

0
�g

d⇢

dz
⌘d⌘ = �g

d⇢

dz

(�z)2

2
,

The work for the exchange is then : W = �g
d⇢
dz (�z)

2.
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There is instability when �KE > W , or

⇢0

4
(�u)2 > �g

d⇢

dz
(�z)2

with

Ri =
�g

⇢
d⇢
dz

(dudz )
2
<

1
4

This is the Richardson criterion for Kelvin Helmholtz instability.
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                       U1, ρ1, z>0                                        
                                                                                                                 

 U2,ρ2  z<0                                  
    
   
     
  δρ = 0, ρ1 = ρ2, Incompressible flow. 

  
   

 The frame is moving with speed C (so that Ui= ±U/2) 

 The basic flow represents a vorticity sheet generated  
 by two parallel flows, of which the instability is driven by  
 inertial forces. 

              Linear stability analyses: perturbation of this basic flow –> 
  

Z

X

   Instability of a vortex sheet

U1,2 =
(U1 + U2)

2
± U1 � U2

2
= C ± U

2

   using Bernoulli
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Define in each layer a velocity potential  ui = grad φi, so that  

  
 with φ1 above the interface  Δφ1=0            (z>ζ) 

     and          φ2 below the interface   Δφ2=0                     (z<ζ)   

U1 =
@�1

@x
U2 =

@�2

@x

   Since we consider potential flows above and below the interface,  
    we may use Bernoulli  for this potential flow 

 (substitute u=!φ in the Euler equations, and note that u x ω=0 ) 

1

2
U

2 + gz +

Z rp

⇢
= H = constant along streamlines

by continuity

For the basic flow 

But since perturbations depend on time, we must use 

@�

@t
+

1

2
U

2 + gz +
P

⇢
= H with U = r�

12



   
   

at the level z=ζ(x,y,t), that is the interface, we have: 
       

Just above: z > ζ :   φ1 = – ½ U x + φ’1   (= basic flow + perturbation of O(e)) 

Just below: z < ζ :   φ2 =   ½ U x +  φ’2.            

Z

X z=ζ(x,y,t)

– ½ U

+ ½ U

The perturbations 

+ Boundary conditions…. 

interface and flow at infinity —-> 
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1: Cinematic boundary condition imposes continuity of displacements 
at the interface we take the total derivative D/Dt= ∂t +u.!)  

I                                                                                                        z>ζ  
                     

II                                                                                                                 z<ζ 

 
                                                       

  

In linear approximation  (with z and primes of O(ε)) 

 I                    
  

II  

Interface conditions:  

We follow the Langrangian motion of a  particle near the interface

=
@⇣

@t
+

✓
�1

2
U + u1

◆

z=⇣

@⇣

@x
+ (w1)z=⇣

@⇣

@z

w1 =
@�0

1

@z
=

D⇣

Dt
=

@⇣

@t
+

✓
�1

2
U +

@�0
1

@x

◆

z=⇣

@⇣

@x
+

@�0
1

@z

@⇣

@z

w2 =
@�0

2

@z
=

D⇣

Dt
=

@⇣

@t
+

✓
1

2
U +

@�0
2

@x

◆

z=⇣

@⇣

@x
+

@�0
2

@z

@⇣

@z

=
@⇣

@t
+

✓
1

2
U + u2

◆

z=⇣

@⇣

@x
+ (w2)z=⇣

@⇣

@z

w1 =
@�0

1

@z
=

@⇣

@t
� 1

2
U
@⇣

@x

w2 =
@�0

2

@z
=

@⇣

@t
+

1

2
U
@⇣

@x

See Drazin and Reid page 16-22

14

   2: Dynamics boundary condition 
        Continuity of pressure across the vortex sheet 

  

    

    
    

      
          continuity of pressure 

          We obtain after linearisation : 

III     

 I,II,III are linear and can be solved if we represent the sheet displacement 
 

   In Bernoulli

with r�1 = �1

2
U +

@�0
1

@x
and r�2 =

1

2
U +

@�0
2

@x

@�i

@t
+

1

2
(r�i)

2 + gz +
Pi

⇢
= H

(P1 � P2)z=⇣ = 0

✓
@�2

@t
� @�1

@t

◆

z=0

=
1

2
U

✓
@�0

2

@x
+

@�0
1

@x

◆

z=0
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We can now solve the form of ζ*, φ*1, φ*2 with amplitudes A, B1, and  B2  
                
ζ = A e ikx + σt,                
 

φ’1= B1 e–kz e ikx + σt.         φ’2 = B2 ekz e ikx + σt 
     
Substitution in conditions  I  and II:           
  −kB1= (σ −  ½i k U) A 
  −kB2= (σ +  ½i k U) A 

and condition III:      i [σ(B2 − B1)z=0 +  ½ U (B2 k +B1k)z=0 ] e i(kx) =H 

              Consider  perturbations of the form   
 
                                    φ’1, φ’2 =F(z)   e i(kx) + σt and ζ = A e i(kx) + σt 

These are Fourier components or normal modes! What is F(z) ? 

Condition at infinity: the amplitude of the perturbations goes to zero!  

Since Δφ’i=0                φ’i= B1 e–kz + B2 e kz 

φ’i—›0 for z —› + ∞     thus for z>0     B2=0  
φ’i—›0 for z —› – ∞     thus for z<0     B1=0   

16



With Im(H)=0 we obtain: 
    
           σ =1/2 ik(U1+U2)  ± 1/2 k(U1– U2)    
             
           for U1= – U2 this reduces to  

                    σ=±kU      
                         

  - exponential growth for any velocity for σ>0 
  - growth rate depends on U

σ= kU

k0

17

σ(k) is the dispersion relation showing the variation of  
growth rate with k. For σ>0, k≠0 the sheet is unstable.  
Small wavelengths grow faster than short ones.  

All wave lengths are unstable no matter how small U is!.   
In reality often there is a cutoff for small wavelengths  
as we will see later.

σ=±kU

U0(z) 1/2U0

1/2U0

18
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Laminar basic flow ;

with layers 1 and 2 of different density

Viscous effets are considered negligible and the fluid is
incompressible.
This flow satisfies the Euler equations, continuity and hydrostatic
balance.

19
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Perturbations

The basic flow satisfies
The Euler equations, continuity and hydrostatic balance are ;

@~u

@t
+ u.r~u = �rp

⇢
� g r.~u = 0

dp

dz
= �⇢g

We suppose a perturbation of the form

p = P + p
0

⇢ = ⇢i + ⇢0i (i=1,2)

u1 = U0 + u
0
1

u2 = u
0
2

20
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The basic flow is given by

(u1,w1) = (U0, 0) (u2,w2) = (0, 0)
p(z) = P � ⇢1gz (z > 0) p(z) = P � ⇢2gz (z < 0)

Substitue the perturbations (neglect second order terms), so that
we obtain :

r.(Ū0 + ū
0
) = 0

@Ū0 + ū
0

@t
+ (Ū0 + ū

0
)
@(Ū0 + ū

0
)

@x
=

r(P + p
0)

⇢0 + ⇢0

=)

For the upper layer we obtain :
@u0i
@x

+
@w 0

i

@z
= 0 (i = 1, 2) (1)

@u
0
1

@t
+ U0

@u
0
1

@x
= � 1

⇢1

@p
0
1

@x

@u
0
2

@t
= � 1

⇢2

@p
0
2

@x
(2)

@w
0
1

@t
+ U0

@w
0
1

@x
= � 1

⇢1

@p
0
1

@z

@w
0
2

@t
= � 1

⇢2

@p
0
2

@z
(3)

Lower layer:
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We use perturbations of the form

(u0,w 0, p0, ⇣ 0) = (û, ŵ , p̂, ⇣̂)(z)e ikx�i!t

The fonction (û, ŵ , p̂, ⇣̂)(z) can be derived from eqs. (1,2 and 3).
With @(2)

@x + @(3)
@z = �r2

p
0
i and continuity one obtains r2

p
0
i = 0.

Using the expression for the perturbations above yields

@2
p
0
i

@z2 � k
2
p
0
i = 0,

with solutions p
0
i = Aie

kz + Bie
�kz .

Under the condition that perturbations disappear with distance
from the interface z ! ±1 p̂0 ! 0 we obtain

In layer 1 : (u0,w 0, p0, ⇣ 0)1 ⇠ e
�kz

e
i(kx�!t)

In layer 2 : (u0,w 0, p0, ⇣ 0)2 ⇠ e
kz
e
i(kx�!t)

22
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Note : The basic equations provide information about the phase of
the pressure with respect to the vertical motion. Substitution of the
perturbations in the latter equation shows (omitting primes )

�i(! � kU0)w1 = �k

⇢
p1

�i!w2 = �k

⇢
p2

(Vertical velocity is out phase with pressure and velocity, and
horizontal vorticity !y ⇡ �@w

@x = �ikw)

23

Interface conditions

I) Kinematic interface condition : particles remain at the interface.
Consider a particle at the interface ⇣(x , t), given by z = ⇣(x , t). By
continuity, the vertical motion of this particle should match the
velocity above and below the interface :

upper layer
D⇣

Dt
=

@⇣

@t
+ U0

@⇣

@x
= w1

lower layer
D⇣

Dt
=

@⇣

@t
= w2

II) Dynamic condition : continuity of forces across the interface.
Here, normal to the interface, pressure and gravity

p1 � p2 = (⇢1 � ⇢2)g⇣ for z = 0

!24

Lagrangian motion of a particle at the interface

force balance  normal to the interface

24
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We consider the motion in the vertical direction :

@⇣

@t
+ U0

@⇣

@x
= w1

@⇣

@t
= w2

p1 � p2 = (⇢1 � ⇢2)g⇣

@w
0
2

@t
= � 1

⇢2

@p
0
2

@z

@w
0
1

@t
+ U0

@w
0
1

@x
= � 1

⇢1

@p
0
1

@z

Substitute the perturbations and write in matrix form to determine
the dispersion relation.

25
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i(kU0 � !)⇣ �W1 = 0
�i! �W2 = 0

g(⇢2 � ⇢1)⇣ + P1 � P2 = 0

�i!W2 +
k

⇢2
P2 = 0

i(kU0 � !)W1 +
k

⇢1
P1 = 0

Elimination of W1,W2 and P1,P2 provides an equation in ⇣

ζ

26
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Solution

Sometimes it is easier to write this in the form of a matrix
0

BBBB@

i(kU0 � !) �1 0 0 0
�i! 0 �1 0 0

g(⇢2 � ⇢1) 0 0 1 �1
0 0 �i! 0 k/⇢2
0 i(kU0 � !) 0 k/⇢1 0

1

CCCCA

0

BBBB@

⇣
W1
W2
P1
P2

1

CCCCA
=

0

BBBB@

0
0
0
0
0

1

CCCCA

If Det=0 then nontrivial solution exist. If there are many equations
make use of a program like Python, Maple, Scylab, Matlab, or
Mathematica. This provides the dispersion relation !(k) :

(⇢1 + ⇢2)!
2 � 2kU0⇢1! + k

2
U

2
0⇢1 � kg(⇢2 � ⇢1) = 0.

27
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Interpretation 1

! =
kU0⇢1 ± i

q
k2U2

0⇢1⇢2 � kg(⇢2 � ⇢1)(⇢2 + ⇢1)

(⇢1 + ⇢2)

Remind that the form of the perturbation is ⇠ e
i(kx�!t)

I Water-Air interface : U0 = 0 et ⇢1 = 0

From the dispersion relation we obtain Im(!) = 0, and Re(!) :

! = ±
p

kg

!i = 0 ! e
!i t = 1 ! stable.

!r 6= 0 ! surface waves with phase velocity : c =
p

g/k .

28
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Interpretation 2

! =
kU0⇢1 ± i

q
k2U2

0⇢1⇢2 � kg(⇢2 � ⇢1)(⇢2 + ⇢1)

(⇢1 + ⇢2)

I Stable fluid interface, but without shear
i.e. U0 = 0 and ⇢1 > 0

The dispersion relation reduces to (only Re(!) 6= 0) :

! = ±

s
kg(⇢2 � ⇢1)

(⇢1 + ⇢2)

⇢1 < ⇢2 ! !i = 0 stable (⇢1 > ⇢2 instable)
The phase velocity is for interfacial gravity waves :

c = ±

s
g

k

(⇢2 � ⇢1)

(⇢1 + ⇢2)

=±√g’/k

29
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Interpretation 3

! =
kU0⇢1 ± i

q
k2U2

0⇢1⇢2 � kg(⇢2 � ⇢1)(⇢2 + ⇢1)

(⇢1 + ⇢2)

I Stable density interface with shear ⇢1 6= ⇢2, U0 6= 0, ⇢2 > ⇢1

There is stability when :

U
2
0  g

|k |⇢1⇢2
(⇢2

2 � ⇢2
1)

There is instability when ±!i 6= 0, i.e. for

4k
2
U

2
0
⇢1⇢2

⇢̄2 � 2kg
�⇢

⇢̄
⇡ 2k(2kU

2
0 � g

�⇢

⇢̄
) > 0

From this expression, derive instability for (a typical length scale L).

Ri =
�g

⇢0

d⇢
dz

(du
dz )

2
<

1
4
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EXERCISE 

Modify the dispersion relation for a surface tension T.  
(note that we only consider the force perpendicular  
to the interface and not the forces tangential to the interface) 

31

La condition de pression linéarisé à l’interface donne

p2 � p1 = (⇥2 � ⇥1)g� � T
d2�

dz2 pour z = 0

⇤ =
kU0⇥1 ± i

�
k2U2

0⇥1⇥2 � kg(⇥2 � ⇥1)(⇥2 + ⇥1)� k3T

(⇥1 + ⇥2)

!32

e�i!t

growth Re(�i!t) > 0

waves Im(�i!t) 6= 0

32
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∆ρ>0

U = 0.32 m/s  
T = 0.01 

k

∆ρ from -.2 to .2ω

=|–w| 
unstable

stable

33
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Re(–iω/U0)

perturbation 
~ei(kx– ωt)

Im(–iω/k)

capillary waves

k=2π/λ

k=2π/λ
internal  
waves

KH
5 10 15 20 25 30

-4

-2

2

4

Graphical representation
∆ρ>0, stable stratification

34
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comments

R=∆U/2U

36



R =  1 : lower stream at rest; increase in layer thickness proportional to R 
R<<1 : convection velocity >> growth ∆U
R > 1 : Counter flow mixing layers
R>>1 :  well defined KH billows at one position 
NOISE: mixing layer is a noise amplifier. 

See Godreche & Manneville 1998
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|R| << 1 weak shear ; simple linear relation between spatial and
temporal development of instability
|R| � 1 complex relation between spatial and temporal
development of instability.

Convective versus absolute instability

38
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The mixing layer

shear layer thickness �(x) = (U1+U2)
(dU/dy)max

� increases with x by diffusion ; vortex roll-up and vortex merging.
� becomes linear in x far downstream.

39
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Control numbers are : Re = (U1�U2)�(0)
⌫ and R

R=0 : no net shear (e.g. wake behind a flat plate)
� increases proportionally with shear intensity R (growth rate)
R«1 slow streamwise development
R ⇡ 1 or R � 1, roll-up and merging occur closer to x=0.

Strouhal number describing the characteristic flow oscillation,
the frequency of vortices of wave length

Stn =
fn�(0)

Ū
⇡ 0.03

fn is the natural vortex frequency in the wake

 = ∆U/2U 

40



• Vorticity layer instability 

• Viscosity:  diffusive effects !

41

@u0

@x
+

@w0

@z
= 0

@⇣

@t
+ (U + u0)

@⇣

@x
+ w0 @⇣

0

@z
= 0

Continuity

Vorticity from Euler equations: D⇣

Dt
=

@⇣

@t
+ U .r⇣ = 0

@u

@x
+

@w

@z
= 0

⇣ =
@w

@x
� @u

@z

Basic flow is U in x-direction, i.e. ( U,0 )
Perturbation (u’,w’) ––›    (u,w)=(U+u’, w’) ⇣ =

@w0

@x
� @u0

@z
� @U

@z

Z

X

Consider the instability of the vorticity layer at the interface (2D)

vorticity ζ layer at z=0

U

z=–h

z=h

42

Consider the instability of the vorticity layer at the interface (2D)

Linearise, neglect terms of second order
✓

@

@t
+ U

@

@x

◆✓
@w0

@x
� @u0

@z

◆
� @2U

@z2
w0 = 0

@u0

@x
+

@w0

@z
= 0

Consider a perturbation of the form         u’, w’ ––> (u’(z), w’(z)) eikx + iσt,  

iku0 +
@w0

@z
= 0

i(� + kU)

✓
ikw0 � @u0

@z

◆
� d2U

dz2
w0 = 0

Eliminate u’ to find THE ordinary differential equation in z to solve: 

(� + kU)

✓
@2w0

@z2
� k2w0

◆
� d2U

dz2
kw0 = 0

43

Since for z=0, (the region of interest), dU/dz is discontinuous we have to 
replace this differential with the difference ∆ across the two layers: 

(� + kU)�
@w0

@z
��

@U

@z
kw0 = 0

Move with the fluid, i.e.      u =    U/2  for z >  h 
              and      u = – U/2  for z < –h

For z>h and z<–h    d2U/dz2=0, we have (as before) 
@2w0

@z2
� k2w0 = 0

So that for we obtain for the different layers (as before): 
w0 = Ae�kz for z>h

w0 = Be�kz + Cekz for -h<z<h

Note: we have used
here w’ continuous 
across the interface

w0 = Dekz for z<-h

lim
�!0

Z �/2

��/2
(� + kU)

✓
@2w0

@z2
� k2w0

◆
� d2U

dz2
kw0 dz =

44



Continuity of w’  at z>h  and z<–h gives then

Ae�kh = Be�kh + Cekh

De�kh = Bekh + Ce�kh

(� + kU)�
@w0

@z
��

@U

@z
kw0 = 0and the relation gives with u= ± U/2

2(� + ku)Cekh � u

h
(Be�kh + Cekh) = 0

2(� � ku)Bekh +
u

h
(Bekh + Ce�kh) = 0

eliminate B and C gives then … 

�2 =
u2

4h2

⇥
(2kh� 1)2 � e�4kh

⇤

in the limit of kh –›0  σ2 = – k2u2   with u’, w’ ~ eikx + iσt, we note that iσ>0 ––› growth ! 
Same as the KH interface from above. 

For large values of kh shear layer thickness decreases the growth σ  
σ2 = + k2u2 so that σ = ± ku;   Since Im(σ)=0, stability

45

�2 =
u2

4h2

⇥
(2kh� 1)2 � e�4kh

⇤

iσ iσ

kh kh

kh–›0

h larger

cut off wave number

(same result as above)

46

Effect of viscosity on the instability of a shear layer

U

-U

D

-D
∂ρ=0; ν≠0

for Re=Ud/ν –> ∞  
instability for a band of wavelengths 0<2kd<1.3 
maximum growth at 2kd=0.8

What is the effect of viscosity on : 
- growth rate    ? 
- wavenumber  ?

kd   

wave length < 2D
cutoff by 

vortex layer thickness

47

viscous spreading of the shear layer

� = r⇥ U

U = U(z)
! � = (0,

⇥U(z)

⇥z
, 0)

U(z)

-U

D

-D
∂ρ=0; ν≠0

t=0 t=t1

x

z

0

ω(z)

D-D z

�(t = 0) = U/D

�(t = t1)

⇤⇥̄

⇤t
= �ū.r⇥̄ + ⇥̄.rū+ �r2⇥̄

ū ? �̄ ! �̄.rū = 0

uni directional flow U(z) ! ū.r�̄ = 0

vorticity diffusion equation

! ⇤⇥

⇤t
= �r2⇥ ⇥ = ⇥y

⇤⇥̄

⇤t
= r⇥ (ū⇥ ⇥̄) + �r2⇥̄ r⇥ (ū⇥ �̄) = ū(r.�̄)� �̄(r.ū) + (�̄.r)ū� (ū.r)�̄

48



 The viscous spreading of the shear layer

For a thin shear layer of thickness δ(y) and amplitude U

!(y, t = 0) = U�(y)

the solution of the diffusion equation is (see Batchelor 1969) 

!(y, t) =
U

2
p
⇡⌫t

e�y2/4⌫t

for a shear layer from y = –d to +d 

!(y, t) =
U

2d
[erf

✓
y + dp
4⌫t

◆
� erf

✓
y � dp
4⌫t

◆
] with 

!(y, t ! 0) = 0 but

Z +1

�1
!(y, t)dy = 2U

Determine the speed of the spreading  =>

!(y, t) =

Z +d

�d

!(y � y0, t)

2d
dy

the solution is 

@!

@t
= ⌫r2! here ! = !y

0

ω(z)

D-D z

�(t = 0) = U/D

�(t = t1)

2D
velocity jump across the layer is maintained 
for all times; vorticity decays by viscous damping.

erf(x) =
2p
⇡

Z x

0
e�y2

dy
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Thickness of the diffusing shear layer. 

�2 =
1

2u

Z +1

�1
y2!(y, t)dy

this is generally smaller than the real distribution (here 2D) so rescale: 

a =

✓
D

�

◆2

With so that at t=0 �2 = D2

�2 =
a

2u

Z +1

�1
y2!(y, t)dy

For a linear velocity profile a=3 (at t=0).  The integral then yields

�2 = D2 + �2 � =
3

2

p
4⌫t

The spreading of the vorticity distribution can be written then as

1

�

d�

dt
=

2�

D2 + �2
d�

dt

two cases. 1) weak viscous spreading δ/D<<1 an
                 2) thin layer with strong viscous effects, i.e. δ/D>>1

The standard deviation of the vorticity distribution at t=0 is
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If δ/D<<1 viscous effects are small at t=0, initial thickness is large

1

�

d�

dt
=

2�

D2 + �2
d�

dt
⇡ 2�

D2

d�

dt
⇡ 2⌫

D2

� ⇠
p
⌫t

=constant in time

If δ/D>>1 t=0, thin layer with strong viscous effects  (Δ≈δ)

1

�

d�

dt
=

2�

D2 + �2
d�

dt
⇡ 1

�

d�

dt
=

1

t

Now compare with the growth rate of the instability (Re= Real part)

Re(�i�) =
0.2U

�
which is the maximum growth rate for the inviscid case

this growth rate is affected by viscosity due to increase in thickness ∆, 
in case δ/D<<1 ∆=D and the growth rate, 0.2 U/D, is not affected.

In case Δ≈δ the spreading of the viscous layer is faster than the growth 
of the instability. 

Re(�i�) =
0.2U

D
⇡ 0.2U

�
=

0.2U

2
p
⌫t

1

�

d�

dt
=

1

t
and spreading of layer is 
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spreading rate of the vorticity

At critical time tc = 100 ν/U2   –>  δc= (νtc )½=10ν/U    

==> Critical time depend on Reynolds number UD/ν

1/t spreading rate

growth rate 0.2U/2(νt)½

tc critical time

growth rate 0.2U/2(νt)½

1/t 
spreading rate

tc critical
 time
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Critical time tc as a function of Reynolds number Re

with δc= (νtc )½=10ν/U one can write Re = UD/ν =D/( δc/10)  so that δ/D=10/Re 

For the growth rate we obtain: 

so that the non-dimensional growth is 

Re(�ı�) =
0.2Up
D2 + �2

=
U

D

0.2p
1 + �2/D2

2αD
Re=1

Re=∞

Villermaux 1998 Phys. of Fluids 
Betchov Szewczyk Phys. of Fluids 19630

KH

Re(�ı�)
U

D
=

0.2p
1 + (10/Re)2
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!55

inflection point
~ shear instability
(explained in next chapter)  
with Rayleigh and Fjortoft 
criteria

?
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!56

Shear layer with non-zero thickness

We take for simplicity x̄ ! (x , z)
pressure p = p(z)
Basic flow + perturbations : (U0 + u,w ,P0 + �p)

(Rayleigh 1869)

(ρ=constant)
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• write down adapted (2D) Euler equations  
and basic state  

• derive perturbation equations  

• define the form of the perturbation  

•  Substitute and obtain a PDE for w at  z=0
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!60
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!61

Continuity of w at ±d :

+d : A+e
�kd = A0e

�kd + B0e
+kd

�d : A�e
�kd = A0e

kd + B0e
�kd

gives with continuity of �(! + kU0)
@w
@z + kw

@U0

@z = 0 :

+d : 2(! + kU)B0e
kd � U

d
(A0e

�kd + B0e
kd ) = 0

�d : 2(! � kU)A0e
kd +

U

d
(A0e

kd + B0e
�kd ) = 0

Elimination of A0

B0
yields the dispersion relation for !

(Rayleigh 1896 vol11, p 393 and Drazin p 146 :

!2 =
U

2

4d2

h
(1 � 2kd)2 � e

�4kd
i

since ⇠ exp[i(kx + !t)] instability for i! > 0.
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Simplify the dispersion relation ↵ = 2kd and ⌦ = !/(2kU)
Since U1 = �U2 = �U, the phase velocity is c = !/k (in case
there is a mean velocity, it increases the phase velocity)

4↵2⌦2 = (1 � ↵)2 � e
�2↵

so that :

⌦2 = 1/4
⇥
(1 � ↵)2 � e

�2↵⇤

↵2

deduce Kelvin Helmholtz instability, i.e. d ! 0,

! = ikU
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Kelvin Helmholtz

-iωd 
U

α =2kd0 0.8 1.3

0.2

growth rate

1/2

Uρ

+d

-d

ρ(1+ε)

ρ(1-ε)

ρ
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!64

⌦2 = 1
4↵2

⇥
(1 � ↵)2 � e

�2↵⇤ and ⌦ = !/(2kU) and cr = !r/k

Large wave lengths (small k) do not see the thickness of the
interface and are unstable as KH
Short wave lengths are stabilized (large k), they are within the
shear layer.
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With density distributions I

(see Chandrasekhar 1961, p488-489)

z >d ⇢ = ⇢0(1 � ✏)

�d < z <d ⇢ = ⇢0

z < �d ⇢ = ⇢0(1 + ✏)

!65
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!66

the dispersion relation reads :

e
�2↵ =

h
1 � ↵(⌦+1)2

J+(⌦+1)+✏↵/2(⌦+1)2

i h
1 � ↵(⌦�1)2

J�(⌦�1)�✏↵/2(⌦�1)2

i

with ⌦ = !/(kU) and J the Richardson number :

J =
✏gk

2U2k
⇠ g�⇢/2d

⇢(dU/dz)2

For stability Re(⌦2) > 0. Unstable when Re(⌦2) < 0 i.e. when

k

1 + e�k < J + 1 <
k

1 � e�k
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!67

The Richardson number represents the ratio between the kinetic
energy of relative motion (@U

@z )
2 and the work that must be done to

overcome the restoring buoyancy force.

(see exercise on particle displacement of lecture 1 ; note that in this
exercise the Boussinesq approximation is used by assuming that
�⇢U is small). The results for instability is :

Ri(= J) =
�g

⇢̄

d⇢/dz

(dU/dz)2
=

buoyancy force
inertia force

<
1
4

Exercise :
Consider a basic flow with velocity profile U(z) and density
distribution ⇢(z) and neglect viscous effects. Derive the dispersion
relation (Taylor-Goldstein equation).

(J )
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!69

buoyancy suppresses the
shear instability !

wavelenghts in this area are too small
compared to the shear layer thickness

instability for k
1+e�k < J + 1 < k

1�e�k
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!70

Ri =1

Ri =0.45

Ri =0.15

70

Hölmböe instability

71

Hölmböe Instability

We take for simplicity again x̄ ⇥ (x , z)
Density interface at the level z = �d ; thickness ⇥ and shear layer
with total thickness h (Lawrence et al Phys. of Fluids 1991).

We first consider waves U = 0 and then instabilities for � = 0.

Hölmböe instability
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+

+

–
–

growth rate

wave speed

Mutually interacting waves:

w1 = i⇥�1 + ikU ! w1

kU
= i

c

U
�1 + i

w2 = i⇥�2 � ikU ! w2

kU
= i

c

U
�2 � i

instability when phase shift is λ/4 
damping for phase shift λ/2 

The shift is due to the Doppler effect  
on the oscillatory motion (cr) -> resonance!

free moving wavescoupled waves

✓
�/k

U

◆2

=
⇣ c

U

⌘2
=

(1� 2kd)2 � e�4kd

(2kd)2
Im. 

wave speed

Hölmböe instability : the mechanism 
consider Rayleigh’s 1896 shear flow for  Uz=0 =0
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Holmboe (1962), 
Baines and Mitsudera (1994)

two types of instability: 
1) stationary (i.e. non-oscillatory),  
   for p’~ exp{ik(x-ct)} imaginary part =0 (cr=0) 

2) travelling wave on the vorticity interface and a 
standing wave on the density interface. 

same mechanism 

The phase shift is due to the Doppler effect  
on the oscillatory motion
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Suppose step-profile, symmetric interface (� = 0) in
�

�2

�z2 � k2
⇥
⇥+

⇧
JN2

(U�c)2 � U��

(U�c)

⌃
⇥ = 0.

Then the dispersion relation reads

D(k ,⇤, J, a) = (⇤ � ak)4 + n2k2(⇤ � ak) + n0k4 = 0

where a = Umean/�U

n2 =
�J
sk

+
e�4sk � (2sk � 1)2

4k2 and n0 =
J
sk

+
(e�2sk + 2sk � 1)2

4k2

with s = sgn(kr ). The roots are then (Ortiz et al POF 2002) :

⇤(k) = ak ±
⇤
�n2k2 ±�1/2

2

⌅1/2

and � = (n2k2)2 � 4n0k4
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�(k) = ak ±
�
�n2k2 ±�1/2

2

⇥1/2

and � = (n2k2)2 � 4n0k4

advection with speed a = Um/�Uk results in Doppler shift . To
move with the local mean flow we should take ��

r = �r � ak where
� = �r + i�i ; �r representing the oscillatory part and �i the
growth.

� -k space

growth

oscillations

H

KH

left moving wave

right moving wave
stationnary

four neutral waves: 
2 propagate to the right 
(ω>0)2 to the left (ω<0)

Ortiz et  al, Phys of Fluids 2002

H
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J-k space

ka

Richardson
number

Hölmböe

KH

Rayleigh-Taylor

Lawrence et al POF 1991.

Ri ⇡ N2�z2

�U2

Ri =
g �⇢
⇢̄�z⇢

(�U)2

✓
�zu
�z⇢

◆2

Ri ⇡ N2�z2

�U2

Ri =
g �⇢
⇢̄�z⇢

�z2u

(�U)2
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Lawrence, Browand & Redekop 1991

see movies ...
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KH instability: vorticity layer rolls up at the interface

U0(z) 1/2U0

1/2U0

*
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Neil Balmforth 2010, Woodshole
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Roy Anubhab 2010, Woodshole
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Roy Anubhab 2010, Woodshole
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Measurements on KH instability

ρ1

ρ2
shear layer

 U

Ri ⇡ N2�z2

�U2
⇡ 1

4

Ri = J R =
g0 �zu
�U2

✓
�zu
�z⇢

◆
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Space time diagram (also Hövmöller diagram)

t

t

With Fourier analyses, frequency , amplitude
Mercier et al. Phys of Fluids Vol 20, 2008. 
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Fourier analyses
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 Gene Hart; via Flow Visualization)
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Continuous velocity profiles.

Exercise :
Consider a basic flow with velocity profile U(z) and density
distribution ⇢(z) and neglect viscous effects. Derive the dispersion
relation (Taylor-Goldstein equation).
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The Taylor-Goldstein equation

I Parallel flow U(z) [U + u
0, v 0,w 0] and stratification N.

I Euler Equations, viscosity ⌫ = 0
I Squires theorem (⌫ = 0) : 3D ! 2D, stronger growth for 2D

than 3D (see later)
I linearize, define a stream function u

0 = @ 
@z w

0 = �@ 
@x

I perturbation [⇢, p, ] = [⇢̂(z), p̂(z), �̂(z)]e[ik(x�ct)]

!

(U � c)

✓
@2

@z2 � k
2
◆
�+

⇢
N

2

(U � c)
� Uzz

�
� = 0
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(U � c)

✓
@2

@z2 � k
2
◆
�+

⇢
N

2

(U � c)
� Uzz

�
� = 0

Note that cph = c � U is the phase velocity within the moving
frame, and ⌦ = ck � Uk = ! � Uk the Doppler shifted or intrinsic
frequency.
It can be shown that for stability (see e.g. Drazin & Reid p327) :

Ri > 1/4

with Richardson number (also Ri) = N2

(@U/@z)2 , N the Brunt Väisälä
frequency)
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INTERMEZZO INTERNAL WAVES

91

!92

What happens when the fluid is unstably stratified ?
   i.e ρ1 > ρ2
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intermezzo internal waves Im(c) = 0
In case the velocity is zero U = 0 we obtain the relation for the
perturbation in vertical velocity w

0 (2D) :

w
0
zz +

⇢
N

2

c2 � k
2
�

w
0 = 0

with say kw
0 = 0 at z = 0 and H.

Internal waves may exist for N
2 6= 0.

Consider the simplest case : ⇢̄ = ⇢0exp(�z/H),
then N

2 = g/H = constant. Then

c
2 =

N
2

(k2 + n2⇡2/H2)

w = sin{n⇡(z/H)} for n = 1, 2...

represent a discrete spectrum of internal gravity waves (stable or
unstable depending on the sign of N

2).
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intermezzo internal waves
With perturbations of the form in the (x, z) plane :
w = ŵ exp[i(kx + mz � !t)] the dispersion relation for ! is
(only waves so that Re(!) 6= 0 and Im(!) = 0)

!2 =
N

2
k

2

k2 + m2

The phase and group velocities are

cpx =
!

k
= ± N

(k2 + m2)1/2
cpz =

!

m
= ± Nk/m

(k2 + m2)1/2

cgx =
@!

@k
= ± Nm

2

(k2 + m2)3/2
cgz =

@!

@m
= ⌥ Nmk

(k2 + m2)3/2

and so there is dispersion in x and z direction.
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intermezzo internal waves
For a downward propagating internal wave with upward propagating
wave energy we have :

~k = k ~ex � m~ez

~cg =
Nm

(k2 + m2)1/2
(m~ex + k ~ez)

we have ~cg .~k = Nm
(k2+m2)1/2

(km � mk) = 0
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CLASS EXERCISE

calculate the dispersion relation using Bernoulli

96



                                                                     
  U1, ρ1, z>0                                                                                                            

  U2,ρ2  z<0                                   
     
 (Incompressible flow) 

  

 The frame is moving with speed C (so that U1= –U2= U/2),  
  
 Perturbations φ’ on the basic flow, so that  

 The flow satisfies the Bernoulli equation 

  

   EXERCISE-  Instability of a vortex sheet

U1,2 =
(U1 + U2)

2
± U1 � U2

2
= C ± U

2

U1 =
@�1

@x

U2 =
@�2

@x

Z

X

@�i

@t
+

1

2
r�i

2 +
Pi

⇢i
+ gz = Ci

~U =

✓
Ui +

@�0
i

@x
,
@�0

i

@z

◆

δρ ≠ 0, ρ1 ≠ρ2,

97
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1) u=∇φ,   and  ∇.u= so that                          i.e   
 
Perturbations φ’––›0 for z ––› ±∞ 

2) Kinematic interface condition with w1=w2 and 

3) Dynamic interface condition, pressure (normal to the interface) is 
continuous, i.e.    P1=P2 

  This condition (at z=0) should be satisfied also by the basic flow:  

 For  

@2�i

@x2
+

@2�i

@z2
= 0

BOUNDARY CONDITIONS TO CALCULATE  THE DISPERSION RELATION

wi =
@�i

@z
=

D⇣

Dt
=

@⇣

@t
+

@�i

@x

@⇣

@x

(C1 �
@�1

@t
� 1

2
r�1

2 � gz)⇢1 = (C2 �
@�2

@t
� 1

2
r�2

2 � gz)⇢2 (at z = ⇣)

⇢1(C1 �
1

2
U2
1 ) = ⇢2(C2 �

1

2
U2
2 )

r�1 =0

r�2 =0

(note r� = Ui +
@�0

i

@x
)

⇢1 = ⇢2 and U1 = �U2 : C1 = C2

98

!99

PERTURBATIONS OF THE FORM

1)    
 
Solutions are of the form  
With the condition φ’––›0 for z ––› ±∞  we obtain  

2) Kinematic interface condition   

3) After linearisation of the Bernoulli equation we obtain (after subtraction of the 
basic state) 

 Substitute the expressions for ˆφ  and ˆζ above in 3)  
 to obtain the DISPERSION relation for σ(k, U, g∆ρ) 

@2�i

@x2
+

@2�i

@z2
= 0 gives � k2�̂i +

@2�̂i

@z2
= 0

�̂i = Aie
�kz +Bie

kz

�̂1 = B1e
kz and �̂2 = A2e

�kz

kA2 = �(� + ikU2)⇣ and kB1 = (� + ikU1)⇣

(note again: (Ui +
@�0

i

@x
)2 = (U2

i + 2Ui
@�0

i

@x
+

✓
@�0

@x

◆2

))

⇢1(� + ikU1�̂1 + g⇣̂) = ⇢2(� + ikU2�̂2 + g⇣̂)

⇢1[kg + (� + ikU1)
2] = ⇢2[kg � (� + ikU2)

2]

We discuss the different instabilities later in this course. 

(⇣ 0,�0
1,�

0
2) = (⇣̂, �̂1, �̂2)(z)e

ikx+�t
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