Kelvin Helmholtz instability
Holmboe instability
Rayleigh-Taylor instability

Methods: normal mode instability
Energy of particles
(heuristic method)

Kelvin Helmholtz in the Atmosphere
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Linear stability
analyses example
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normal mode method
(KH homogeneous fluid)

( INSTABILITY WHEN AEK > W)

( AEp<0 AEp>0)

stability of particles in a stratified fluid
Stratified shear flows and instability

/r z
A * U@)

Consider the exchange of a fluid parcel with one at another level in
a stably stratified fluid.*

7N ——————o——e—— p(zm), u( z+n)

z s p(2), u(z)

How much work W is being done, and how much energy is made
free ? (Consider the leading order density effects).

*Suppose u(z+n)=u +6u, and after exchange u=umean= (u+(u+6u))/2
Inertia effects are negligible on density, i.e. p=po (Boussinesq approximation)

KEy = [ + (u+ 6u)?] = D[2u? + 2udu + (3u)’]

After exchange of the two particles :

u+ (u+ou)

) = D12u + 2ubu + 1/2(3u)?

£0
KE, = —[2
2= S 12 2

AKE = KE, — KE, = —%(5u)2




The change in buoyancy is

AB = gp(z) —gp(z+n) = gp(z) — glp(z) + n% + ..

with p(z) = p(20) + 52(z — 20) + ... = p(z0) and the work on a

single particle at the level ¢z is thus

0z 2
B dp ~ dp(0z)
W—/O 8 =—8,""%5"

The work for the exchange is then : W = —g%(éz)?

There is instability when AKE > W, or

Po 2 _dp 2
P (0u)? > —g=L(02)

with
-E2 4
Ri=-—L% <=
d
(£)2 4

This is the Richardson criterion for Kelvin Helmholtz instability.

9
ity of
using Bernoulli
z
Uy py, 2>0
X
U,,p, z<0 I
&p =0, p; = p,, Incompressible flow.
_(hi+s) Ui Uy U
Uip = 3 + 2 =C=+ 2

The frame is moving with speed C (so that U= U/2)

The basic flow represents a vorticity sheet generated
by two parallel flows, of which the instability is driven by
inertial forces.

Linear stability analyses: perturbation of this basic flow —>

Define in each layer a velocity potential u; = grad @;, so that

_ 99 U—%

U= —— 2=
Oz Oz by continuity
with @4 above the interface Ag=0
and P, below the interface Ag,=0

Since we consider potential flows above and below the interface,
we may use Bernoulli for this potential flow

(substitute u=V¢ in the Euler equations, and note that u x w=0)

1 .
For the basic flow iUZ + g9z + / @ = H = constant along streamlines
J P

But since perturbations depend on time, we must use

1 . P
9 Lot P it U = v
ot " 2 P

(=0
(z<0)
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-%U
The perturbations z

Z=C(X’Y9t) —

+%U

at the level z=C(x,y,t), that is the interface, we have:
Justabove:z>T: ¢, =-%Ux+¢’; (=basic flow + perturbation of O(€))

Justbelow: z<CT: ¢,= %LUx+ ¢,

+ Boundary conditions....

interface and flow at infinity —->
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Interface conditions: See Drazin and Reid page 16-22

We follow the Langrangian motion of a particle near the interface

R e e

1: Cinematic boundary condition imposes continuity of displacements
at the interface we take the total derivative D/Dt= 0t +u.V)

o6 _ D¢ _ 0 (”maml) o, 0640

! e d 0z " 8z 02 z>¢
_ % o o
df -+ ( U+ LL1>Z () +( )z:( a
I w0y — 9¢y D¢ d< d% d¢2 ¢ 2<t
0z Dt 01‘ 84 0z

S 6< ¢
=5+ <§U + uz> . T (w2 )7:5£

In linear approximation (with z and primes of O(¢))
6y _ ¢ 1,0¢

wy =

| T 9z Ot 2 Ox
0y ¢ lUdC
0z Ot 2 Oz

" Wo =

2: Dynamics boundary condition
Continuity of pressure across the vortex sheet

0 i 1 P;
In Bernoulli i + 3 (V(ZS,L-)2 +gz+ ; —H

ot
. 1 o} .1 Odh
with V¢, = *§U+ o and Voo = §U+ o7

continuity of pressure (P — PQ)Z:C =0

We obtain after linearisation :

Oy O a¢h  0¢)
m (992 1 _ 2
<8t m)zzo U(aT "o ),

LILII are linear and can be solved if we represent the sheet displacement
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Consider perturbations of the form
@, @', =F(2) eil+otand = A eilx)+ot
These are Fourier components or normal modes! What is F(z) ?
Condition at infinity: the amplitude of the perturbations goes to zero!
Since A@’=0 ¢'=B;ekz+B,ek

¢’ —0forz— +~ thusforz>0 B2=0
¢’ —0forz—> — thusforz<0 B1=0

We can now solve the form of {*, ¢*1, ¢*2 with amplitudes A, B1, and B:
( = A e ikx+ot,
(P’1: B1 e-kz g ikx + ot. (p’Z: 82 ekz g ikx + ot
Substitution in conditions | and II:
-kB,= (0 - %k U)A
-kB,= (0 + % k U)A

and condition Ill: i [0(B, = B4),z0 + %2 U (Byk +B1k),- ] € i) =H

16




With Im(H)=0 we obtain:
o =1/ ik(U1+U2) % 1/2 k(U1— U2)
for Us= — U2 this reduces to
o=tkU

- exponential growth for any velocity for >0
- growth rate depends on U

o=kU
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o=xkU

a(k) is the dispersion relation showing the variation of
growth rate with k. For 6>0, k#0 the sheet is unstable.
Small wavelengths grow faster than short ones.

All wave lengths are unstable no matter how small U is!.
In reality often there is a cutoff for small wavelengths
as we will see later.

112U,

(Vertical velocity is out phase with pressure and velocity, and

. P ~ ow _
horizontal vorticity w, =~ —%% = —ikw)

Laminar basic flow ;
with layers 1 and 2 of different density

Viscous effets are considered negligible and the fluid is
incompressible.

This flow satisfies the Euler equations, continuity and hydrostatic
balance.
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Perturbations

The basic flow satisfies
The Euler equations, continuity and hydrostatic balance are;

ou . Vp S dp_
aJru.Vuf p g V.i=0 e g

We suppose a perturbation of the form

p=P+p
p=pi+p; (i=12)
u = Ug + ui

upy = ulz

20




The basic flow is given by
(u1, w1) = (U, 0) (12, w2) = (0,0)

pz)=P gz (z>0)  p(z) = P~ pagz (2<0)

Substitue the perturbations (neglect second order terms), so that

We use perturbations of the form

(W, p' ) = (0, W, p,{)(z)e™ ™t

The fonction (&, W, p, ()(z) can be derived from egs. (1,2 and 3).

With % + % = —V?2p! and continuity one obtains V2p. = 0.
Using the expression for the perturbations above yields
82p/

i 2 1 _
522 7kp;707

with solutions p} = A;ek? + Bje k2.
Under the condition that perturbations disappear with distance
from the interface z — +00  p/ — 0 we obtain

In layer 1: (o, w',p/, ()1 ~ e <2 elllx—wt)

In layer 2 : (u',w', p', ()2 ~ ekz gilkx—wt)

we obtain :
V.(Up + L_I/) =0
obo+d - 1 Oo+d) V(P+p)
9t +(Uo+1a) Ee R
=
For the upper layer we obtain : Lower layer:
ou:  ow!

i P—0 (i=12 1
Mo (i=1,2) 1)
duj du; 1 dp, du, 1 dp,

e} —_+% O _ 1 0p 5
ot +lo Ox p1 Ox ot p2 Ox (2)
ﬁwi awi 1 0p/1 8wé 1 8p/2
e N S R ¥ e _ Y% 3
ot TP T 0z ot moz O
21
Note :

The basic equations provide information about the phase of

the pressure with respect to the vertical motion. Substitution of the

22

Interface conditions

Lagrangian motion of a particle at the interface
’m\/

perturbations in the latter equation shows (omitting primes )

. k
I(;,d ka)Wl ;pl
. k
lwwy = ——po
P

(Vertical velocity is out phase with pressure and velocity, and
horizontal vorticity w, ~ —2% = —jkw)
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I) Kinematic interface condition : particles remain at the interface.
Consider a particle at the interface ((x, t), given by z = ((x, t). By
continuity, the vertical motion of this particle should match the
velocity above and below the interface :

D¢ o¢ o¢
upper layer Dt~ Bt UO& =w
D¢ 9¢

lower layer Dt =9t = "2

I1) Dynamic condition : continuity of forces across the interface.
Here, normal to the interface, pressure and gravity

p1—p2=(p1—p2)g¢ forz=0

/’/‘M

force balance normal to the interface

24




We consider the motion in the vertical direction :

aC

ot "

p1—p2 = (p1 — p2)&¢
dw, 1 dp,

ot oz

ow, dw, 1 9p;
ot Mo T ez

Substitute the perturbations and write in matrix form to determine
the dispersion relation.
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i(kUp — w)C — W4 =0
—iwé— Wr =0
glp2—p1)¢+P1—P2=0

k
—iwWo + —P>, =0
P2

k
f(ka — w)Wl + ZPI =0

Elimination of Wy, W5 and Py, P, provides an equation in ¢

Solution

Sometimes it is easier to write this in the form of a matrix

i(kUp — w) -1 0 0 0 ¢ 0
—iw 0 -1 0 0 Wi 0
g(p2 — ,01) 0 0 1 -1 W2 = 0
0 0 —iw 0 k/p2 P1 0

0 i(kUp—w) 0 k/pr O P, 0

If Det=0 then nontrivial solution exist. If there are many equations
make use of a program like Python, Maple, Scylab, Matlab, or
Mathematica. This provides the dispersion relation w(k) :

(p1+ p2)w® = 2kUpprw + k*Ugpr — kg(p2 — p1) = 0.

27
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Interpretation 1

kUop1 + f\/k2U§m/)2 — kg(p2 — p1)(p2 + p1)
(p1+ p2)

w =

Remind that the form of the perturbation is ~ e/(kx—«?)

» Water-Air interface : U=0etp; =0

From the dispersion relation we obtain Im(w) = 0, and Re(w) :

w=+vkg

w;j =0 — e¥t =1 — stable.

wy # 0 — surface waves with phase velocity : ¢ = /g/k.

28




Interpretation 2

kUop1 + f\/k2U3P1/)2 — kg(p2 — p1)(p2 + p1)
(p1+ p2)

w =

» Stable fluid interface, but without shear
i.e. Up=0and p;1 >0

The dispersion relation reduces to (only Re(w)# 0) :

o+ | Relp2=p1)
(p1 + p2)

p1 < p2 — w; = 0 stable (p1 > py instable)
The phase velocity is for interfacial gravity waves :

- =+Vg'/k
S %(,02 p1) g

(p1 + p2)

Interpretation 3

kUop1 £ i\/k2U§mpz — kg(p2 — p1)(p2 + p1)
w =
(p1+ p2)
» Stable density interface with shear p1 # p2, Uy # 0, p2 > p1

There is stability when :

29

2. & 22
0—|k|p1p2(2 1)
There is instability when +w; # 0, i.e. for
A A
MPURE2 _okg =P~ ok(2kU3 - g=L) > 0
p p p
From this expression, derive instability for (a typical length scale L).
dp
_ & @ _!
J2 (%)2 4
30

EXERCISE

Modify the dispersion relation for a surface tension T.
(note that we only consider the force perpendicular
to the interface and not the forces tangential to the interface)

31

B = S

La condition de pression linéarisé a l'interface donne

d?¢
p2—p1=(p2 — p1)g¢ — T pourz=0

kUop1 & i\/szgplpz — kg(p2 — p1)(p2 +p1) — K3T
(p1+ p2)

w =

efiwt

growth Re(—iwt) >0

waves I'm(—iwt) # 0
32
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kUopa + i\/ k2U3p1p2 — kg(p2 — p1)(p2 + p1) — K3T
w=

(p1+p2)
o Ap from -2 to .2
o stable
s =|-ol
unstable

G\JAQ'" ~ U
°
Ausbu_

* ] .
éu\\: rodas witubios
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H 2()2 _ _ — k3
Graphical representation  , _ kU"”li'\/k Yoz — ke(p2 = p1)(p2 + p1) — k5T

35
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Np>0, stable stratification (p1+ p2)
Re(=iew/Uy)
A
oL
perturbation 5 0 g 36 35 30
Nei(kxf wt) i KH k=2n'/i
Im(—iw/k)
k=2m/2
internal capillary waves 2
waves
34
comments

Effect of velocity ratio R = ?3 on vortex sheet peofile
U ‘ L

v R<] Ro=1 w [RP1 R=AU/2U

P——
AAAAN

v———r—
AA A AN

-

———— o
A

FYYTY

convection speed (Uy + Uy)/2
growth AU = (L -~ W)
The velocity ratio R is important to the nature of the instability :

For KH flow the interface conditions (pressure / continuity w)
impose the dispersion relation :

(c=U)?+(c-Wh)?=0

with solution c = ¢ = U+ &Y = U(1 +iR) and ¢; = gthe
propagation speed of the waves.
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'

(a) » <) ) ie)

Fg. 26, Typical mixamg layer velocity profiles as a fenction of velocity matio &
wha U, 2|5 (AMO0<R< ;B R=0 k) R=L A R>1L. ) R>!

R = 1: lower stream at rest; increase in layer thickness proportional to R
R<<1 : convection velocity >> growth AU

R > 1: Counter flow mixing layers

R>>1: well defined KH billows at one position

NOISE: mixing layer is a noise amplifier.

See Godreche & Manneville 1998
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|R| << 1 weak shear; simple linear relation between spatial and
temporal development of instability

|R| > 1 complex relation between spatial and temporal
development of instability.

:

Convective versus absolute instability

The mixing layer

shear layer thickness o(x) = %

4 increases with x by diffusion ; vortex roll-up and vortex merging.
0 becomes linear in x far downstream.

38
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Control numbers are : Re = w and R = AU/2U
R=0 : no net shear (e.g. wake behind a flat plate)

d increases proportionally with shear intensity R (growth rate)
R«1 slow streamwise development

R~ 1or R >1, roll-up and merging occur closer to x=0.
Strouhal number describing the characteristic flow oscillation,

the frequency of vortices of wave length

St, = f,,é_(O) ~ 0.03
U

f, is the natural vortex frequency in the wake

40




Vorticity layer instability

Viscosity: diffusive effects !

cownstder the 'sttabLLLtg of the \/or’cloi’cg layer at the interface (2D)

41

z
U
Zj_: X  vorticity ¢ layer at z=0
D y
Vorticity from Euler equations: Fﬁ = % +UNV(C=0 (= % - %
ou  Ow
Continuit i T,
ontinuity o 8z 0
Basic flow is U in x-direction, i.e. ( U,0) = ow' ou  oU
Perturbation (v, w) —  (u,w)=(U+u’, w) T o 9z Oz
a¢ N S
5t +(U+u)0x+w o =0
o' ouw'
R
42

Consider the instability of the vorticity layer at the interface (2b)

Linearise, neglect terms of second order

0 0 ow' o 0%U
(a“’a) (ax ‘E) "o =0
o’ | o'
ox 0z

=0

Consider a perturbation of the form w, w—> (u'z), wiz)) ethx + iot,

i 2

i(o +kU) <Lkw/ - %—i) — Zzgw' =0
N

iku' + 381; =0

Eliminate u’to find THE ordinary differential equation in z to solve:

Puw' d*U
(o +kU) ( 9.2 k w') - Wk’u/ =0

Since for z=0, (the region of interest), dU/dz is discontinuous we have to
replace this differential with the difference A across the two layers:

b 0w’ d*U
. _ 1.2 JY) ’ y =
Ahglo /—A/Z(U +kU) ( 5.2 k*w ) 72 kw' dz

ow'’ oU Note: we have used
—A——kw' =0 here w’continuous

kU)A
(o +kU) 0z 0z
across the interface

Move with the fluid, i.e. u= U/2 forz> h
and u=-U/2 forz<-h

For z>h and z<-h  d2U/dz2=0, we have (as before)

43

P’ 2
92 kw' =0
So that for we obtain for the different layers (as before):
w' = Ae™F* for z>h
w' = Be " 4 Cet* for -h<z<h
w' = Dek* for z<-h
44




Continuity of w’ at z>h and z<-h gives then
Ae*kh — Be*kh + Cekh
De*k‘h — Be}ch + Cefkh

!
and the relation (o + kU)Aaai — Ag—Ukw' =0 gives with u=+ U/
z z

2(c 4 ku)Ce*t — %(Befkh’ + Cefhy =0

2(0 — ku)Be*" + %(Bekh +Ce My =0

eliminate B and C gives then ...
s W

= oz [2kh = 1) — e ]

g

in the limit of k2 —0 02 = — k2u?2 withu’, w’ ~ eikx +iot, we note that ic>0 —) growth !
Same as the KH interface from above.

For large values of k% shear layer thickness decreases the growth o
0?2 = + k?u?so that 6 = + ku;  Since Im(0)=0, stability

45

kh—0

Jeh kh
> hlarger

cut off wave number

(same result as above)

Effect of viscosity on the instability of a shear layer

for Re=Ud/v —> o
U instability for a band of wavelengths 0<2kd<1.3
maximum growth at 2kd=0.8

o v

0p=0; v=0 | € !
B ieiieeied it / wave length < 2D
G ¥ p—— cutoff by
-U .l.} | vortex layer thickness

What is the effect of viscosity on :
- growth rate  ?
- wavenumber ?

46
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viscous spreading of the shear layer

z
t=t
"""""" 0(2)
wit =0)=U/D
X .
0p=0; v#0 w(t=1t1)
Do D 0 D z
)y =V xU ou
¢ } = 0,29C) )
U=U(2) 0z
%:Vx(ﬂxwwruv?@
% = —a.Vo+ @.Vi + vV3ao

ulw—wVu=0

uni directional flow U(z) — @.Vw =0
vorticity diffusion equation

48




The viscous spreading of the shear layer

3} :
a—j = V2w here w = w,

For a thin shear layer of thickness d(y) and amplitude U

w(y,t = 0) = Us(y)

the solution of the diffusion equation is (see Batchelor 1969)

Wl ) = eV

2v/ vt +d wly — o', t)
for a shear layer from y = —d to +d w(y,t) = /_d 2% dy
o U. (y+d y— d) 2 [T
the solution is w(y,t) = —[er, —erf| == ith erflx) = — Y dy
(y:1) Zd[ f(\/ﬂ) f(\/m 1 with erf(z) \/77/0 e Y
+o0
() w(y,t — 0) =0 but Km w(y,t)dy = 2U
2D wt=0)=U/D

) - velocity jump across the layer is maintained

L w(t=1ty) for all times; vorticity decays by viscous damping.
-D 0 D 4

Determine the speed of the spreading =>

Thickness of the diffusing shear layer.

The standard deviation of the vorticity distribution at t=0 is
o L [T,

= 1)d
) Y w(y, t)dy

this is generally smaller than the real distribution (here 2D) so rescale:
o [T
A= /m yPw(y, t)dy

D\ 2
With a= (;) sothatatt=0 A’ = D?
For a linear velocity profile a=3 (at t=0). The integral then yields

. 3
A2 = D? 4§52 6:5\/4%
The spreading of the vorticity distribution can be written then as

1dA % &
Adt  D24+62dt

two cases. |) weak viscous spreading 8/D<<I an
2) thin layer with strong viscous effects, i.e. 8/D>>|

49
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If 8/D<<I viscous effects are small at t=0, initial thickness is large

LdA %5 db 2 db
Adt  D2+82dt  D?dt D?
8~ Vit

If 8/D>>1 t=0, thin layer with strong viscous effects (A=d)

1dA 25 d5 _1ds 1

Adt D24 é%dt  sdt ¢

=constant in time

Now compare with the growth rate of the instability (Re= Real part)

Re(—io) = T which is the maximum growth rate for the inviscid case
this growth rate is affected by viscosity due to increase in thickness A,

in case 8/D<<| A=D and the growth rate, 0.2 U/D, is not affected.

In case A= the spreading of the viscous layer is faster than the growth
of the instability.

02U 020 02U _ o 1ds 1
Re(—io) = RN and spreading of layer is Sd 1

spreading rate of the vorticity
e AT

I/t D~
spreading rate .

¥l

\ “growth rate 0'2U/2(Vt)'/2

tc critical 1
time ¥

At critical time z. = 100 v/U2 —> 3= (vt. )%=10v/U

==> Critical time depend on Reynolds number UD/v
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Ciritical time t. as a function of Reynolds number Re

with 8= (vtc )”=10v/U one can write Re = UD/v =D/(8./10) so that 8/D=10/Re

For the growth rate we obtain: Re(—10)

0.2U

U

so that the non-dimensional growth is

Re(=10) = beeereeecis £

Re(ﬂa)g =

D~ \/i+(10/Re)?

T VDrt2 D \/1+0%/D?

0.2

Villermaux 1998 Phys. of Fluids

20D

Betchov Szewczyk Phys. of Fluids 1963
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inflection point

~ shear instability
(explained in next chapter)
with Rayleigh and Fjortoft
criteria

kd. ' prece wite - Ownear '

v¢(0¢‘l "!.' PW(J“

z 3
t
.
LiL ﬁ!/—!f‘—
_— ' —y
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Shear layer with non-zero thickness

(Rayleigh 1869)

uz

uz-u)lza + U

uj

We take for simplicity X — (x, z)
pressure p = p(z)

*u

(p=constant)

Basic flow + perturbations : (Up + u, w, Py + dp)

56




+ write down adapted (2D) Euler equations
and basic state

« derive perturbation equations
+ define the form of the perturbation

» Substitute and obtain a PDE for w at z=0

substitute in the Euler equations :

du ,0u_ Uy _10bp

g T Pax Wz T p Ox
8w+U°0_w=_}é)fo~~:~6p_/

at dx p Oz
a_u..’.flvo
x Oz

Substitute perturbations : v(x, z, t) = ¥(z)exp{i(kx + wt)}
alp ik

57

i(w+ka)u+ WW = —;6‘7
10
] k = ———f
i(w + kUp)w 00z P
- 10w
Y=k oz
58

boundary conditions
Reduce variables to obtain a partial differential equation in 2
(eliminate u with i and iii)
aly ik?
oz " p 5p (4)
eliminate §p to obtain a single equation in w

ow
-(w + ka)Bz + kw

i ow U, 2
2 -(w+kuo)ox +kw8:] = k*(w + klp)w (5)
The kinematic boundary condition imposes that w is continuous
across the interface : € \g
Iim/ wdz=0
e—0 J_

Applying this to equation (5) yields :

Uy
2z = (6)

04/0z is equal to the pressure gradient; (6) implies dp1 — dp> =0
so that also the dynamic boundary condition is satisfied.

ow
—(w+ kUO)E + kw

Showthninn;iomme"jf=0wehve%;—k’w=0..
In the three regions we have :

z>d w=Ae ™
~d<zr<d w = Age ™ & Bye™
z< ~d we= A_eM

with the constants A, A, A and B to determine with the
continuity accros the interface, ie

1) Kinematic boundary condition : continuty of w at +d

2) Continuity of pressure gives

My
—(;—0
(suppose Uy = U and Uy = ~ U and the relatica found with 1) )

ow
—(w + “b)a—z + kw

59
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Continuity of w at +d :

+d : A_;,_efkd = Aoefkd + Boe+kd

—d:A_e k= Age* + Bye K

gives with continuity of —(w + ka)%—‘;’ + kwaaiz0 =

v
+d : 2(w + kU)Bgekd — U(Aoe*kd + Bpekdy =0
V)
—d : 2(w — kU)Agekd + E(Aoekd + Bpe ¥ =0
Elimination of % yields the dispersion relation for w
(Rayleigh 1896 vol11, p 393 and Drazin p 146 :

2 U72 (
442
since ~ exp[i(kx 4+ wt)] instability for jiw > 0.

w 1 — 2kd)? — ef4kd}

Simplify the dispersion relation o = 2kd and Q = w/(2kU)
Since U; = —U, = —U, the phase velocity is ¢ = w/k (in case
there is a mean velocity, it increases the phase velocity)

402’ =(1—-a)®> —e 2
so that :
[(1 _ a)2 _ 6720‘]

2
Q2 =1/4 .

a
deduce Kelvin Helmholtz instability, i.e. d — 0,

w = ikU
U2 B
W? = 5 [(1-2kd)? — e “d]
62

61
Kelvin Helmholtz
growth rate p U
-iwd
+
v p(1-e) d
d
P
112
0 08 13 q =2kd o(1e)

63

0?2 = # [(1—a)?—e2] and Q = w/(2kV) and ¢ = w,/k

Large wave lengths (small k) do not see the thickness of the
interface and are unstable as KH

Short wave lengths are stabilized (large k), they are within the
shear layer.

63
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With density distributions |
(see Chandrasekhar 1961, p488-489)

p U
14 +d ‘
: -d
p
z>d p=po(l—e)
—d<z<d P =po
z< —d p=po(l+e)
65
65

the dispersion relation reads :

a(Q+1)? i| |:1 . a(R-1)?
J+(Q+1)+ea/2(241)? J—(2—1)—ca/2(2-1)2

with Q = w/(kU) and J the Richardson number :

e 2 — |1 —

S egk glAp/2d
202k p(dU/dz)?

For stability Re(Q22) > 0. Unstable when Re(Q2) < 0 i.e. when

The Richardso‘?’r)umber represents the ratio between the kinetic
energy of relative motion (‘?d—g)z and the work that must be done to

overcome the restoring buoyancy force.

(see exercise on particle displacement of lecture 1; note that in this
exercise the Boussinesq approximation is used by assuming that
ApU is small). The results for instability is :

—g dp/dz  buoyancy force -

' 1
R/(— J) - 7 (dU/dz)2 " inertia force 4

Exercise :

Consider a basic flow with velocity profile U(z) and density
distribution p(z) and neglect viscous effects. Derive the dispersion
relation (Taylor-Goldstein equation).
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2 L shear instability —

buoyancy suppresses the

Stahie

wavelenghts in this area are too small
compared to the shear layer thickness

Ri =1

Ri =0.45

Ri =0.15

| | J '
= 0.5 1.0 1.3 2.0
a “/1
instability for H% <J+1l< ﬁ
69
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Holmboe instability

Holmbde Instability

Holmbée instability

-——_——

We take for simplicity again x — (x, z)
Density interface at the level z = —d ; thickness 1 and shear layer
with total thickness h (Lawrence et al Phys. of Fluids 1991).

We first consider waves U = 0 and then instabilities for ¢ = 0.
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Ho6lmboe instability : the mechanism
consider Rayleigh’s 1896 shear flow for U.-9=0

Mutually interacting waves: ! tn

. . w . C . ‘ <
wl:zw(nwkUaﬁ:zﬁ(l +i /;} ::?- b""“/“*\‘)‘- b

iy — kU "2 — S ["", T

Wy = 1W(2 (3 kU = ZU 2 2 | 1

2 ! % il
w/k\" (£>2 (1 —2kd)? — e~k

v) \u/ (2kd)> -

instability when phase shift is A/4
damping for phase shift A/2 {
-~ growth rate V,‘/ i

The shift is due to the Doppler effect
on the oscillatory motion (cr) -> resonance!

coupled waves “ free moving waves

73

two types of instability:
1) stationary (i.e. non-oscillatory),
for p’~ exp{ik(x-ct)} imaginary part =0 (c;=0) = - .

2) travelling wave on the vorticity interface and a 5
standing wave on the density interface. i ' . '

(=) (c—(Uy—cy))+cic,e ™ =0

¢} =g'/2k and ¢, = U,/2kd. |

same mechanism

The phase shift is due to the Doppler effect
on the oscillatory motion

| -

Holmboe (1962),
Baines and Mitsudera (1994)

Suppose step-profile, symmetric interface (¢ = 0) in ‘

(68722 - k2) ¢+ {(UJLVE)2 - (UU—Hc) } ¢ =0.

Then the dispersion relation reads
D(k,w,J,a) = (w — ak)* + mk?*(w — ak) 4+ nok* =0
where a = Upean/AU

y — —J n e 4k — (2sk — 1)?
27 sk 4k2

J (e72%k + 25k — 1)?
sk 4k?

with s = sgn(k,). The roots are then (Ortiz et al POF 2002) :

and ng =

RN R

w(k) = ak £ 5

and A = (n2k2)2 — Angk*

74
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1/2

22 1/2
kAT and A = (mk?)? — 4nok*

w(k) = ak + 5

advection with speed a = U,,/ AUk results in Doppler shift . To
move with the local mean flow we should take w? = w, — ak where
w = W, + iw;; w, representing the oscillatory part and w; the
growth.

w -k space N
S .
[y
.-t KH
rowth . S
growt B i
SR
N -

left moving wave « , four neutral waves:
’ .
) 2 propagate to the right
. (©>0)2 to the left (0<0)
oscillations right moving wave < .
1 Ortiz et al, Phys of Fluids 2002
- . ™ TR -
Ak L i A
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Richardson

number & %

B
Ri~ A2 o)
A ¢
Ri— 97as, Az ,}’“/, e — . ———
- 2 O T
@y s e/ ./‘,/'k‘aylglgb- ylor
I'f/ : /' e
Y " ..r"""‘— 'E) e

ka

C, Lawrence et al POF 1991.

Lawrence, Browand & Redekop 1991

see movies ...
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KH instability: vorticity layer rolls up at the interface

— U 12y,
<INt

e 12U,

Neil Balmforth 2010, Woodshole
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Roy Anubhab 2010, Woodshole

B —
__§ ]

|
|

L
-

Roy Anubhab 2010, Woodshole
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Measurements on KH instability

—{ shear layer
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Space time diagram (also Hévmaoller diagram)

—_— t
With Fourier analyses, frequency , amplitude
Mercier et al. Phys of Fluids Vol 20, 2008.

Fourier analyses
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Continuous velocity profiles.

Exercise :

Consider a basic flow with velocity profile U(z) and density
distribution p(z) and neglect viscous effects. Derive the dispersion
relation (Taylor-Goldstein equation).
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The Taylor-Goldstein equation

v

\4

>

v

v

Parallel flow U(z) [U + v/, v/, w'] and stratification N.
Euler Equations, viscosity v = 0

Squires theorem (v = 0) : 3D — 2D, stronger growth for 2D
than 3D (see later)
o I _ _0Y

linearize, define a stream function v/ = &£ w/ = —
0z Ox

perturbation [p, p, ¥] = [p(2), p(2), dl\)(z)]e[ik(x—ct)]

*>

-9 (s~ ) o+ { gogg ~ U6 =0

Note that c,, = ¢ — U is the phase velocity within the moving
frame, and Q = ck — Uk = w — Uk the Doppler shifted or intrinsic
frequency.

It can be shown that for stability (see e.g. Drazin & Reid p327) :

Ri>1/4

with Richardson number (also Ri) = %, N the Brunt Vaisil3
frequency)
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INTERMEZZO INTERNAL WAVES

Cix.)

What happens when the fluid is unstably stratified ?
i.e p1>p2

92

91
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In case the velocity is zero U = 0 we obtain the relation for the
perturbation in vertical velocity w’ (2D) :

N2
e (s
c
with say kw/ =0 at z=10and H.

Internal waves may exist for N2 = 0.
Consider the simplest case : p = poexp(—z/H),
then N2 = g/H = constant. Then

2 _ N?
(K2 + n272/H?)
w = sin{nm(z/H)} for n=1,2...

C

represent a discrete spectrum of internal gravity waves (stable or
unstable depending on the sign of N?).

93

With perturbations of the form in the (x, z) plane :
w = Wexp[i(kx + mz — wt)] the dispersion relation for w is
(only waves so that Re(w) # 0 and Im(w) = 0)

,  N2K2

v :k2+m2

The phase and group velocities are

oW N S Nk/m
Pk (k2 + m2)1/2 P m (k2 + m?)1/2
o 0w _ 4 Nm? o — Ow _ Nmk
8x k (k2 + m2)3/2 82 om (k2 + m2)3/2

and so there is dispersion in x and z direction.

For a downward propagating internal wave with upward propagating
wave energy we have :

k = ké, — mé,
R Nm

& = m(me} + kéz)

we have Eg.E = M%(km —mk)=0

i
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CLASS EXERCISE
Z
" .:—: Jl,'.'l
U, p,, 220 — (0 e
* — - x
Usp, 2<0 —— U, = 222
o : 7 0z
(Incompressible flow)

calculate the dispersion relation using Bernoulli
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EXERCISE- Instability of a vortex sheet

4
¢
U, py, 220 — Ur="72
X
Uypy z<0 E— Uz = %0
Ox
(Incompressible flow)
dp = 0, p; =Py,
U, + U: U, - U: U
U1,2:( 1; 2):|: 12 zzcj:5

The frame is moving with speed C (so that U= —U>= U/2),
9¢; 0¢;
Oz’ 0z

Perturbations ¢’ on the basic flow, so that U= <Uz +

The flow satisfies the Bernoulli equation

99i
ot

1 P,
+oVol+ gz =C
2 Pi

97

BOUNDARY CONDITIONS TO CALCULATE THE DISPERSION RELATION

1) u=V¢, and V.u=so that Vor=0 o 06, i _ 0
Vo =0 or2 022

Perturbations ¢’—0 for z— +w0

: P I : _ 0¢i _ D¢ 0¢ | 0¢i ¢
2) Kinematic interface condition with w;=w>and ;= == =
) Wi YT, "Dt ot oxox
3) Dynamic interface condition, pressure (normal to the interface) is
continuous, i.e. P1=P
_90 1gue 0,902 _1g,e_ at 2 —
(Ch 5 3V gz)p1 = (C2 5 3V gz)p2 (at z = ()
This condition (at z=0) should be satisfied also by the basic flow:
1 1 0P,
p1(C1 — ZU}) = pa(Co — ZU2) (note Vo =U; + (?C}')
2 2 Jdx
For p1=pand Uy = —-Us: C; =Y 98

PERTURBATIONS OF THE FORM (¢, 04, h) = (é </;1» zzﬁ})(z)ei'k“’*""

1) %*¢; %9, 2,
Ox2 022 022
Solutions are of the form & = Aie™"* + Bjet?
With the condition ¢’—>0 for z—> +oo we obtain b1 = Bie** and ¢y = Age ™+

=0 gives — kQ(Z;L + =0

2) Kinematic interface condition kAy = —(o + ikUs)C and kBy = (o + ikUy)C

3) After linearisation of the Bernoulli equation we obtain (after subtraction of the
basic state) 9¢ )2 = (U2 + 2U; O} (()()’)2;)

(note again: (U; + 9z O 9z
pi(o +ikUig1 + 90) = pa(o + ikUsds + 90)

Substitute the expressions for "¢ and " above in 3)
to obtain the DISPERSION relation for o(k, U, gAp)
pilkg + (o + ikU1)?) = polkg — (0 + ikUs)?]
99

We discuss the different instabilities later in this course.
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