The mixing layer

shear layer thickness d(x) = % ~x

¢ increases with x by diffusion ; vortex roll-up and vortex merging.

& becomes linear in x far downstream.

mixing layer: continuous profile with y

y y ty ty ty
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Fig. 2.6. Typical mixing layer velocity profiles as a function of velocity ratio R
when Uy > [Uz]: (a) 0< R<1;(b) R=0;(c) R=1;(d) R>1;(e) R> 1.

R dilatation parameter in X direction (growth rate versus convection velocity)

R = 1:lower stream at rest; increase in layer thickness proportional to R
R<<1 : convection velocity >> growth AU

R > 1: Counter flow mixing layers

R>>1: well defined KH billows at one position

NOISE: mixing layer is a noise amplifier.
Godreche & Manneville 1998




|R| << 1 weak shear; simple linear relation between spatial and
temporal development of instability

|R| > 1 complex relation between spatial and temporal
development of instability.
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Convective versus absolute instability

Control numbers are :

(L-la) o _ (U= U)i(0)
(d?U/dy?)max - v
U=, AU
Up+U, 20
R=0 : no net shear (e.g. wake behind a flat plate)

5=

and velocity ratio R =

J increases proportionally with shear intensity R (growth rate)
R«1 slow streamwise development
R~ 1or R>1, roll-up and merging occur closer to x=0.
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Strouhal number describing the characteristic frequency of vortices

St, = f,,é_(O) ~ 0.03
U

f, is the natural vortex frequency in the wake

EXERCISE

Laminar basic flow:
with layers 1 and 2 of different density

Cx.t)

z=-h W=0

Viscous effets are considered negligible and the fluid is
incompressible.

This flow satisfies the Euler equations, continuity and hydrostatic
balance.




STEP WISE VELOCITY PROFILE

Shear layer with non-zero thickness (Rayleigh 1869)

YA uz

H%—UA)Z/M +u

>Uu

uj

We take for simplicity x — (x, z)
pressure p = p(z)
Basic flow + perturbations : (Uy + u, w, Py + dp)

(p=constant)

« write down adapted (2D) Euler equations
and basic state

« derive perturbation equations
+ define the form of the perturbation

+ Substitute and obtain a PDE for w at z=0

substitute in the Euler equations :

@+an—z+W%=—1@

ot 0 0z p Ox
ow ow _ 10+ dp
ot + o ox  p Oz /6/
@+8_W =0
ox 0z

Substitute perturbations : v(x, z, t) = ¥(z)exp{i(kx + wt)}

i(w+ kUo)u + w% = —%6p
10
i(w+ kUg)w = —= —6
i(w + kUp)w oz p
i Ow

“Tkoz




boundary conditions
Reduce variables to obtain a partial differential equation in z
(eliminate u with i and iii)

oo _ _ik?
- kUp)—— + kw ——9 4
-+ kU)o + w2 =~ 5p @)
eliminate dp to obtain a smgle equation in w
0 U,
52 —(w+ ka) + kw 37()] = k*(w + kUp)w (5)
The kinematic boundary condition imposes that w is continuous
across the interface : € x
lim / wdz=0 -
€= —€

Applying this to equation (5) yields :
ow an

JMY@Z is equal to the pressure gradient; (6) implies dp1 — dp2 =0
so that also the dynamic boundary condition is satisfied.

Show that in regions where ‘96U° =0 we have — Kw
In the three regions we have :

z>d w=A,ek
—d<z<d w = Age " + Byek®
z< —d w=A_ek

with the constants A_, Ay, Ap and By to determine with the
continuity accros the interface, i.e.

1) Kinematic boundary condition : continuity of w at +d

2) Continuity of pressure gives :

ol
0z

(suppose U, = U and U; = —U and the relation found with 1))

—(u}—i—ka)8 + kw =0

Continuity of w at +d :

+d: Ape k= Age™+ 4 Byetkd
—d:A_e k= Aoekd + Boeikd

gives with continuity of —(w + kUp) %% + kwau0 =

+d : 2(w + kU)Bped — %(Aoe_kd + Boekd) =0

—d : 2(w — kU)Ager? + %(Aoekd + Boe k) =0

Elimination of ylelds the dispersion relation for w
(Rayleigh 1896 vo|11, p 393 and Drazin p 146 :

2. U
4d?
since ~ exp[i(kx + wt)] instability for iw > 0.

w

(1~ 2kd)? — 7]

Simplify the dispersion relation o« = 2kd and Q = w/(2kU)
Since Uy = —U> = —U, the phase velocity is ¢ = w/k (in case
there is a mean velocity, it increases the phase velocity)

40%Q? = (1 — ) — e
so that :

2 _ 1/4 [(]‘ — a)Z — e72a]

deduce Kelvin Helmholtz instability, i.e. d — 0,

w = kU

. U2

YT a2

[(1 - 2kd)? — e




Kelvin Helmholtz
growth rate p U
-iwd
+d
v p(1-2) by
0.2
-d
P
1/2
0 0.8 13 q =2kd p(1+€)
Large wave lengths (small k) do not see the thickness of the
interface and are unstable as KH
Short wave lengths are stabilized (large k), they are within the
shear layer.
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Consider the instability of the vorticity layer at the interface (2D)
z
U
z=h ..
o X vorticity ¢ layer at z=0
D Is] 14 19}
Vorticity from Euler equations: —C = —C +U.V(=0 (= quw _ v
L. . . Dt 0ot dr 0z
Vorticity layer instability
- Ou  Ow
Continuity % + 9 = 0
Basic flow is U in x-direction, i.e. ( U,0) = ow’ B E)L/ B 8£
Perturbation (u,w’) —  (u,w)=(U+u’, w) T Oz 0z Jz
% IS S
En +(U+u)ax+u, Bp =0
o ow
oz 0z




cownsider the 'sttubi,L'Ltg of the \/ov‘tioitg layer at the tnterface (2D)

Linearise, neglect terms of second order

0 0 ow' o o’U ,
(a“ﬁ) (a _E>_ g2 =0

o’ N ow' 0
ox 0z
Consider a perturbation of the form w, w—> (ulz), w(z)) ek +iot,
o’ d*U

i(o + kU) (ik’w’ - ;z > ~ 2 w' =0
ow'’

iy’ =0
ku + 92

Eliminate u’to find THE ordinary differential equation in z to solve:

8w’ 5 v, ,
(a+kU)<8z2 -k w) 7wkw =0

Since for z=0, (the region of interest), dU/dz is discontinuous we have to
replace this differential with the difference A across the two layers:

A/ 0%’ d*U
. 2, —
glglo /7A/2(17+ kU) ( 92 k u;') - ﬁkw' dz =

ow'’ oU Note: we have used
(0 +kU)AZ— — A——kw' =0 here w’ continuous

0z 0z h
across the interface

Move with the fluid, i.e. u= U/2 forz> h
and u=-U/2 forz<-h

For z>h and z<-h  d2U/dz2=0, we have (as before)

Continuity of w’ at z>h and z<-h gives then
A(,fkh — Bpfkh i C(’kh
De—kh — B@kh + Ce—kh

o' oUu
Y AL ' =0 gives with u= + U/»

d the relati kU)A
and the relation (o + kU) 52 %

2(c + ku)Cefh — %(Be’kh +Cefy =0

2(0 — ku)BeM + %(Bekh +Ce™ My =0

eliminate B and C gives then ...

2
2

o= e [(2kh —1)% — ei4kh]

in the limit of k2 —0 02 = — k?u? with u’, w’ ~ ek +iot, we note that ic>0 —) growth !
Same as the KH interface from above.

For large values of k% shear layer thickness decreases the growth o
0? = + k?u?so that 0 = = ku; Since Im(0)=0, stability

0w’ 2
9.2 k*w' =0
So that for we obtain for the different layers (as before):
w' = Ae™ for z>h
w' = Be™** 4 Cet? for -h<z<h
w' = Dek? for z<-h
2 u’ 2 —4kh
o :m[(Qkh—l) —e MM
kh—0
io ic

000 005 0.10 015 01 000 005 0.10 015 020

kh kh
> h larger

cut off wave number

(same result as above)




Viscosity: diffusive effects !

Effect of viscosity on the instability of a shear layer

for Re=Ud/v = o0
instability for a band of wavelengths 0<2kd<1.3
maximum growth at 2kd=0.8

| @ A

ave length < 2D

p———i cutoff by
t vortex layer thickness

0 02 04 06 08

k k
™ k="

What is the effect of viscosity on :
- growth rate  ?

- wavenumber ?

viscous spreading of the shear layer

t=t
D ...........
o(z)
wit=0)=U/D
X
0p=0; v#0 w(t=t)
Do D 0 D z
=V xU
? w=(0,275) )
U=U(z) 0z
o 9.
e + vV
dw T 2
5 —u.Vio +w.Vu+vVie

ulw—=>wVu=0

uni directional flow U(z) — @.Vw =0

vorticity diffusion equation

The viscous spreading of the shear layer

Ow
— =vV2w here w = Wy

ot
For a thin shear layer of thickness &(y) and amplitude U

w(y,t=10) =Ud(y)

the solution of the diffusion equation is (see Batchelor 1969)

U 2
wly,t) = so==e Y/

2/t
T wly -y, )
for a shear layer fromy = =d to +d w(y,t) = / T’dy
—d
I U y+d> <y—d> ) 2 [T
the solution is w(y,t) = —[erf| =—— | — erf| =—=— with erf(z) = — e Vdy
otuion's (3. ) = g lerf(L20) — e (L 5)) =
+oo
w ,t—)oo:()but/ w(y,t)dy =2U0
o) (y ) . (y,t)dy
2d | w(t=0)=Und
- = =
L w(t=t) * velocity jump across the layer is maintained
* vorticity decays by viscous damping.
-d 0 d Y

Determine the speed of the spreading =>




Thickness of the diffusing shear layer.

The standard deviation of the vorticity distribution at t=0 is
a_ 1 [T,
=— ,t)d,
) Y w(y, t)dy
this is generally smaller than the real distribution (here 2D) so rescale:
note d=D, u=y, A=D at t=0
2

o 1 +o0 ) 1
if =0 w(y, tydy = = is AZ=
if AT o [m Yy w(y, t)dy o then is

AN?  /D\?
-0
g 9 /=0

For a linear velocity profile a=3 (at t=0), the integral yields

A% = D% 4 62 5:gx/4ut

+o0
yw(y, t)dy

—o0

a
2u

The spreading of the vorticity distribution can then be written as

1dd % &
Adt  D2462dt

two cases. |) weak viscous spreading 8/D<<I an
2) thin layer with strong viscous effects, i.e. 8/D>>1

If 8/D<<I viscous effects are small at t=0, initial thickness is large

1 dA 20 dé  20dé 2w o
Ad Do dt N g Y pr constantin time
5~ Vut
If 8/D>>1 t=0, thin layer with strong viscous effects (A=J)
1dA 26 dé 1ds 1

Adt  D2+4o%dt ddt ¢

Now compare this with the growth rate of the instability (Re= Real part)

0.2U
Re(—io) = A which is the maximum growth rate for the inviscid case

this growth rate is affected by viscosity due to increase in thickness A,
® in case 8/D<<| A=D and the growth rate, 0.2 U/D, is not affected.

® In case A=d the spreading of the viscous layer is faster than the growth
of the instability.

., 02U 020 02U . C1ds 1
Re(—io) = D ~T5 ot and spreading of layer is Sd 1

spreading rate of the vorticity

\‘gr:owth rate 02U/ 2(vt)”

tc critical® ',
2

time b/_'-_
v

At critical time 7. = 100 v/U2 —> §.= (vt )%»=10v/U

==> Critical time depend on Reynolds number UD/v

Critical time tc as a function of Reynolds number Re

with 8= (vtc )>=10v/U one can write Re = UD/v =D/(d./10) so that 8/D=10/Re

For th wth rat btain: Re(—10) 020 v 0.2
or the gro rate we obtain: e(—10) = — = =
vVD?2+462 D \/1+42/D?

so that the non-dimensional growth is

Re(mo)L =92
D /1+ (10/Re)?

~

Re(—10)

ol

Villermaux 1998 Phys. of Fluids
Betchov Szewczyk Phys. of Fluids 1963

0 20D




With density distributions |
(see Chandrasekhar 1961, p488-489)

p
p(1-€) +d
P
p(1+¢)
z>d p = po(l—¢)
—d<z<d P = po
z< —d p=po(l+e)

62

the dispersion relation reads :

20 _ a(Q+1)? a(Q-1)?
e = |1 J+(Q+1)(+ea/)2(9+1)2} [1 - J—(Q—l)(—ea/)z(ﬂ—l)Z}

with Q = w/(kU) and J the Richardson number :

egk glp/2d

= 207k ™ (U

For stability Re(Q2?) > 0. Unstable when Re(Q2) < 0 i.e. when

k k
<J+1<
1+ ek + 1—ek

The Richardson number represents the ratio between the kinetic
energy of relative motion (%—5)2 and the work that must be done to
overcome the restoring buoyancy force.

(see exercise on particle displacement of lecture 1; note that in this
exercise the Boussinesq approximation is used by assuming that
ApU is small). The results for instability is :

—g dp/dz  buoyancy force -

' 1
Ri(=J) = ?(dU/dZ)Q " inertia force 4

Exercise :

Consider a basic flow with velocity profile U(z) and density
distribution p(z) and neglect viscous effects. Derive the dispersion
relation (Taylor-Goldstein equation).
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Fig. 4: Velocity and density profiles used in the
first interfacial stability calculations.
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Stable hop pkite

o o.5 10 [ 2.0

a: by
Fig. 4.3. The stability characteristics of a shear layer corresponding to

fig. 4.2a. Waves which can grow on the density discontinuities contribute
significantly’to the insi ty.

Stable

° 02 o4 o6 o8
= kfy
Fig. 4.4- The stability characteristics of a shear layer corresponding to
fig. 4.25. Note the difference in scales, and the very much smaller region of
instability compared to fig. 4.3. (The stability boundary in fig. 4.4 has
been added to 4.3 for comparison, as the dotted line.)

Ry,

v

shear instability —
—

Riy = 22— %

buoyancy suppresses the

Stable

wavelenghts in this area are too small
compared to the shear layer thickness

1 | J

0.5 1.0 1.5 2.0

instability for ; _k <J+1< = ’;_k

JunE 2007 SMYTH ET AL. 1571

Ri =0.45

Ri =0.15

Holmboe instability




Holmbdoe instability : the mechanism
consider Rayleigh’s 1896 shear flow for U.-9=0

Holmboe Instability

Ho6lmboe instability

Yy A
| v . . -
L b h Mutually interacting waves: ue)
2
/
2 f Y wy = iwC + kU — L =i ¢y i -t
h/2 kU U .
! ! e — iU — M2 S EERE
3 : N _l— wy = iw(y — kU — WU ZUCQ i I(—
h/; S
_Lz / t ~ ‘1{— T T T
. (w/kr)2 _reN? (1—2kd)?— etk
5 u) - (ﬁ) B 2kd)? e -
Y2 '\l : ( ) hj{‘ ! o m wave speed
= 2d instability when phase shift is A/4 05| ke i
h damping for phase shift A/2 v
We take for simplicity again x — (x, z) 3 i .

. . PP 05 kd 10 15
Density interface at the level z = —d; thickness ) and shear layer Thetehshlft lild:e fo the;'Doppler effect . coupled waves kd  free moving waves
) . . r) > !
with total thickness h (Lawrence et al Phys. of Fluids 1991). on the oscillatory motion (c:) -> resonance

We first consider waves U = 0 and then instabilities for € = 0.

Suppose step-profile, symmetric interface (e = 0) in

two types of instability: N -
1) stationary (i.e. non-oscillatory), f (597222 — k2) ¢+ {% — (UUi—”c)} ¢ =0.
for p’~ exp {ik(x-ct)} imaginary part =0 (c,=0) J1Z A
| — - . . .
2) travelling wave on the vorticity interface and a ; . Then the dlsper5|on relation reads
standing wave on the density interface. et Tt T
ol - . - D(k,w, J,a) = (w — ak)* + mk?*(w — ak) + nok* =0
(@=e)le=Wy=e)+eiee™ =0 10 — where a = Upean/AU
i =g'/2k and ¢, = U,/2kd 2 )
o / —J N e~4k — (2sk — 1)? d n (e72%k 4 25k — 1)?
/ n = — 5 and ng = — 5
same mechanism / sk 4k sk 4k
I sk V / 4 4 . . )
The phase shift is due to the Doppler effect ’ with s = sgn(k,). The roots are then (Ortiz et al POF 2002) :
on the oscillatory motion / 4
) 0137, //,{ _n2k2 i Al/Q ]_/2
4 w(k) = ak + — and A = (mk?)? — 4nok*

0 - - 1.0
ked
Holmboe (1962),

Baines and Mitsudera (1994)




NNV RS

> and A = (npk?)? — 4nok*

w(k) = ‘lk +

advection with speed a = Up,/ AUk results in Doppler shift . To
move with the local mean flow we should take w} = w, — ak where
w = w, + iwj; w, representing the oscillatory part and w; the
growth.

w -k space (a)
o - = v v
o L3 H kX
o0s KH . maz
growth w; o
005
o1
ok kol 02 03 k“ 05 06 07 03 k'ﬁa 1
c1 ke2 <3 4
k (b)

four neutral waves:
2 propagate to the right
(0>0)2 to the left (0<0)

wr
oscillations

Ortiz et al, Phys of Fluids 2002

B STABLE
0.6

Richardson
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Ap 2
9%Az, Az

Ri = 7(AU)2 o2

¢, Lawrence et al POF 1991.
4

FIG. 7. Plan views of cxperiments
with £, = 0.08, 0,06, and 0.05, respec-
tively. Flow is left 10 right. The mark
g om the botscen of the Bume are
spaced 2t § cm imservals. The wsiling
dge of the spheier plase s viubie 0o
“he beft b3t 1ade of each pieograph
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Lawrence, Browand & Redekop 1991

see movies ...

KH instability: vorticity layer rolls up at the interface
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Neil Baimforth 2010, Woodshole
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Tigure 9: Vorticity and buoyancy fields at different instants of time for stratified KH insta-
sility, f=2,d=0.1,k=1,A=1/3,m=1.

Roy Anubhab 2010, Woodshole

Z(=V 1)
" 2 y ' s

(@) Bt=13 () 2,t=13
(c) Bt=21
©Bit= (0 2,t=755

sure 11: Vorticity and buoyancy fields at different instants of time for pure Holmbo

tability, f =2,d=8k=1,A=1/3,p=1. Roy Anubhab 2010, Woodshole




Measurements on KH instability Space time diagram (also Hovmoéller diagram)

shear layer

—>t

With Fourier analyses, frequency , amplitude
Mercier et al. Phys of Fluids Vol 20, 2008.

F . | 7 Sy T T Ot thecenter R
ourier analyses LAl e A i
\ i ; e IFT 01
g “ v
i Py 1 LN n n
m-llv|-ﬂ.|lHT!I.W’UBZSVvBSﬂ.ﬂSHIJJZ!LV|25 0 0.0129.029.03750.050.062%9.079.0875 0.1
)
O' ”
0.1 0.1
0.08 j0.08
0.06 0.08
004 004 t =
5 ]
e g - T G A A Mot
: . ° s R —————
i o T - | —
k=S Looo = (002
2 2
L004 to04
Loos 008
-0.08 -0.08
o1 0.1 :
Time [s] “ e/ d g il Wl I w o s Gl
amplitude
0.1 3
.08 2
4
5 0.06
g 0
2
N 0.04
-1
0,02 o
) o == = =
600 600 1000 1200 200 400 600 800 1000 1200
Time [g] Time [g]




The Taylor-Goldstein equation

) ) _ » Parallel flow U(z) [U 4 ¢/, v/, W] and stratification N.
Continuous velocity profiles. > Euler Equations, viscosity = 0
» Squires theorem (v = 0) : 3D — 2D, stronger growth for 2D
Exercise - than 3D (see later)
Consider a basic flow with velocity profile U(z) and density > linearize, define a stream function v’ = %ﬁ w' = —%[:
distribution p(z) and neglect viscous effects. Derive the dispersion > perturbation [p, p,¢] = [(z), B(2), (g(z)]e[ik(xfct)]

relation (Taylor-Goldstein equation).

—

(U—c)(aa;—kz)w{(u'v_zc)—uzz}ﬁo

9? N2
_ — _k? — U, =
=) (g2 =)o+ {{g=g U f o=
Note that cpp = ¢ — U is the phase velocity within the moving
frame, and Q = ck — Uk = w — Uk the Doppler shifted or intrinsic

frequency.
It can be shown that for stability (see e.g. Drazin & Reid p327) :

Ri > 1/4

with Richardson number (also Ri) = % N the Brunt Vaisala
frequency)




