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The mixing layer

shear layer thickness �(x) = (U1+U2)
(dU/dy)max

� increases with x by diffusion ; vortex roll-up and vortex merging.
� becomes linear in x far downstream.

~√x

R dilatation parameter in X direction (growth rate versus convection velocity)

R =  1 : lower stream at rest; increase in layer thickness proportional to R 
R<<1 : convection velocity >> growth ∆U
R > 1 : Counter flow mixing layers
R>>1 :  well defined KH billows at one position 
NOISE: mixing layer is a noise amplifier. 

   Godreche & Manneville 1998

mixing layer: continuous profile with y
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|R| << 1 weak shear ; simple linear relation between spatial and
temporal development of instability
|R| � 1 complex relation between spatial and temporal
development of instability.

Convective versus absolute instability

!34

Laminar basic flow ;

with layers 1 and 2 of different density

Viscous effets are considered negligible and the fluid is
incompressible.
This flow satisfies the Euler equations, continuity and hydrostatic
balance.

W=0z = –h

z = 0

EXERCISE



STEP WISE VELOCITY PROFILE 
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Shear layer with non-zero thickness

We take for simplicity x̄ ! (x , z)
pressure p = p(z)
Basic flow + perturbations : (U0 + u,w ,P0 + �p)

(Rayleigh 1869)

(ρ=constant)

• write down adapted (2D) Euler equations  
and basic state  

• derive perturbation equations  

• define the form of the perturbation  

•  Substitute and obtain a PDE for w at  z=0

!40
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∫ (4) dz
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Continuity of w at ±d :

+d : A+e
�kd = A0e

�kd + B0e
+kd

�d : A�e
�kd = A0e

kd + B0e
�kd

gives with continuity of �(! + kU0)
@w
@z + kw

@U0

@z = 0 :

+d : 2(! + kU)B0e
kd � U

d
(A0e

�kd + B0e
kd ) = 0

�d : 2(! � kU)A0e
kd +

U

d
(A0e

kd + B0e
�kd ) = 0

Elimination of A0

B0
yields the dispersion relation for !

(Rayleigh 1896 vol11, p 393 and Drazin p 146 :

!2 =
U

2

4d2

h
(1 � 2kd)2 � e

�4kd
i

since ⇠ exp[i(kx + !t)] instability for i! > 0.
!44

Simplify the dispersion relation ↵ = 2kd and ⌦ = !/(2kU)
Since U1 = �U2 = �U, the phase velocity is c = !/k (in case
there is a mean velocity, it increases the phase velocity)

4↵2⌦2 = (1 � ↵)2 � e
�2↵

so that :

⌦2 = 1/4
⇥
(1 � ↵)2 � e

�2↵⇤

↵2

deduce Kelvin Helmholtz instability, i.e. d ! 0,

! = ikU
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Kelvin Helmholtz

-iωd 
U

α =2kd0 0.8 1.3

0.2

growth rate

1/2

Uρ

+d

-d

ρ(1+ε)

ρ(1-ε)

ρ
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⌦2 = 1
4↵2

⇥
(1 � ↵)2 � e

�2↵⇤ and ⌦ = !/(2kU) and cr = !r/k

Large wave lengths (small k) do not see the thickness of the
interface and are unstable as KH
Short wave lengths are stabilized (large k), they are within the
shear layer.

• Vorticity layer instability 

@u0

@x
+

@w0

@z
= 0

@⇣

@t
+ (U + u0)

@⇣

@x
+ w0 @⇣

0

@z
= 0

Continuity

Vorticity from Euler equations:
D⇣

Dt
=

@⇣

@t
+ U .r⇣ = 0

@u

@x
+

@w

@z
= 0

⇣ =
@w

@x
� @u

@z

Basic flow is U in x-direction, i.e. ( U,0 )
Perturbation (u’,w’) ––›    (u,w)=(U+u’, w’) ⇣ =

@w0

@x
� @u0

@z
� @U

@z

Z

X

Consider the instability of the vorticity layer at the interface (2D)

vorticity ζ layer at z=0

U

z=–h

z=h



Consider the instability of the vorticity layer at the interface (2D)

Linearise, neglect terms of second order
✓

@

@t
+ U

@

@x

◆✓
@w0

@x
� @u0

@z

◆
� @2U

@z2
w0 = 0

@u0

@x
+

@w0

@z
= 0

Consider a perturbation of the form         u’, w’ ––> (u’(z), w’(z)) eikx + iσt,  

iku0 +
@w0

@z
= 0

i(� + kU)

✓
ikw0 � @u0

@z

◆
� d2U

dz2
w0 = 0

Eliminate u’ to find THE ordinary differential equation in z to solve: 

(� + kU)

✓
@2w0

@z2
� k2w0

◆
� d2U

dz2
kw0 = 0

Since for z=0, (the region of interest), dU/dz is discontinuous we have to 
replace this differential with the difference ∆ across the two layers: 

(� + kU)�
@w0

@z
��

@U

@z
kw0 = 0

Move with the fluid, i.e.      u =    U/2  for z >  h 
              and      u = – U/2  for z < –h

For z>h and z<–h    d2U/dz2=0, we have (as before) 

@2w0

@z2
� k2w0 = 0

So that for we obtain for the different layers (as before): 
w0 = Ae�kz for z>h

w0 = Be�kz + Cekz for -h<z<h

Note: we have used
here w’ continuous 
across the interface

w0 = Dekz for z<-h

lim
�!0

Z �/2

��/2
(� + kU)

✓
@2w0

@z2
� k2w0

◆
� d2U

dz2
kw0 dz =

Continuity of w’  at z>h  and z<–h gives then

Ae�kh = Be�kh + Cekh

De�kh = Bekh + Ce�kh

(� + kU)�
@w0

@z
��

@U

@z
kw0 = 0and the relation gives with u= ± U/2

2(� + ku)Cekh � u

h
(Be�kh + Cekh) = 0

2(� � ku)Bekh +
u

h
(Bekh + Ce�kh) = 0

eliminate B and C gives then … 

�2 =
u2

4h2

⇥
(2kh� 1)2 � e�4kh

⇤

in the limit of kh –›0  σ2 = – k2u2   with u’, w’ ~ eikx + iσt, we note that iσ>0 ––› growth ! 
Same as the KH interface from above. 

For large values of kh shear layer thickness decreases the growth σ  
σ2 = + k2u2 so that σ = ± ku;   Since Im(σ)=0, stability

�2 =
u2

4h2

⇥
(2kh� 1)2 � e�4kh

⇤

iσ iσ

kh kh

kh–›0

h larger

cut off wave number

(same result as above)



• Viscosity:  diffusive effects !

Effect of viscosity on the instability of a shear layer

U

-U

D

-D
∂ρ=0; ν≠0

for Re=Ud/ν –> ∞  
instability for a band of wavelengths 0<2kd<1.3 
maximum growth at 2kd=0.8

What is the effect of viscosity on : 
- growth rate    ? 
- wavenumber  ?

kd   

wave length < 2D
cutoff by 

vortex layer thickness

viscous spreading of the shear layer

� = r⇥ U

U = U(z)
! � = (0,

⇥U(z)

⇥z
, 0)

U(z)

-U

D

-D
∂ρ=0; ν≠0

t=0 t=t1

x

z

0

ω(z)

D-D z

�(t = 0) = U/D

�(t = t1)

⇤⇥̄

⇤t
= �ū.r⇥̄ + ⇥̄.rū+ �r2⇥̄

ū ? �̄ ! �̄.rū = 0

uni directional flow U(z) ! ū.r�̄ = 0

⇤⇥̄

⇤t
= r⇥ (ū⇥ ⇥̄) + �r2⇥̄ r⇥ (ū⇥ �̄) = ū(r.�̄)� �̄(r.ū) + (�̄.r)ū� (ū.r)�̄

vorticity diffusion equation

! ⇤⇥

⇤t
= �r2⇥ ⇥ = ⇥y

for a shear layer from y = –d to +d !(y, t) =

Z +d

�d

!(y � y0, t)

2d
dy

 The viscous spreading of the shear layer

For a thin shear layer of thickness δ(y) and amplitude U

!(y, t = 0) = U�(y)

the solution of the diffusion equation is (see Batchelor 1969) 

!(y, t) =
U

2
p
⇡⌫t

e�y2/4⌫t

@!

@t
= ⌫r2! here ! = !y

0

ω(!)

d-d !

�(t = t1)

ω(t=0)=U/d2d

!(y, t) =
U

2d
[erf

✓
y + dp
4⌫t

◆
� erf

✓
y � dp
4⌫t

◆
] with the solution is erf(x) =

2p
⇡

Z x

0
e�y2

dy

Determine the speed of the spreading  =>

=> 
• velocity jump across the layer is maintained
• vorticity decays by viscous damping.

!(y, t ! 1) = 0 but

Z +1

�1
!(y, t)dy = 2U



For a linear velocity profile a=3 (at t=0), the integral yields

�2 = D2 + �2 � =
3

2

p
4⌫t

two cases. 1) weak viscous spreading δ/D<<1 an
                   2) thin layer with strong viscous effects, i.e. δ/D>>1

1

�

d�

dt
=

2�

D2 + �2
d�

dt

The spreading of the vorticity distribution can then be written as

Thickness of the diffusing shear layer. 

�2 =
1

2u

Z +1

�1
y2!(y, t)dy

this is generally smaller than the real distribution (here 2D) so rescale: 

The standard deviation of the vorticity distribution at t=0 is

note d=D, u=U,  ∆=D at t=0

�2 =
a

2u

Z +1

�1
y2!(y, t)dythen is

and 

�2

�2
=

1

2u

Z +1

�1
y2!(y, t)dy =

1

a
if

a =

✓
�

�

◆2

=

✓
D

�

◆2

t=0

If δ/D<<1 viscous effects are small at t=0, initial thickness is large

1

�

d�

dt
=

2�

D2 + �2
d�

dt
⇡ 2�

D2

d�

dt
⇡ 2⌫

D2

� ⇠
p
⌫t

=constant in time

If δ/D>>1 t=0, thin layer with strong viscous effects  (Δ≈δ)

1

�

d�

dt
=

2�

D2 + �2
d�

dt
⇡ 1

�

d�

dt
=

1

t

• in case δ/D<<1 ∆=D and the growth rate, 0.2 U/D, is not affected.  

• In case Δ≈δ the spreading of the viscous layer is faster than the growth 
of the instability. 

Re(�i�) =
0.2U

D
⇡ 0.2U

�
=

0.2U

2
p
⌫t

1

�

d�

dt
=

1

t
and spreading of layer is 

Now compare this with the growth rate of the instability (Re= Real part)

Re(�i�) =
0.2U

�
which is the maximum growth rate for the inviscid case

this growth rate is affected by viscosity due to increase in thickness ∆, 

spreading rate of the vorticity

At critical time tc = 100 ν/U2   –>  δc= (νtc )½=10ν/U    

==> Critical time depend on Reynolds number UD/ν

1/t spreading rate

growth rate 0.2U/2(νt)½

tc critical time

growth rate 0.2U/2(νt)½

1/t 
spreading rate

tc critical
 time

Critical time tc as a function of Reynolds number Re

with δc= (νtc )½=10ν/U one can write Re = UD/ν =D/( δc/10)  so that δ/D=10/Re 

For the growth rate we obtain: 

so that the non-dimensional growth is 

Re(�ı�) =
0.2Up
D2 + �2

=
U

D

0.2p
1 + �2/D2

2αD
Re=1

Re=∞

Villermaux 1998 Phys. of Fluids 
Betchov Szewczyk Phys. of Fluids 1963

0

KH

Re(�ı�)
U

D
=

0.2p
1 + (10/Re)2



With density distributions I

(see Chandrasekhar 1961, p488-489)

z >d ⇢ = ⇢0(1 � ✏)

�d < z <d ⇢ = ⇢0

z < �d ⇢ = ⇢0(1 + ✏)

!62
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the dispersion relation reads :

e
�2↵ =

h
1 � ↵(⌦+1)2

J+(⌦+1)+✏↵/2(⌦+1)2

i h
1 � ↵(⌦�1)2

J�(⌦�1)�✏↵/2(⌦�1)2

i

with ⌦ = !/(kU) and J the Richardson number :

J =
✏gk

2U2k
⇠ g�⇢/2d

⇢(dU/dz)2

For stability Re(⌦2) > 0. Unstable when Re(⌦2) < 0 i.e. when

k

1 + e�k < J + 1 <
k

1 � e�k

!64

The Richardson number represents the ratio between the kinetic
energy of relative motion (@U

@z )
2 and the work that must be done to

overcome the restoring buoyancy force.

(see exercise on particle displacement of lecture 1 ; note that in this
exercise the Boussinesq approximation is used by assuming that
�⇢U is small). The results for instability is :

Ri(= J) =
�g

⇢̄

d⇢/dz

(dU/dz)2
=

buoyancy force
inertia force

<
1
4

Exercise :
Consider a basic flow with velocity profile U(z) and density
distribution ⇢(z) and neglect viscous effects. Derive the dispersion
relation (Taylor-Goldstein equation).

J
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buoyancy suppresses the
shear instability !

wavelenghts in this area are too small
compared to the shear layer thickness

instability for k
1+e�k < J + 1 < k

1�e�k

!67

Ri =1

Ri =0.45

Ri =0.15

Hölmböe instability



Hölmböe Instability

We take for simplicity again x̄ ⇥ (x , z)
Density interface at the level z = �d ; thickness ⇥ and shear layer
with total thickness h (Lawrence et al Phys. of Fluids 1991).

We first consider waves U = 0 and then instabilities for � = 0.

Hölmböe instability

+

+

–
–

growth rate

wave speed

Mutually interacting waves:

w1 = i⇥�1 + ikU ! w1

kU
= i

c

U
�1 + i

w2 = i⇥�2 � ikU ! w2

kU
= i

c

U
�2 � i

instability when phase shift is λ/4 
damping for phase shift λ/2 

The shift is due to the Doppler effect  
on the oscillatory motion (cr) -> resonance!

free moving wavescoupled waves

✓
�/k

U

◆2

=
⇣ c

U

⌘2
=

(1� 2kd)2 � e�4kd

(2kd)2
Im. 

wave speed

Hölmböe instability : the mechanism 
consider Rayleigh’s 1896 shear flow for  Uz=0 =0

Holmboe (1962), 
Baines and Mitsudera (1994)

two types of instability: 
1) stationary (i.e. non-oscillatory),  
   for p’~ exp{ik(x-ct)} imaginary part =0 (cr=0) 

2) travelling wave on the vorticity interface and a 
standing wave on the density interface. 

same mechanism 

The phase shift is due to the Doppler effect  
on the oscillatory motion

Suppose step-profile, symmetric interface (� = 0) in
�

�2

�z2 � k2
⇥
⇥+

⇧
JN2

(U�c)2 � U��

(U�c)

⌃
⇥ = 0.

Then the dispersion relation reads

D(k ,⇤, J, a) = (⇤ � ak)4 + n2k2(⇤ � ak) + n0k4 = 0

where a = Umean/�U

n2 =
�J
sk

+
e�4sk � (2sk � 1)2

4k2 and n0 =
J
sk

+
(e�2sk + 2sk � 1)2

4k2

with s = sgn(kr ). The roots are then (Ortiz et al POF 2002) :

⇤(k) = ak ±
⇤
�n2k2 ±�1/2

2

⌅1/2

and � = (n2k2)2 � 4n0k4



�(k) = ak ±
�
�n2k2 ±�1/2

2

⇥1/2

and � = (n2k2)2 � 4n0k4

advection with speed a = Um/�Uk results in Doppler shift . To
move with the local mean flow we should take ��

r = �r � ak where
� = �r + i�i ; �r representing the oscillatory part and �i the
growth.

� -k space

growth

oscillations

H

KH

left moving wave

right moving wave
stationnary

four neutral waves: 
2 propagate to the right 
(ω>0)2 to the left (ω<0)

Ortiz et  al, Phys of Fluids 2002

H

J-k space

ka

Richardson
number

Hölmböe

KH

Rayleigh-Taylor

Lawrence et al POF 1991.

Ri ⇡ N2�z2

�U2

Ri =
g �⇢
⇢̄�z⇢

�z2u

(�U)2

Lawrence, Browand & Redekop 1991

see movies ...

KH instability: vorticity layer rolls up at the interface

U0(z) 1/2U0

1/2U0

*



Neil Balmforth 2010, Woodshole Roy Anubhab 2010, Woodshole

Roy Anubhab 2010, Woodshole



Measurements on KH instability

ρ1

ρ2
shear layer

 U

Ri ⇡ N2�z2

�U2
⇡ 1

4

Ri = J R =
g0 �zu
�U2

✓
�zu
�z⇢

◆
Space time diagram (also Hövmöller diagram)

t

t

With Fourier analyses, frequency , amplitude
Mercier et al. Phys of Fluids Vol 20, 2008. 

Fourier analyses

 Gene Hart; via Flow Visualization)



Continuous velocity profiles.

Exercise :
Consider a basic flow with velocity profile U(z) and density
distribution ⇢(z) and neglect viscous effects. Derive the dispersion
relation (Taylor-Goldstein equation).

The Taylor-Goldstein equation

I Parallel flow U(z) [U + u
0, v 0,w 0] and stratification N.

I Euler Equations, viscosity ⌫ = 0
I Squires theorem (⌫ = 0) : 3D ! 2D, stronger growth for 2D

than 3D (see later)
I linearize, define a stream function u

0 = @ 
@z w

0 = �@ 
@x

I perturbation [⇢, p, ] = [⇢̂(z), p̂(z), �̂(z)]e[ik(x�ct)]

!

(U � c)

✓
@2

@z2 � k
2
◆
�+

⇢
N

2

(U � c)
� Uzz

�
� = 0

(U � c)

✓
@2

@z2 � k
2
◆
�+

⇢
N

2

(U � c)
� Uzz

�
� = 0

Note that cph = c � U is the phase velocity within the moving
frame, and ⌦ = ck � Uk = ! � Uk the Doppler shifted or intrinsic
frequency.
It can be shown that for stability (see e.g. Drazin & Reid p327) :

Ri > 1/4

with Richardson number (also Ri) = N2

(@U/@z)2 , N the Brunt Väisälä
frequency)


