
Centrifugal instability

Drazin & Reid, 1981

Rotating cylinder (large gap)

Centrifugal Instability
Let us consider a non-viscous fluid (i.e. Euler equations) in
cylindrical coordinates. Then the Euler equations are in cylindrical
coordinates
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Mass conservation is given by
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Consider axisymmetry so that we have @
@✓ = 0. The equations then

reduce to
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Mass conservation is now given by
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Rayleigh (1916) discovered that the ✓-component of these
equations can be written in the form
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~Kelvin’s circulation theorem



This means that angular momentum is conserved, i.e.
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Or for the energy we can write
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For stability we have, according to Rayleigh’s energy (1916)
argument :
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Rayleigh’s energy argument

The potential energy is ⇥L2
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the force F per unit mass in radial direction is :
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in other words, there is a gradient force F with dF
dr �= 0.

(Note, in a stratified fluid we have F = mg and dF
dz = dm

dz g �= 0)

Heuristic argument
Consider again the exchange of two rings of fluids (like before
particles in a stratified fluid), supposing that their masses are
equal :

2�r1dr1 = 2�r2dr2 = ds

when do expect instability ?
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Consider the energy of two fluid rings r1 and r2,and there initial
and final energy state . . .
Initial state is :
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Instability when the kinetic energy increases (�E > 0). thus
stability for
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this is known as Rayleigh’s stability criterion for centrifugal
instability.

For a displacement dr we have for stability when
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This criterion is often written in the form :
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this is a necessarry and su✏cient condition !
In fact we have an angular ’stratification’ of momentum, which is
stable when constant or increasing monotonically with r .

As for convection we can again estimate a characteristic number for
centrifugal instability opposed by viscous e�ects. The Taylor
number �

NOTE



NOTE on Ri number:
The Richardson number Ri>0.25 is a necessary and sufficient 
condition for stability  with respect to KH instability.
(Abarbanel et al 1984, Ri>1 formally stable)

This means that an unstable shear flow is suppressed by buoyancy 
in strongly stratified flows, i.e.  when the Richardson is high. 

The condition for instability Ri<0.25 is necessary but not sufficient. 
For weak stratification, instability is set by the shear instability 
determined by the Rayleigh and Fjörtöft criteria; ——>.    
These are only necessary conditions. 

necessary and sufficient condition for stability ….
Taylor number

Consider the Stokes e↵ect on a little sphere of radius r0, speed Vc
and density ⌅. the sphere looses momentum p = mvc in a time ⇧c
due to viscous drag, where mass m = 4/3⇤r3

0⌅. Since the Stokes
force due to friction on a particle is equal to 6⇤µr0vc we obtain
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, and A is a geometric constant.
After a time ⇧� the particle has travelled a distance �r = vc⇧� .
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Ω Only the inner cylinder rotates

Taylor number
The centrifugal force on the particle is Fm = m⌦2(r)r and changes
radially. Thus over the distance �r its variation is
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where C’ and A are geometric constants.
Instability for Fm > Fviscous , i.e. C 0
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Neglecting geometric coefficients and with in the limit of the
largest perturbation r0 ! a , the Taylor number is
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(see Guyon, Hulin & Petit p 582)
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Linear stability analyses of the inviscid case
Euler equations in cylindrical coord’s
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The basic flow is only in azimuthal direction and given by
~u = (0,V , 0). (⇢=constant). Perturbations are given by

~u = (u0r ,V + u0✓, u
0
z) and V = ⌦r

p = P + p0,

Substitution yields, after selection of the leading order terms, the
perturbations equations (primes omitted)
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Consider perturbations of the form (see Drazin & Reid chapter 3, ;
Chandrasekhar p 303) with p

⇢ = $, and ⇢=constant.

(~u,$) = (û(r), v̂(r), ŵ(r), $̂(r))e(i(n✓+kz)+�t)
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r
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with D = d
dr and D⇤ =

d
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1
r . Eliminating v ,w , and $ yields a

single equation with � = � + in⌦, �(r) the Rayleigh determinant.
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Solve with u = 0 at r = R1 and R2.

In the axisymmetric case, the perturbations are the same for every
value of ✓ since for all variables @

@✓ = 0.
But in the non axisymmetric case, we have to follow the
perturbations on a particle motion along its azimuthal trajectory :
we have to consider its Lagrangian displacement ⇠(x , t) .
For a perturbation �q on a basic flow Q (q=whatever) we can
write

�q = q(x + ⇠(x , t), t)� Q(x , t)
The corresponding Eulerian change is q(x , t) = Q(x , t) + q0.
To leading order in ⇠ this is

�q = q0 + ⇠.rq.

For an element at x the change in Lagrangian velocity at x + ⇠ is
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Using the normal mode analyses we can set
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�r $ = 0 and r = R1 and r = R2.



This is the eigenvalue problem for the frequencies of a rotating 
column of fluid ! (Note that Ω= constant)  (Kelvin 1880a, 
Chandrasekhar, Fultz 1964).

Using the normal mode analyses we can set

⇠ = (⇠, ⌘, ⇣)e(i(n✓+kz)+�t)

so that with (1) follows u = �⇠, v = �⌘ � r(D⌦)⇠, w = �⇣

Substitution yields : (�2 + 2r⌦D⌦)⇠ � 2⌦�⌘ = �D$
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With ⇠ = 0 at r = R1 and R2, and ⌦=constant
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and BC’s :D$ + 2in⌦
�r $ = 0 and r = R1 and r = R2. Related work is on the instability of vortices (Ω≠ constant) 

with a different eigenvalue problem and boundary conditions.

According to Drazin and Reid (refs to Howard 1962, and Howard 
and Gupta 1962) the Rayleigh criterion is invalid for azimuthal 
perturbations. 

Later work shows that there are cases of validity of an adapted 
Rayleigh criterion. 

Rayleigh’s inflection point instability for circular flows

Consider two-dimensional perturbations (u0
r , u0

✓) ⇠ �(r)e(�t+in✓)

and no z 0 dependence (also no axi-symmetry) then we obtain for
the dispersion relation
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and dZ
dr = r d2⌦

dr2 + 3d⌦
dr . From eq (3) we can derive Rayleigh’s

inflection point theorem as for a bounded shear flow. The flow is
unstable when there is a change in sign of vorticity, i.e. there is an
inflection point in the azimuthal velocity u0

✓.

Example of  a vortex in a fluid in rigid body rotation

Intermezzo vortices Exercise:
In a rotating fluid the Euler equations of motions 
(u=(u,v,w)=(ur,vθ,wz)) are given by

with D/Dt and continuity as above 

Using the argument changing fluid rings, and supposing axi-
symmetry, show that Rayleigh’s criterion for instability reads:  
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Rotating tank

fluid in rigid 
body rotation

+ _

vθω

_
+

inflection 
0 r

Intermezzo vortices

van Heijst & Kloosterziel Nature 1991, Stability: Kloosterziel van Heijst JFM 1991

Intermezzo vortices



Taylor Couette:  the basic state            viscous flow
Assume an axisymmetric basic flow, i.e. :

u✓ = V (r) = r⌦(r) and ur = uz = 0

p = P(r) and further
@
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= 0

with the Navier Stokes equations we can solve the flow in the basic
state
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with the latter equation we obtain :
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Now solve for A and B.
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Use boundary conditions : No slip conditions at R1 and R2

⌦1 = A + B/R2
1

⌦2 = A + B/R2
2

with µ = ⌦2
⌦1

and ⌘ = R1
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we obtain expressions for A and B
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Inviscid case:

The Rayleigh discriminant is defined as :
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B = 1�µ/⌘2

1�µ .

With � we can determine stability of the Taylor Couette flow.

       (remember, this is the 
>0    Rayleigh criterion 
        for  centrifugal stability) 

Inviscid case:

Ω2 Outer cylinder

Ω1
Rayleigh line Φ

η2Ω
1=Ω

2

stable (outer cylinder must rotate 
with speed η2  times the inner cylinder)

unstable Φ<0

stable Φ>0

counter rotating cylinders
0<μ<η2  and  η ≤ r ≤ 1

unstable Φ<0  

µ =
�2

�1
� =

R1

R2

0

Inner cylinder

 Viscous effects will postpone the instability, i.e. in the viscous case φc> φc inviscid
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Φ<0  
cylinders rotate in opposite directions
 (μ<0)

Ω1

Ω2

R2
R1

Φ<0 Φ>0

nodal surface with Ω=0
and radius 1/√k

Taylor  number

Ta =
4�2

1

⇥2
R4

1
(1� µ)(1� µ/�2)

(1� �2)2

Taylor number for Taylor-Couette flow
viscous effects postpone instability

Ta~ centrifugal/viscous

Remember Re ~ inertia/viscous effects

Only the inner cylinder rotates : µ=0, k=1 and  Ta=...R14/(1–η2)2 ≈ 4Ω12 R14/ν2

µ =
�2

�1
� =

R1

R2

Inviscid case:

Exercise : The Rayleigh discriminant is defined as �(r) = 1
r3

d(r2⌦)2

dr .
Show that for � > 0 ) k2/�2 < 0 and � < 0 ) k2/�2 > 0.

Linear stability analyses of the viscous Taylor problem
The basic flow is only in azimuthal direction and given by
~u = (0,V , 0). (⇢=constant). Perturbations are given by

~u = (ur ,V + u✓, uz)

p = P + �p, and $ =
�p

⇢

Substitution yields, after selection of the leading order terms, the
perturbations equations
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Linear stability analyses of the viscous Taylor problem

Consider perturbations of the form (see Drazin & Reid p.91-93, ;
Chandrasekhar p 303)

(~u,$) = (û(r), v̂(r), ŵ(r), $̂(r)e(ikz+�t)

�u � 2V
r
v = �D$ + ⌫(DD⇤v � k2)

�v + (D⇤V )u = ⌫(DD⇤ � k2)u

�w = �ik$ +

D⇤u + ikw = 0

With D = d
dr and D⇤ =

d
dr +

1
r we obtain :

[⌫(DD⇤ � k2)� �](DD⇤ � k2) u = 2k2⌦ v

[⌫(DD⇤ � k2)� �] v = (D⇤V ) u

Note : The Rayleigh discriminant is defined as �(r) = 1
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d(r2⌦)2

dr .
Show that for � > 0 ) k2/�2 < 0 and � < 0 ) k2/�2 > 0.



With

x = (r � R0)/d where R0 =
1
2
(R1 + R2), ⌦(r) = ⌦1g(x)

a = kd and ! = �d2/⌫, and replace u 2Ad2/⌫ ! u

we obtain in dimensionless units after substitution ...

(DD⇤ � a2 � !)(DD⇤ � a2) u = �a2T g(x) v

(DD⇤ � a2 � !) v = u

and u = Du = v = 0 at x = ±1
2

T =
�4A⌦1d4

⌫2 =
�4A⌦1R4

1
⌫2 f (⌘, µ)

is the Taylor number, f a function of µ = ⌦2/⌦1 and ⌘ = R1/R2.

Solutions have been found for the narrow gap approximation :

d = R2 � R1 ⌧ 1
2
(R1 + R2)

The approximate Taylor number is then T = 4A⌦1d4

⌫

Consequences :
1) D⇤ = D
2) ⌦(r) ⇠ ⌦1[1 � (1 � µ) r�R1

d ], i.e. a linear variation with r
3) Cross-term perturbations in the centrifugal term (⇠ uru✓/r) neglected.

In the marginal state, ! = 0 (i.e. � = 0), the general equations reduce to

(D2 � a2)3u = �a2T
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1
2
)
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v and ↵ = µ� 1

(D2 � a2) v = u

u = Du = v = 0 at x = ±1
2

Solutions are of the form v = ⌃1
m=1Cm sinm⇡x

Substitution of this solution in the equations allows us to find the
general solution

u = ⌃1
m

Cm

(m2⇡2 + a2)2
{Am

1 cosh ax + Bm
1 sinh ax + ...}

The coefficients Am
1 , Am

2 and Bm
1 , Bm

2 can be determined with
the boundary conditions u = Du = v = 0 at x = ±1

2 .

Manipulation of the thus obtained equations provides to leading
order the solution

T =
2

2 + ↵

(⇡2 + a2)3

a2{1 � 16a⇡2 cosh2 1
2a/[(⇡

2 + a2)2(sinha+ a)]}

In approximation (↵ = �(1 � µ)) we obtain then for amin = 3.12
the critical Taylor number equal to

Tc =
2

2 + ↵
1715 =

1715
1
2(1 + µ)

with 0 < µ < 1

(1rst approx. Drazin & Reid), More precise approximations
(Chandrasekhar) obtain Tc = 1708.

Tc

ac

Critical Taylor numbe Tc =  1708 and minimum wave number a=3.12. 

Physics are analogue to convection and critical numbers are very close.

unstable
µ=constant
η=constant

T

a



Taylor vortex flow

wavy vortex flow

Turbulent vortex flow

Modulated wavy flow 

Corkscrew patterns 

Taylor Couette
Different regimes



Spiral turbulenceIntermittent turbulence Andereck, Liu & Swinney JFM164, 1986                                                                                  

IN 
stratified fluids

Observations 
for Ω/N>1

Görtler vortices



Gortler vortices appear in curved boundaries due to the centrifugal
force. The ’stratification’ of the centrifugal force in the boundary is
unstable.

� ⇠
p
⌫L/U1 and �/L ⇠ Re�

1
2 . The approximation is close to that

of the Taylor flow (therefore often called Taylor-Gortler vortices).
For the stability analyses three approximations are made

1) The boundary layer is much thinner than the radius � ⌧ R . This
corresponds to the thin gap approximation.
2) The basic flow is parallel to the boundary. The centrifugal effects
only appear in the perturbations.
3) The stability analyses is local, and independent on x , whereas
the y component of the basic flow is neglected

to leading order in �/R we obtain

(D2 � a2 � !)(D2 ⇤ �a2) v = �a2µUu

(D2 � a2 � !) u =
dU
d⌘

u

boundary conditions : u = v =
dv
d⌘

= 0 at ⌘ = 0 and ⌘ ! 1

⌘ = y/�, a = k� and ! = ��2/⌫. µ = (2U1�/⌫)2(�/R).
The Görtler number is

G = (U1✓/⌫) (✓/R)
1
2

The Görtler number is based on the momentum thickness ✓ of the
boundary layer, with

✓ = Constant
p
⌫x/U1 ⇠ �(x)

Constant ≈ 0.664 Schlichting 1960

Görtler  vortices

cross view of  Görtler votices
PetitJean JFM 1994

Schlichting 1960

Rec=(U∞ θtr )/ν

 θ/R  θ/R .105

7

θtr = momentum	thickness	at	transi/on.																								

N.S equations in cylindrical coord’s
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= 0

Dean problem (1928) 
for flows in between curved plates and pipes

uθ=V(r) uz=0, ur=0 

with Ur =Uz=0

two balances

R1

R2



DEAN problem
N.S equations in cylindrical coord’s
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Mass conservation is again given by

@ur
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+
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= 0

Ur =Uz=0
Thus directly from the Navier Stokes equation we have the two
balances

V 2

r
=

1
⇢

@p

@r
and ⌫DD⇤V =

1
⇢r

@p

@✓ 0

The general solution of this flow is given by

V (r) =
1

2⇢⌫
@p

@✓ 0

✓
r ln(r) + Cr +

E

r

◆

and boundary conditions

V (R1) = V (R2) = 0

providing expressions for E = f ((R1,R2) and C = g(R1,R2).

d

                                       Dean instability  

* Small gap approximation :  
 
          d<<R0  where d= R2 –R1  and R0=(R1  + R1)/2

            
             x=r – R0    and –1/2 ≤ x ≤1/2
 
            ==> V(r ) ≈3/2 Vm (1– 4 x2) Vm =

�d2

12⇢⌫2R1

@P

@✓
|0

Note: Rayleigh centrifugal criterion (instability)

Flow is unstable for  0   <  x < 1/2
Flow is table for     –1/2 < x <  0

d

dr
(r2⌦)2 < 0

Dean instability
* As for Taylor-Couette flow 

   axisymmetric perturbations give

(D2 � a2 � �)(D � a2)u = (1� 4x2)v

(D2 � a2 � �)v = �a2�xu

a = kd

� =
sd2

⌫

⇤ =
36Re2d

R1
and Re =

Vmd

⌫

With boundary conditions 

Λ is equivalent to the Taylor number Ta
In the literature, the Dean number is used De = Re

✓
d

R1

◆ 1
2

Critical values for onset of instability are
                        Λc=46458 and De	= 35.92 for ac=3.95.   

Du = u = v = 0 at x = ±1

2

(Gibson & Cook 1974, numerical solutions)



Dean instability

Exercise: 
Compare this with a Poiseuille flow perturbed with a 2D 
disturbance which is unstable for  

3

2
Vm

✓
d

2

◆
1

⌫
> 5772 i.e. when Re > Rec = 7696

How straight should a canal be to see this instability 
and NOT the Dean instability ? 


