Centrifugal instability

Drazin & Reid, 1981

Rotating cylinder (large gap)

Centrifugal Instability

Let us consider a non-viscous fluid (i.e. Euler equations) in
cylindrical coordinates. Then the Euler equations are in cylindrical
coordinates
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Mass conservation is given by

du, u, 10uyp Ouy

or r r06+82

—0 (continuity)

Consider axisymmetry so that we have % = 0. The equations then
reduce to
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Mass conservation is now given by
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Rayleigh (1916) discovered that the #-component of these
equations can be written in the form
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This means that angular momentum is conserved, i.e.

Drug DQr?

0t~ Dr -~ 0 where ug = Qr

Or for the energy we can write
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For stability we have, according to Rayleigh's energy (1916)
argument :
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Rayleigh's energy argument
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The potential energy is 55 = 5% 7~ = *5~
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the force F per unit mass in radial direction is :
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in other words, there is a gradient force F with % #0.

(Note, in a stratified fluid we have F = mg and % = ‘é—’z"g #0)

Heuristic argument
Consider again the exchange of two rings of fluids (like before
particles in a stratified fluid), supposing that their masses are

equal : Q
2mrdry = 2wradr = ds $
..................... 0=0
when do expect instability 7 noon )
>

Consider the energy of two fluid rings r1 and r2,and there initial
and final energy state ...
Initial state is :
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the difference in energy is then :
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Instability when the kinetic energy increases (AE > 0). thus
stability for
DL?
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this is known as Rayleigh’s stability criterion for centrifugal
instability.
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For a displacement dr we have for stability when
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This criterion is often written in the form :

1 0(r’Q)?
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this is a necessarry and sufficient condition !
In fact we have an angular 'stratification’ of momentum, which is
stable when constant or increasing monotonically with r.

— NOTE
As for convection we can again estimate a characteristic number for
centrifugal instability opposed by viscous effects. The Taylor
number —




necessary and sufficient condition for stability ....

NOTE on Ri number:
The Richardson number Ri>0.25 is a necessary and sufficient
condition for stability with respect to KH instability.
(Abarbanel et al 1984, Ri> 1| formally stable)

This means that an unstable shear flow is suppressed by buoyancy

in strongly stratified flows, i.e. when the Richardson is high.

The condition for instability Ri<0.25 is necessary but not sufficient.

For weak stratification, instability is set by the shear instability
determined by the Rayleigh and Fjortoft criteria; >,
These are only necessary conditions.

Only the inner cylinder rotates

R+a

Taylor number Q

Consider the Stokes effect on a little sphere of radius rg, speed V.
and density p. the sphere looses momentum p = mv, in a time 7
due to viscous drag, where mass m = 4 /371 p. Since the Stokes
force due to friction on a particle is equal to 67 urgv. we obtain

av, av, .
ma—: = 4/37rrgpa—tc = Stokes force on the particle = —6mpuryvc
so that Ti = VL%"; =A% , and A is a geometric constant.
v c r

After a time 7, the particle has travelled a distance §, = v.7,,.

Taylor number

The centrifugal force on the particle is F, = mQ2(r)r and changes
radially. Thus over the distance ¢, its variation is

OQ%(r)r Q2R Q2R C' pve%ri2R
Fn=m (r) 5r~Cm ver, = C'rdp VCT,,Z—B; 0
or a a Av a
where C' and A are geometric constants.
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Instability for F,, > Fliscous. ie. %5%92% > 6T prrVe
so that s
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Neglecting geometric coefficients and with in the limit of the
largest perturbation ry — a , the Taylor number is
Fy Q2R a8

T = =
F visc v2

(see Guyon, Hulin & Petit p 582)

Linear stability analyses of the inviscid case

Euler equations in cylindrical coord’s
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Mass conservation is again given by
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The basic flow is only in azimuthal direction and given by
= (0, V,0). (p=constant). Perturbations are given by

i = (u,V+uyu,)and V=0Qr
p = P+p,

Substitution yields, after selection of the leading order terms, the
perturbations equations (primes omitted)
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and continuity
V.J:au, u  10ug Ouy, 0

or T Tree Tz

Consider perturbations of the form (see Drazin & Reid chapter 3, ;
Chandrasekhar p 303) with % = w, and p=constant.

(7, @) = (a(r), 0(r), w(r), &(r))eli (k) tat)

(a+inQ)u—¥v = —Dw
(0 +inQ)v + (D,V)u = —igw
(c+inQw = —ikw

I
o

D,u+ inY + ikw
r

with D = % and D, = % + % Eliminating v, w, and w yields a

single equation with v = o + inQ, ¢(r) the Rayleigh determinant.

r?D,u 5 k2r2¢ . D,V
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Solve with u =0 at r = R; and R».

In the axisymmetric case, the perturbations are the same for every
value of 6 since for all variables % =0.
But in the non axisymmetric case, we have to follow the
perturbations on a particle motion along its azimuthal trajectory :
we have to consider its Lagrangian displacement £(x, t) .
For a perturbation Agq on a basic flow @ (g=whatever) we can
write

Ag=q(x +&(x,t),t) — Q(x, t)
The corresponding Eulerian change is g(x,t) = Q(x,t) + ¢'.
To leading order in £ this is

Ag=4q +£Vq.

For an element at x the change in Lagrangian velocity at x + £ is

23
Au= = .V¢.
u=o +U.V¢
For the Eulerian change in velocity this implies
0
u’:£+U.V£f€.VU (1)

while V.u =0 and V.£ = 0 by continuity.

Using the normal mode analyses we can set
€ _ (5’ n, C)e(i(n9+kz)+at)

so that with (1) follows u =~¢&, v=~n—r(DQ),, w=~1C¢

Substitution yields : (y* +2rQDQ)¢ —2Qyn = —Dw
Pn+ang = —itw
V¢ = —ikw

with continuity : D.¢ + ing Lik¢ = o.

With £ =0 at r = Ry and Ry, and Q=constant

2 2
(D*D—nz)w:kz (1+4Q2)w
r Y

and BC's :Dw + Zif%gw =0and r=R; and r = Ry.




2 40?2
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and BC's :Dw + 2" = 0 and r = Ry and r = R,. Related work is on the instability of vortices (Q# constant)

This is the eigenvalue problem for the frequencies of a rotating with a different eigenvalue problem and boundary conditions.

| f fluid | (Note that Q= tant) (Kelvin 18804, . . .
E%er:jr;azekﬁgﬁ Féltzo |e%4§l constant) (Kelvin ¢ According to Drazin and Reid (refs to Howard 1962, and Howard

and Gupta 1962) the Rayleigh criterion is invalid for azimuthal
perturbations.

Later work shows that there are cases of validity of an adapted
Rayleigh criterion.

Intermezzo vortices Exercise:
Rayleigh'’s inflection point instability for circular flows In a rotating fluid the Euler equations of motions
(u=(uvw)=(urve,w,)) are given by
Consider two-dimensional perturbations (u/, uj) ~ ¢(r)e(et+n0) Du fu— ’LL_2 _ _l@
and no Z' dependence (also no axi-symmetry) then we obtain for Dt v  por
the dispersion relation ‘s " 110p
- u - =
, n? indZ Dt r pr 00
" Dt p 0z
and Z,—f = r% + 3(2—?. From eq (3) we can derive Rayleigh's
inflection point theorem as for a bounded shear flow. The flow is with D/Dt and continuity as above
unstable when there is a change in sign of vorticity, i.e. there is an . . o ‘ .
inflection point in the azimuthal velocity u). Using the argument changing fluid rings, and supposing axi-
symmetry, show that Rayleigh's criterion for instability reads:
. e . d 1
Example of a vortex in a fluid in rigid body rotation d—(vor + §f1“2)2 <0
r




Intermezzo vortices
(v+ 2r)(w+242) > 0 stable

< 0 unstable ,

fluid in rigid
body rotation

Rotating tank

inflection -

stability if vepswaps > 0 at all positions 7 in the vortex flow

Intermezzo vortices

Figure 1(a) Figure 1(c)

Figure 1(b) Figure 1(d)

van Heijst & Kloosterziel Nature 1991, Stability: Kloosterziel van Heijst JFM 1991

In a rotating system that rotates with angular velocity 2 — or on an f-plane — the
equation for the azimuthal velocity of circularly symmetric flows reads

(4)

where w is, as usual, the radial velocity component, » the azimuthal component and
[ the Coriolis parameter. For a rotating tank f=2Q. The material derivative is
defined here as

where w is the vertical v '4) implies the following
conservation law : D

— (or+3fr?) =0.

Dt ®)

For a vortex located at the centre of the rotating tank the term within the brackets
is the absolute angular momentum, or circulation, of a revolving fluid element at
radius 7. The equation for the radial velocity component is

Du o* 13p

o T e ®
If the stationary basic vortex whose stability is under study has an azimuthal
velocity distribution v(r), the pressure-gradient force is necessarily

1dpy _%
p dr = r+f”a' (7)

If a fluid element is imagined to change its position slightly, from, say, r, to ' =
ro+08r, it will acquire an azimuthal velocity »'(r') that is determined by the
conservation law expressed by (5):

V()7 3 = v(re) 1o+ 1f5. ®)

This holds only for flows that are axisymmetric, and axisymmetry can only hold
when all motion takes place in the form of an exchange of rings; this necessarily
involves three-dimensional overturning motions.

Assuming that the prevailing pressure field is not changed by the motion, the
element experiences an acceleration

2 2 2
%gr = {" +fv’} - {? +fv0}, 9)

a
where v, is understood to be evaluated at r = 7’. Taking (8) into account, the right-
hand side is found to be equal to

1 "o ,
73 {(vo(ro) 7o +3r5)* — (wo(r') ' +3fr"%)%}.
If this is developed in a Taylor series around r = r,, one obtains

D%r or d o2 2
—_—— 1 . 1
D2 7 dr(vnr+2f7 )y, +0(3r*) (10)
Assume, for example, that dr is positive (0r = udt;u > 0), then this equation tells
us that there is a tendency to accelerate it even farther away from its original
position if, for some r,,

%(vnr+%fr2)2 <o. (11)




Taylor Couette: the basic state viscous flow
Assume an axisymmetric basic flow, i.e. :

V(r)=rQ(r) and u, = u, =0

tp

p = P(r) and further % =0

with the Navier Stokes equations we can solve the flow in the basic
state

v? 10P
T T oo @
4

with the latter equation we obtain :
o’V 1oV VvV
o2 ror r?

and thus V:Ar+$orQ:A+r§2

Now solve for A and B.

Inviscid case: Q

2

Ri |R2

< >

Use boundary conditions : No slip conditions at Ry and R,
Q1 =A+B/R?
Q=A+B/R;

with p = % and n = % we obtain expressions for A and B

L/ g R —p)

A= Qn?
1 1—n? 1—n?

Inviscid case:
The Rayleigh discriminant is defined as :

1 a(r2Q)2 (remember; this is the
3 5, >0 Rayleigh criterion
r or for centrifugal stability)

d(r) =

so that with Q = A + % we obtain & = 4A(A + %) and the
definitions of A and B we get :

¢ = —49204(1 - m)( = p/r)’ (1 - "°>

(1—7?) r?

where = — AR _ Low/n?
' B 1—p -

With ¢ we can determine stability of the Taylor Couette flow.

Inviscid case:

b= _49%4(1 — (1 - u/n?)’ <l B R)

a—w \7
R 0 ’2 _ 2
gt Z% AR 1-op/n
Ry W B 1—p
Q | Inner cylinder
Rayleigh line ®
counter rotating cylinders
O<p<nzandn=<r=<|
unstable ®<0 unstable ®<0
N2
P
o\
A\
stable ®>0
QZ Outer cylinder
O stable (outer cylinder must rotate
with speed N2 times the inner cylinder)

Viscous effects will postpone the instability, i.e. in the viscous case ¢e> Pe inviscid




Inviscid case:

Q,
I nodal surface with Q=0
and radius 1/vk
2
®<0; ®>0
®<0 :
cylinders rotate in opposite directions H
(u<0) -
Ri i ’
Taylor number Taylor number for Taylor-Couette flow
2 2 i i ili
T — 407, (1 _ ,u)(l _ M/?? ) viscous effects postpone instability
a=— I i) Ta~ centrifugal/viscous
v (1—n2?)
= Ry _ Qs Remember Re ~ inertia/viscous effects
Ry O

Only the inner cylinder rotates : u=0, k=1 and Ta=...R/*/(1-4?)?= 4Q:2 R/#/»?

Exercise : The Rayleigh discriminant is defined as ®(r) = %@.

Show that for @ > 0 = k?/0? < 0 and ® < 0= k?/02 > 0.

Linear stability analyses of the viseous Taylor problem
The basic tlow is only in azimuthal direction and given by
7= (0, V,0). (p=constant). Perturbations are given by

g = (ur,V+ ug,uy)
0
P+ ép, and w="2P
p

p

Substitution yields, after selection of the leading order terms, the
perturbations equations

aautr —?ue: %2 4+ y(V2u, — %)
%?-F(C‘Ij\r/—}—\:) ur = v(V2ug — %
% = *%ff +vV2u,
where V2= 5%4—%%4—%22

and continuity gives V.0 =

Linear stability analyses of the viscous Taylor problem

Consider perturbations of the form (see Drazin & Reid p.91-93,;
Chandrasekhar p 303)

(@.@) = (a(r), 0(r), W(r), a(r)el* o0
auf¥v = —Dw + v(DD*v — k?)
ov+ (D,\V)u = v(DD* — k?)u

ow = —ikw +

D.u+ikw = 0
With D = % and D, = % + % we obtain :
[V(DD, — k?) — o](DD, — k?) u = 2k*Q v
[v(DD, — k*) — o] v=(D,V) u




With
1
x = (r—Ry)/d where Ry = §(Rl + Rp), Q(r) =Qi1g(x)
a = kd and w=0d?/v, and replace u2Ad?*/v — u

we obtain in dimensionless units after substitution ...

(DD, — 2> —w)(DD, —a®)u = —a°T g(x) v
(DD, — 2> —w) v

= u

andu=Du=v = OatX::i:%

_ —4AZd | —4ARE
- - 2

T 2

(1, 1)

1%

is the Taylor number, f a function of u = Q,/Q; and n = Ry /R».

Solutions have been found for the narrow gap approximation :

1
d:R27R1<<§(R1+R2)

The approximate Taylor number is then T = M
Consequences :

1) D, =D

2) Q(r) ~ [l — (1 — p) =], i.e. a linear variation with r

3) Cross-term perturbations in the centrifugal term (~ u,ug/r) neglected.

In the marginal state, w = 0 (i.e. o = 0), the general equations reduce to

(D? — 2*Pu = 732T<1+a(x+%)>v anda=p—1
(D2 — a2) v = u
u=Du=v = Oatx:i%

Solutions are of the form v =22, Cpnsin mnx

Substitution of this solution in the equations allows us to find the
general solution

Cm _
u = Z?m {Ag_n COSh ax + B]’_n S|nh ax + }
The coefficients A", A and B{", Bj" can be determined with
the boundary conditions u = Du=v =0 at x = i%.

Manipulation of the thus obtained equations provides to leading
order the solution
2 (2 4 a%)3

T =
2+ a a?{1 — 16an2 cosh? 3a/[(72 + a2)2(sinha + a)]}

In approximation (« = —(1 — p)) we obtain then for an;, = 3.12
the critical Taylor number equal to

2 1715
Te=—1715= 34—~ with0<p<1
2+« 5(1+p)
(1"t approx. Drazin & Reid), More precise approximations
(Chandrasekhar) obtain T, = 1708.

unstable

p=constant
Te | : nN=constant

ac a
Critical Taylor numbe Tc = 1708 and minimum wave number a=3.12.

Physics are analogue to convection and critical numbers are very close.
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Fig. 3.13. Observations and narrow-gap calculations -of the curve of
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Fioune 22. (a) The arrows point to the *ripple’ (RIP) observed in wavy-Taylor-vortex flow;
R, = 1750, R, = 250. (b) The arrow points to the *corkscrew (CKS) pattern observed on wavy-

FiGURE 20. (a) Twisted Taylor vortices (TWI): R, = 1040, R, = 720. (5) Wavy inflow boundaries
\WIB); B, = 1310, R, = 700. (c) tllow boundaries (WOB); Ry = 1170, R, = 700. (d)

Taylor vortex flow

128. Laminar Taylor vortices in a narrow gap. A larger inner cylinder in the

wavy vortex flow

Turbulent vortex flow

131. Axisymmetric turbulent Taylor vortices. The conditions are
as in the pair of photographs on the opposite page, but at 1625 times
the critical speed. A sudden start produces chaotic motion at first, but
this regylar permanent turbulent pattern emerges within a minute.

Koschmieder 1979

Wavelets (WVL); R, = 1250, R, = 730. = 30 for all four cases. The letters I and O indicate the

Taylor-vortex-flow boundaries; R, = 2030, &, = 300. I" = 30 in both cases.
inflow and outflow boundaries, respectively

Corkscrew patterns




Fiouxe 9, Intermittent (INT) in a flow with i

:"‘,';':';l‘:fu', cy"m . _m_; f m prog sy dy sl e ’2: Fiouke 14. thgnphmq;;:e; :;fn m :ug::l::m as Ry was h:cm-d rm» ﬁxed
Intermittent turbulence Spiral turbulence

‘\'\ : J : Corkscr‘ew
200 -\.\ Unexplored r Wavelets
N Ripple : - Wivy vortices'

Featureless turbulence N [

N\ 'I‘urbulcnl! Wavy inflow
- i\ Taylor | Wavy )/
N vortices 7] . inflow
N i1 +(w1sl/
4 B | N\
Spiral turbulence .\, Medulated I | i

S ,_..._,_“f‘.'_“.s_ B

Couette

Couctte flow: spirals flow
0 i i phiic, 1 1
—4000 =300 —2000 x - 1000 0 1000

o

Fig. 17.12 Regime diagram for rotating Couette flow. (Note that the name

‘Couette flow’ on the diagram denotes the purely azimuthal motion, Section 9. 3)"
From Ref. [61].
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IN
stratified fluids

Observations
for Q/N>1

Gortler vortices




Gortler vortices appear in curved boundaries due to the centrifugal
force. The 'stratification’ of the centrifugal force in the boundary is
unstable.

§ ~ \/vL/Usx and §/L ~ Re2. The approximation is close to that
of the Taylor flow (therefore often called Taylor-Gortler vortices).
For the stability analyses three approximations are made

1) The boundary layer is much thinner than the radius § < R. This
corresponds to the thin gap approximation.

2) The basic flow is parallel to the boundary. The centrifugal effects
only appear in the perturbations.

3) The stability analyses is local, and independent on x, whereas
the y component of the basic flow is neglected

to leading order in §/R we obtain

(D? — 2% —w)(D*x —a®) v = —a*ulu
d
(D* - 2> —w)u = d—gu
o dv
boundary conditions : u = v = g = Oatn=0and n — ¢
7

n=y/6, a=kiand w=00%/v. p = (2U0/v)*(5/R).
The Gortler number is

G = (UssB/v) (0/R)2

The Gortler number is based on the momentum thickness 6 of the
boundary layer, with

0 = Constanty/vx/Us ~ 6(x)

Constant = 0.664 Schlichting 1960

Gortler vortices

100.0

Rec=(Uw 0t )/v

I | it ite
Lif oy

10.0

Ol:lllll\ ! T T T
0

Maximum amplification

P/~
\blCy

L
TR |

0.01
[

v/

10.0

Otr = momentum thickness at transition.

cross view of Gortler votices
Petitjean JFM 1994

i

Schlichting 1960

Dean problem (1928)
for flows in between curved plates and pipes

ue=V(r) u:=0, ur=0

N.S equations in cylindrical coord's  with Ur =Uz=0

Du, ug 10p uy 2 duy

Y0 2P| Ay — - 297

Dt r p Or v T2 200

Dug =~ urug 1190p ug| 2 du,

L Y R e cl W
Du, 10p

o = T, +vAuz  two balances




DEAN problem

N.S equations in cylindrical coord’s

Ur =Uz=0
Du, ug 10p uy 2 duy
_ 20 _ _-9F Au, — - - 22
Dt| r par—H/( TR T 2
Dug  uyug 110p ug| 2 Ou,
futel2) — |2z Aup — A4 2
bt Ty Py R = BT
Du, 10p
- 2P A,
Dt p82+y !
where
2 10 12 @
or2 " rdr  r2o62  9z2
and

b_o_ ,9 wo 0
Dt ot Yar T rae " Yoz

Mass conservation is again given by

ou, ur 10uy Ou,

ot e T O

Thus directly from the Navier Stokes equation we have the two

balances

V2 10p 1 0p
— = d vDD.,V = ——]
r p or and v pr 96\o

The general solution of this flow is given by

V(r)= 2;}%0 (rln(r) + Cr+ f)

and boundary conditions
V(R1)=V(R) =0

providing expressions for E = f((Ry, R2) and C = g(Ry, R»).

Dean instability
* Small gap approximation :
d<<Ro where d= R;—-R; and Ro=(R| + R|)/2

x=rd Ro and—1/2 < x <I/2

-d* 0P

::>\/(|") ZB/ZVm(|_4X2) szm%b

Note: Rayleigh centrifugal criterion (instability) di(TZQ)Z <0
,

Flow is unstable for 0 < x < /2
Flow is table for —1/2<x< 0

Dean instability

* As for Taylor-Couette flow
axisymmetric perturbations give

(D? —a? —0)(D — a®)u = (1 — 4z?)v a= kdz
2 2 _ 2 o i
(D* —a” —o)v = —a”Azu .

. " 1
With boundary conditions Du=u=v=0at z = i?

2
A= 36 Fe7d and Re= —de
Rl 14
N\ is equivalent to the Taylor number Ta .

In the literature, the Dean number is used pe = Re (g) :

1

Ciritical values for onset of instability are
A=46458 and De = 35.92 for a.=3.95.

(Gibson & Cook 1974, numerical solutions)




Dean instability

Exercise:
Compare this with a Poiseuille flow perturbed with a 2D
disturbance which is unstable for

3 d\ 1 .
i‘/m (2> > > 5772 je.when Re > Re.= 7696

How straight should a canal be to see this instability
and NOT the Dean instability ?




