Centrifugal instability

(b)

Centrifugal Instability

Let us consider a non-viscous fluid (i.e. Euler equations) in cylindrical coordinates. Then the Euler equations are in cylindrical coordinates

$$
\begin{gathered}
\frac{D u_{r}}{D t}-\frac{u_{\theta}^{2}}{r}=-\frac{1}{\rho} \frac{\partial p}{\partial r} \\
\frac{D u_{\theta}}{D t}+\frac{u_{r} u_{\theta}}{r}=-\frac{1}{\rho} \frac{1}{r} \frac{\partial p}{\partial \theta} \\
\frac{D u_{z}}{D t}=-\frac{1}{\rho} \frac{\partial p}{\partial z}
\end{gathered}
$$

and

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial}{\partial \theta}+u_{z} \frac{\partial}{\partial z} .
$$

Mass conservation is given by

$$
\frac{\partial u_{r}}{\partial r}+\frac{u_{r}}{r}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial u_{z}}{\partial z}=0 \quad \text { (continuity) }
$$

Consider axisymmetry so that we have $\frac{\partial}{\partial \theta}=0$. The equations then reduce to

$$
\begin{gathered}
\frac{D u_{r}}{D t}-\frac{u_{\theta}^{2}}{r}=-\frac{1}{\rho} \frac{\partial p}{\partial r} \\
\frac{D u_{\theta}}{D t}+\frac{u_{r} u_{\theta}}{r}=0 \\
\frac{D u_{z}}{D t}=-\frac{1}{\rho} \frac{\partial p}{\partial z}
\end{gathered}
$$

and

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+u_{z} \frac{\partial}{\partial z}
$$

Mass conservation is now given by

$$
\frac{\partial u_{r}}{\partial r}+\frac{u_{r}}{r}+\frac{\partial u_{z}}{\partial z}=0
$$

Rayleigh (1916) discovered that the θ-component of these equations can be written in the form

$$
\frac{D\left(r u_{\theta}\right)}{D t}=0 \quad \sim \text { Kelvin's circulation theorem }
$$

This means that angular momentum is conserved, i.e.

$$
\frac{D r u_{\theta}}{D t}=\frac{D \Omega r^{2}}{D t}=0 \quad \text { where } u_{\theta}=\Omega r
$$

Or for the energy we can write

$$
\frac{D\left(r u_{\theta}\right)^{2}}{D t}=\frac{D L^{2}}{D t} \text { with } L^{2}=\left(\Omega r^{2}\right)^{2}
$$

For stability we have, according to Rayleigh's energy (1916) argument:

$$
\frac{D L^{2}}{D t}>0
$$

Consider the energy of two fluid rings r 1 and r 2 , and there initial and final energy state ...
Initial state is :

$$
E_{t_{0}}=\frac{L_{1}^{2}}{r_{1}^{2}}+\frac{L_{2}^{2}}{r_{2}^{2}} \text { and } E_{t_{1}}=\frac{L_{2}^{2}}{r_{1}^{2}}+\frac{L_{1}^{2}}{r_{2}^{2}}
$$

the difference in energy is then :

$$
\begin{aligned}
\Delta E=E_{t_{1}} & -E_{t_{0}}=\left[\left(\frac{L_{2}^{2}}{r_{1}^{2}}+\frac{L_{1}^{2}}{r_{2}^{2}}\right)-\left(\frac{L_{1}^{2}}{r_{1}^{2}}+\frac{L_{2}^{2}}{r_{2}^{2}}\right)\right] d s \\
& =\left(L_{2}^{2}-L_{1}^{2}\right)\left(\frac{1}{r_{1}^{2}}-\frac{1}{r_{2}^{2}}\right) d s
\end{aligned}
$$

Instability when the kinetic energy increases ($\Delta E>0$). thus stability for

$$
\frac{D L^{2}}{D t}>0
$$

this is known as Rayleigh's stability criterion for centrifugal instability.

Rayleigh's energy argument

The potential energy is $\frac{\rho L^{2}}{2 r^{2}}=\frac{1}{2} \frac{\Omega^{2} r^{4}}{r^{2}}=\frac{\Omega^{2} r^{2}}{2}$
the force F per unit mass in radial direction is :

$$
F=\frac{u_{\theta}^{\mathbf{2}}}{r}=\frac{L^{2}}{r^{3}}
$$

in other words, there is a gradient force F with $\frac{d F}{d r} \neq 0$.
(Note, in a stratified fluid we have $F=m g$ and $\frac{d F}{d z}=\frac{d m}{d z} g \neq 0$)
Heuristic argument
Consider again the exchange of two rings of fluids (like before particles in a stratified fluid), supposing that their masses are equal :

For a displacement $d r$ we have for stability when

$$
\frac{\partial L^{2} / r^{2}}{\partial r}=\frac{\partial\left(r^{2} \Omega\right)^{2}}{\partial r}>0
$$

This criterion is often written in the form :

$$
\phi(r)=\frac{1}{r^{3}} \frac{\partial\left(r^{2} \Omega\right)^{2}}{\partial r}>0
$$

this is a necessarry and sufficient condition!
In fact we have an angular 'stratification' of momentum, which is stable when constant or increasing monotonically with r.

As for convection we can again estimate a characteristic number for centrifugal instability opposed by viscous effects. The Taylor number \rightarrow
necessary and sufficient condition for stability

NOTE on Ri number

The Richardson number Ri>0.25 is a necessary and sufficient condition for stability with respect to KH instability.
(Abarbanel et al 1984, Ri> I formally stable)
This means that an unstable shear flow is suppressed by buoyancy in strongly stratified flows, i.e. when the Richardson is high.

The condition for instability $\mathrm{Ri}<0.25$ is necessary but not sufficient. For weak stratification, instability is set by the shear instability determined by the Rayleigh and Fjörtöft criteria; \quad _ . These are only necessary conditions.

Taylor number
The centrifugal force on the particle is $F_{m}=m \Omega^{2}(r) r$ and changes radially. Thus over the distance δ_{r} its variation is

$$
F_{m}=m \frac{\partial \Omega^{2}(r) r}{\partial r} \delta r \approx C m \frac{\Omega^{2} R}{a} v_{c} \tau_{\nu}=C^{\prime} r_{0}^{3} \rho \frac{\Omega^{2} R}{a} v_{c} \tau_{\nu}=\frac{C^{\prime}}{A} \frac{\rho}{\nu} \frac{v_{c} \Omega^{2} r_{0}^{5} R}{a}
$$

where C^{\prime} and A are geometric constants.
Instability for $F_{m}>F_{\text {viscous }}$, i.e. $\quad \frac{C^{\prime}}{A} \frac{\rho}{\nu} v_{c} \Omega^{2} \frac{r_{r}^{5} R}{a}>6 \pi \rho \nu r_{0} v_{c}$ so that

$$
\frac{F_{M}}{F_{\text {visc }}}=\frac{\Omega^{2} R r_{0}^{4}}{\nu^{2} a}>\frac{A}{C^{\prime}} 6 \pi
$$

Neglecting geometric coefficients and with in the limit of the largest perturbation $r_{0} \rightarrow a$, the Taylor number is

$$
T=\frac{F_{M}}{F_{\text {visc }}}=\frac{\Omega^{2} R a^{3}}{\nu^{\mathbf{2}}}
$$

(see Guyon, Hulin \& Petit p 582)

Taylor number

Consider the Stokes effect on a little sphere of radius r_{0}, speed V_{c} and density ρ. the sphere looses momentum $p=m v_{c}$ in a time τ_{c} due to viscous drag, where mass $m=4 / 3 \pi r_{0}^{3} \rho$. Since the Stokes force due to friction on a particle is equal to $6 \pi \mu r_{0} v_{c}$ we obtain
$m \frac{\partial v_{c}}{\partial t}=4 / 3 \pi r_{0}^{3} \rho \frac{\partial v_{c}}{\partial t}=$ Stokes force on the particle $=-6 \pi \mu r_{0} v_{c}$
so that $\frac{1}{\tau_{\nu}}=\frac{1}{v_{c}} \frac{\partial v_{c}}{\partial t}=A \frac{\nu}{r_{0}^{2}}$, and A is a geometric constant.
After a time τ_{ν} the particle has travelled a distance $\delta_{r}=v_{c} \tau_{\nu}$.

Linear stability analyses of the inviscid case
Euler equations in cylindrical coord's

$$
\begin{aligned}
\frac{D u_{r}}{D t}-\frac{u_{\theta}^{2}}{r} & =-\frac{1}{\rho} \frac{\partial p}{\partial r} \\
\frac{D u_{\theta}}{D t}+\frac{u_{r} u_{\theta}}{r} & =-\frac{1}{\rho} \frac{1}{r} \frac{\partial p}{\partial \theta} \\
\frac{D u_{z}}{D t} & =-\frac{1}{\rho} \frac{\partial p}{\partial z}+\nu \Delta u_{z}
\end{aligned}
$$

where

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

and

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial}{\partial \theta}+u_{z} \frac{\partial}{\partial z}
$$

Mass conservation is again given by

$$
\frac{\partial u_{r}}{\partial r}+\frac{u_{r}}{r}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial u_{z}}{\partial z}=0
$$

The basic flow is only in azimuthal direction and given by
$\vec{u}=(0, V, 0)$. ($\rho=$ constant $)$. Perturbations are given by

$$
\begin{aligned}
& \vec{u}=\left(u_{r}^{\prime}, V+u_{\theta}^{\prime}, u_{z}^{\prime}\right) \text { and } V=\Omega r \\
& p=P+p^{\prime}
\end{aligned}
$$

Substitution yields, after selection of the leading order terms, the perturbations equations (primes omitted)

$$
\begin{aligned}
\frac{\partial u_{r}}{\partial t}+\Omega \frac{\partial u_{r}}{\partial \theta}-\frac{2 V}{r} u_{\theta} & =-\frac{1}{\rho} \frac{\partial p}{\partial r} \\
\frac{\partial u_{\theta}}{\partial t}+\Omega \frac{\partial u_{\theta}}{\partial \theta}+\left(\frac{d V}{d r}+\frac{V}{r}\right) u_{r} & =-\frac{1}{\rho} \frac{1}{r} \frac{\partial p}{\partial \theta} \\
\frac{\partial u_{z}}{\partial t}+\Omega \frac{\partial u_{z}}{\partial \theta} & =-\frac{1}{\rho} \frac{\partial p}{\partial z}
\end{aligned}
$$

and continuity

$$
\nabla \cdot \vec{u}=\frac{\partial u_{r}}{\partial r}+\frac{u_{r}}{r}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial u_{z}}{\partial z}=0
$$

and $\nabla^{2}=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial z^{2}}$.

Consider perturbations of the form (see Drazin \& Reid chapter 3, Chandrasekhar p 303) with $\frac{p}{\rho}=\varpi$, and $\rho=$ constant.

$$
\begin{aligned}
&(\vec{u}, \varpi)=(\hat{u}(r), \hat{v}(r), \hat{w}(r), \hat{\varpi}(r)) e^{(i(n \theta+k z)+\sigma t)} \\
&(\sigma+i n \Omega) u-\frac{2 V}{r} v=-D \varpi \\
&(\sigma+i n \Omega) v+\left(D_{*} V\right) u=-i \frac{n}{r} \varpi \\
&(\sigma+i n \Omega) w=-i k \varpi \\
& D_{*} u+i n \frac{v}{r}+i k w=0
\end{aligned}
$$

with $D=\frac{d}{d r}$ and $D_{*}=\frac{d}{d r}+\frac{1}{r}$. Eliminating v, w, and ϖ yields a single equation with $\gamma=\sigma+i n \Omega, \phi(r)$ the Rayleigh determinant.
$\gamma D\left(\frac{r^{2} D_{*} u}{n^{2}+k^{2} r^{2}}\right)-\left\{\gamma^{2}+\frac{k^{2} r^{2} \phi}{n^{2}+k^{2} r^{2}}+i n \gamma r D\left(\frac{D_{*} V}{n^{2}+k^{2} r^{2}}\right)\right\} u=0$
Solve with $u=0$ at $r=R_{1}$ and R_{2}.

Using the normal mode analyses we can set

$$
\boldsymbol{\xi}=(\xi, \eta, \zeta) e^{(i(n \theta+k z)+\sigma t)}
$$

so that with (1) follows $u=\gamma \xi, \quad v=\gamma \eta-r(D \Omega) \xi, \quad w=\gamma \zeta$

Substitution yields : $\left(\gamma^{2}+2 r \Omega D \Omega\right) \xi-2 \Omega \gamma \eta=-D \varpi$

$$
\gamma^{2} \eta+2 \Omega \gamma \xi=-i \frac{n}{r} \varpi
$$

$$
\gamma^{2} \zeta=-i k \varpi
$$

with continuity :

$$
D_{*} \xi+i n \frac{\eta}{r}+i k \zeta=0
$$

With $\xi=0$ at $r=R_{1}$ and R_{2}, and $\Omega=$ constant

$$
\left(D_{*} D-\frac{n^{2}}{r^{2}}\right) \varpi=k^{2}\left(1+\frac{4 \Omega^{2}}{\gamma^{2}}\right) \varpi
$$

and BC's : $D \varpi+\frac{2 i n \Omega}{\gamma r} \varpi=0$ and $r=R_{1}$ and $r=R_{2}$

$$
\begin{array}{r}
\quad\left(D_{*} D-\frac{n^{2}}{r^{2}}\right) \varpi=k^{2}\left(1+\frac{4 \Omega^{2}}{\gamma^{2}}\right) \varpi \\
\text { and } B C^{\prime} s: D \varpi+\frac{2 i n \Omega}{\gamma r} \varpi=0 \text { and } r=R_{1} \text { and } r=R_{2} .
\end{array}
$$

This is the eigenvalue problem for the frequencies of a rotating column of fluid! (Note that $\Omega=$ constant) (Kelvin 1880a, Chandrasekhar, Fultz 1964).

Intermezzo vortices

Rayleigh's inflection point instability for circular flows

Consider two-dimensional perturbations $\left(u_{r}^{\prime}, u_{\theta}^{\prime}\right) \sim \phi(r) e^{(\sigma t+i n \theta)}$ and no z^{\prime} dependence (also no axi-symmetry) then we obtain for the dispersion relation

$$
\begin{equation*}
(\sigma+i n \Omega)\left(D_{*} D-\frac{n^{2}}{r^{2}}\right) \phi-\frac{i n}{r} \frac{d Z}{d r} \phi=0 \tag{3}
\end{equation*}
$$

and $\frac{d Z}{d r}=r \frac{d^{2} \Omega}{d r^{2}}+3 \frac{d \Omega}{d r}$. From eq (3) we can derive Rayleigh's inflection point theorem as for a bounded shear flow. The flow is unstable when there is a change in sign of vorticity, i.e. there is an inflection point in the azimuthal velocity u_{θ}^{\prime}.

Example of a vortex in a fluid in rigid body rotation

Related work is on the instability of vortices ($\Omega \neq$ constant $)$ with a different eigenvalue problem and boundary conditions.

According to Drazin and Reid (refs to Howard 1962, and Howard and Gupta 1962) the Rayleigh criterion is invalid for azimuthal perturbations.

Later work shows that there are cases of validity of an adapted Rayleigh criterion.

Exercise:

In a rotating fluid the Euler equations of motions
$\left(\underline{u}=(u, v, w)=\left(u_{r}, v_{\theta}, w_{z}\right)\right)$ are given by

$$
\begin{aligned}
\frac{D u}{D t}+f v-\frac{u^{2}}{r} & =-\frac{1}{\rho} \frac{\partial p}{\partial r} \\
\frac{D v}{D t}+f u+\frac{u v}{r} & =-\frac{1}{\rho} \frac{1}{r} \frac{\partial p}{\partial \theta} \\
\frac{D w}{D t} & =-\frac{1}{\rho} \frac{\partial p}{\partial z}
\end{aligned}
$$

with D/Dt and continuity as above
Using the argument changing fluid rings, and supposing axisymmetry, show that Rayleigh's criterion for instability reads:

$$
\frac{d}{d r}\left(v_{0} r+\frac{1}{2} f r^{2}\right)^{2}<0
$$

stability if $v_{a b s} \omega_{a b s}>0$ at all positions r in the vortex flow

Intermezzo vortices

Figure 1 (d)
van Heijst \& Kloosterziel Nature 199|, Stability: Kloosterziel van Heijst JFM 199|

In a rotating system that rotates with angular velocity Ω - or on an f-plane - the
equation for the azimuthal velocity of circularly symmetric flows reads

$$
\frac{\mathrm{D} v}{\mathrm{D} v}+f u+\frac{u v}{r}=0
$$

where u is, as usual, the radial velocity component, v the azimuthal component and f the Coriolis parameter. For a rotating tank $f=2 \Omega$. The material derivative is defined here as

$$
\frac{\mathrm{D}}{\mathrm{D} t}=\frac{\partial}{\partial t}+u \frac{\partial}{\partial r}+w \frac{\partial}{\partial z},
$$

where w is the vertical v_{1}
conservation law:
$\frac{\mathrm{D}}{\mathrm{D} t}\left(v r+\frac{1}{2} r^{2}\right)=0$.
For a vortex located at the centre of the rotating tank the term within the b For a vortex located at the centre of the rotating tank the term within the brackets
is the absolute angular momentum, or circulation, of a revolving fluid element at radius r. The equation for the radial velocity component is

$$
\frac{\mathrm{D} u}{\mathrm{D} t}-\frac{v^{2}}{r}-f_{v}=-\frac{1}{\rho} \frac{\partial p}{\partial r} .
$$

If the stationary basic vortex whose stability is under study has an azimuthal velocity distribution $v_{0}(r)$, the pressure-gradient force is necessarily

$$
\frac{1}{\rho} \frac{\mathrm{~d} p_{0}}{\mathrm{~d} r}=\frac{v_{0}^{2}}{r}+f v_{0} .
$$

If a fuid element is imagined to change its position slightly, from, say, r_{0} to $r^{\prime}=$
$r_{0}+\delta r$, it will acquire an azimuthal velocity $v^{\prime}\left(r^{\prime}\right)$ that is determined by the $r_{0}+\delta r$, it will acquire an azimuthal velocity $v^{\prime}\left(r^{\prime}\right)$ that is determined by the onservation law expressed by (5)

$$
\begin{aligned}
& v^{\prime}\left(r^{\prime}\right) r^{\prime}+\frac{1}{2} r^{\prime 2}=v_{0}\left(r_{0}\right) r_{0}+\frac{1}{2} f r_{0}^{2} . \\
& \text { s that are axisymmetric, and axisymmetry can only hold }
\end{aligned}
$$

This holds only for flows that are axisymmetric, and axisymmetry can only hold when all motion takes place in the form of an exchange of rings; this necessarily

Assuming that the prevailing pressure field is not changed by the motion, the lement experiences an acceleratio

$$
\begin{equation*}
\frac{\mathrm{D}^{2} \delta r}{\mathrm{D} t^{2}}=\left\{\frac{v^{\prime 2}}{r^{\prime}}+f v^{\prime}\right\}-\left\{\frac{v_{0}^{2}}{r^{\prime}}+f v_{0}\right\}, \tag{9}
\end{equation*}
$$

where v_{0} is understood to be evaluated at $r=r^{\prime}$. Taking (8) into account, the right hand side is found to be equal to

$$
\frac{1}{r^{\prime 3}}\left\{\left(v_{0}\left(r_{0}\right) r_{0}+\frac{1}{2} f r_{0}^{2}\right)^{2}-\left(v_{0}\left(r^{\prime}\right) r^{\prime}+\frac{1}{2} f r^{\prime 2}\right)^{2}\right\}
$$

If this is developed in a Taylor series around $r=r_{0}$, one obtains

$$
\frac{\mathrm{D}^{2} \delta r}{\mathrm{D} t^{2}}=-\left.\frac{\delta r}{r_{0}^{3}} \frac{\mathrm{~d}}{\mathrm{~d} r}\left(v_{0} r+\frac{1}{2} f r^{2}\right)^{2}\right|_{\mathrm{T}_{0}}+O\left(\delta r^{2}\right) .
$$

Assume, for example, that δr is positive ($\delta r=u \delta t ; u>0$), then this equation tell us that there is a tendency to accelerate it even farther away from its original position if, for some r_{0}

$$
\frac{\mathrm{d}}{\mathrm{~d} r}\left(v_{0} r+\frac{1}{2} f r^{2}\right)^{2}<0 .
$$

Taylor Couette: the basic state
Assume an axisymmetric basic flow, i.e. :

$$
\begin{aligned}
u_{\theta} & =V(r)=r \Omega(r) \text { and } u_{r}=u_{z}=0 \\
p & =P(r) \text { and further } \frac{\partial}{\partial \theta}=0
\end{aligned}
$$

with the Navier Stokes equations we can solve the flow in the basic state

$$
\begin{align*}
\frac{V^{2}}{r} & =\frac{1}{\rho} \frac{\partial P}{\partial r} \tag{2}\\
0 & =\nu\left(\Delta V-\frac{V}{r^{2}}\right) \tag{3}
\end{align*}
$$

with the latter equation we obtain :

$$
\begin{gathered}
\frac{\partial^{2} V}{\partial r^{2}}+\frac{1}{r} \frac{\partial V}{\partial r}-\frac{V}{r^{2}}=0 \\
\text { and thus } V=A r+\frac{B}{r} \text { or } \Omega=A+\frac{B}{r^{2}}
\end{gathered}
$$

Now solve for A and B

Inviscid case:

The Rayleigh discriminant is defined as

$$
\Phi(r) \equiv \frac{1}{r^{3}} \frac{\partial\left(r^{2} \Omega\right)^{2}}{\partial r}>0 \quad \begin{aligned}
& \text { (remember, this is the } \\
& \text { Rayleigh criterion } \\
& \text { for centrifugal stability) }
\end{aligned}
$$

so that with $\Omega=A+\frac{B}{r^{2}}$ we obtain $\Phi=4 A\left(A+\frac{B}{r^{2}}\right)$, and the definitions of A and B we get :

$$
\phi=-4 \Omega^{2} \eta^{4} \frac{(1-\mu)\left(1-\mu / \eta^{2}\right)^{2}}{\left(1-\eta^{2}\right)}\left(\frac{1}{r^{2}}-\kappa\right)
$$

where $\kappa=-\frac{A R_{1}^{2}}{B}=\frac{1-\mu / \eta^{2}}{1-\mu}$.

With ϕ we can determine stability of the Taylor Couette flow.

Inviscid case:

Use boundary conditions : No slip conditions at R_{1} and R_{2}

$$
\begin{aligned}
& \Omega_{1}=A+B / R_{1}^{2} \\
& \Omega_{2}=A+B / R_{2}^{2}
\end{aligned}
$$

with $\mu=\frac{\Omega_{2}}{\Omega_{1}}$ and $\eta=\frac{R_{1}}{R_{2}}$ we obtain expressions for A and B

$$
A=\Omega_{1} \eta^{2} \frac{1-\mu / \eta^{2}}{1-\eta^{2}} \quad \text { and } \quad B=\frac{\Omega_{1} R_{1}^{2}(1-\mu)}{1-\eta^{2}}
$$

Inviscid case:

$$
\phi=-4 \Omega_{1}^{2} \eta^{4} \frac{(1-\mu)\left(1-\mu / \eta^{2}\right)^{2}}{\left(1-\eta^{2}\right)}\left(\frac{1}{r^{2}}-\kappa\right)
$$

Viscous effects will postpone the instability, i.e. in the viscous case $\phi_{c}>\phi_{c}$ inviscid

Inviscid case:

ylinders rotate in opposite directions ($\mu<0$)

Taylor number

$$
\begin{array}{r}
T a=\frac{4 \Omega_{1}^{2}}{\nu^{2}} R_{1}^{4} \frac{(1-\mu)\left(1-\mu / \eta^{2}\right)}{\left(1-\eta^{2}\right)^{2}} \\
\eta=\frac{R_{1}}{R_{2}} \quad \mu=\frac{\Omega_{2}}{\Omega_{1}}
\end{array}
$$

Taylor number for Taylor-Couette flow viscous effects postpone instability Ta~ centrifugal/viscous

Remember Re ~ inertia/viscous effects

Only the inner cylinder rotates: $\mu=0, k=1$ and $T a=\ldots R_{1}^{4} /\left(1-\eta^{2}\right)^{2} \approx 4 \Omega_{1}{ }^{2} R_{1} 4 / v^{2}$

Linear stability analyses of the viscous Taylor problem The basic flow is only in azimuthal direction and given by $\vec{u}=(0, V, 0)$. ($\rho=$ constant $)$. Perturbations are given by

$$
\begin{aligned}
\vec{u} & =\left(u_{r}, V+u_{\theta}, u_{z}\right) \\
p & =P+\delta p, \text { and } \varpi=\frac{\delta p}{\rho}
\end{aligned}
$$

Substitution yields, after selection of the leading order terms, the perturbations equations

$$
\begin{array}{rlrl}
\frac{\partial u_{r}}{\partial t}-\frac{2 V}{r} u_{\theta} & = & -\frac{\partial \varpi}{\partial r}+\nu\left(\nabla^{2} u_{r}-\frac{u_{r}}{r^{2}}\right) \\
\frac{\partial u_{\theta}}{\partial t}+\left(\frac{d V}{d r}+\frac{V}{r}\right) u_{r} & = & \nu\left(\nabla^{2} u_{\theta}-\frac{u_{\theta}}{r^{2}}\right) \\
\frac{\partial u_{z}}{\partial t} & = & -\frac{\partial \varpi}{\partial z}+\nu \nabla^{2} u_{z} \\
\nabla^{2} & = & \frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{\partial^{2}}{\partial z^{2}} \\
\text { where } \quad & \\
\text { and continuity gives } \nabla \cdot \vec{u} & =\frac{\partial u_{r}}{\partial r}+\frac{u_{r}}{r}+\frac{\partial u_{z}}{\partial z}=0
\end{array}
$$

Exercise : The Rayleigh discriminant is defined as $\Phi(r)=\frac{1}{r^{3}} \frac{d\left(r^{2} \Omega\right)^{2}}{d r}$. Show that for $\Phi>0 \Rightarrow k^{2} / \sigma^{2}<0$ and $\Phi<0 \Rightarrow k^{2} / \sigma^{2}>0$.

Linear stability analyses of the viscous Taylor problem

Consider perturbations of the form (see Drazin \& Reid p.91-93, ; Chandrasekhar p 303)

$$
\begin{aligned}
&(\vec{u}, \varpi)=\left(\hat{u}(r), \hat{v}(r), \hat{w}(r), \hat{\varpi}(r) e^{(i k z+\sigma t)}\right. \\
& \sigma u-\frac{2 V}{r} v=-D \varpi+\nu\left(D D^{*} v-k^{2}\right) \\
& \sigma v+\left(D_{*} V\right) u=\nu\left(D D^{*}-k^{2}\right) u \\
& \sigma w=-i k \varpi+ \\
& D_{*} u+i k w=0
\end{aligned}
$$

With $D=\frac{d}{d r}$ and $D_{*}=\frac{d}{d r}+\frac{1}{r}$ we obtain :

$$
\begin{gathered}
{\left[\nu\left(D D_{*}-k^{2}\right)-\sigma\right]\left(D D_{*}-k^{2}\right) u=2 k^{2} \Omega v} \\
{\left[\nu\left(D D_{*}-k^{2}\right)-\sigma\right] v=\left(D_{*} V\right) u}
\end{gathered}
$$

With

$$
\begin{aligned}
& x=\left(r-R_{0}\right) / d \text { where } R_{0}=\frac{1}{2}\left(R_{1}+R_{2}\right), \Omega(r)=\Omega_{1} g(x) \\
& a=k d \text { and } \omega=\sigma d^{2} / \nu, \text { and replace } u 2 A d^{2} / \nu \rightarrow u
\end{aligned}
$$

we obtain in dimensionless units after substitution ...

$$
\begin{aligned}
\left(D D_{*}-a^{2}-\omega\right)\left(D D_{*}-a^{2}\right) u & =-a^{2} T g(x) v \\
\left(D D_{*}-a^{2}-\omega\right) v & =u \\
\text { and } u=D u=v & =0 \text { at } x= \pm \frac{1}{2}
\end{aligned}
$$

$$
T=\frac{-4 A \Omega_{1} d^{4}}{\nu^{2}}=\frac{-4 A \Omega_{1} R_{1}^{4}}{\nu^{2}} f(\eta, \mu)
$$

is the Taylor number, f a function of $\mu=\Omega_{2} / \Omega_{1}$ and $\eta=R_{1} / R_{2}$.

Substitution of this solution in the equations allows us to find the general solution

$$
u=\Sigma_{m}^{\infty} \frac{C_{m}}{\left(m^{2} \pi^{2}+a^{2}\right)^{2}}\left\{A_{1}^{m} \cosh a x+B_{1}^{m} \sinh a x+\ldots\right\}
$$

The coefficients A_{1}^{m}, A_{2}^{m} and B_{1}^{m}, B_{2}^{m} can be determined with the boundary conditions $u=D u=v=0$ at $x= \pm \frac{1}{2}$.

Manipulation of the thus obtained equations provides to leading order the solution

$$
T=\frac{2}{2+\alpha} \frac{\left(\pi^{2}+a^{2}\right)^{3}}{a^{2}\left\{1-16 a \pi^{2} \cosh ^{2} \frac{1}{2} a /\left[\left(\pi^{2}+a^{2}\right)^{2}(\sinh a+a)\right]\right\}}
$$

In approximation $(\alpha=-(1-\mu))$ we obtain then for $a_{\min }=3.12$ the critical Taylor number equal to

$$
T_{c}=\frac{2}{2+\alpha} 1715=\frac{1715}{\frac{1}{2}(1+\mu)} \text { with } 0<\mu<1
$$

($1^{\text {rst }}$ approx. Drazin \& Reid), More precise approximations (Chandrasekhar) obtain $T_{c}=1708$

Solutions have been found for the narrow gap approximation :

$$
d=R_{2}-R_{1} \ll \frac{1}{2}\left(R_{1}+R_{2}\right)
$$

The approximate Taylor number is then $T=\frac{4 A \Omega_{1} d^{4}}{\nu}$
Consequences

1) $D_{*}=D$
2) $\Omega(r) \sim \Omega_{1}\left[1-(1-\mu) \frac{r-R_{1}}{d}\right]$, i.e. a linear variation with r
3) Cross-term perturbations in the centrifugal term ($\sim u_{r} u_{\theta} / r$) neglected.

In the marginal state, $\omega=0$ (i.e. $\sigma=0$), the general equations reduce to

$$
\begin{aligned}
& \left(D^{2}-a^{2}\right)^{3} u=-a^{2} T\left(1+\alpha\left(x+\frac{1}{2}\right)\right) v \text { and } \alpha=\mu-1 \\
& \left(D^{2}-a^{2}\right) v=u \\
& u=D u=v=0 \text { at } x= \pm \frac{1}{2}
\end{aligned}
$$

$$
\text { Solutions are of the form } \quad v=\sum_{m=1}^{\infty} C_{m} \sin m \pi x
$$

Critical Taylor numbe $\mathrm{T}_{\mathrm{c}}=1708$ and minimum wave number $\mathrm{a}=3.12$.
Physics are analogue to convection and critical numbers are very close.

Fig. 3.13. Observations and narrow-gap calculations of the curve of marginal stability for water when $R_{1}=3.55 \mathrm{~cm}$ and $R_{2}=4.035 \mathrm{~cm}$. (From Taylor 1923.)

Turbulent vortex flow

128. Laminar Taylor vorices in a narrow gap. A larger inere cylinder in the wavy vortex flow

Modulated wavy flow

Corkscrew patterns

Fig. 17.12 Regime diagram for rotating Couette flow. (Note that the name 'Couette flow' on the diagram denotes the purely azimuthal motion, Section 9.3). From Ref. [61].

\qquad

IN
stratified fluids
Observations
for $\Omega / \mathbf{N}>1$

Gortler vortices appear in curved boundaries due to the centrifugal force. The 'stratification' of the centrifugal force in the boundary is unstable.

$\delta \sim \sqrt{\nu L / U_{\infty}}$ and $\delta / L \sim R e^{-\frac{1}{2}}$. The approximation is close to that of the Taylor flow (therefore often called Taylor-Gortler vortices). For the stability analyses three approximations are made
$1)$ The boundary layer is much thinner than the radius $\delta \ll R$. This corresponds to the thin gap approximation.
2) The basic flow is parallel to the boundary. The centrifugal effects only appear in the perturbations
3) The stability analyses is local, and independent on x, whereas the y component of the basic flow is neglected

Görtler vortices

 \qquad Schichting 1960

cross view of Görtler votices Petitjean JFM 1994
to leading order in δ / R we obtain

$$
\begin{aligned}
\left(D^{2}-a^{2}-\omega\right)\left(D^{2} *-a^{2}\right) v & =-a^{2} \mu U u \\
\left(D^{2}-a^{2}-\omega\right) u & =\frac{d U}{d \eta} u \\
\text { boundary conditions }: u=v=\frac{d v}{d \eta} & =0 \text { at } \eta=0 \text { and } \eta \rightarrow \infty
\end{aligned}
$$

$$
\eta=y / \delta, a=k \delta \text { and } \omega=\sigma \delta^{2} / \nu . \mu=\left(2 U_{\infty} \delta / \nu\right)^{2}(\delta / R) \text {. }
$$

The Görtler number is

$$
G=\left(U_{\infty} \theta / \nu\right)(\theta / R)^{\frac{1}{2}}
$$

The Görtler number is based on the momentum thickness θ of the boundary layer, with

$$
\theta=\text { Constant } \sqrt{\nu x / U_{\infty}} \sim \delta(x)
$$

Constant ≈ 0.664 Schlichting 1960

Dean problem (1928)

N.S equations in cylindrical coord's with Ur $=U z=0$

$$
\begin{aligned}
& \frac{D u_{r}}{D t}-\frac{u_{\theta}^{2}}{r}=-\frac{1}{\rho} \frac{\partial p}{\partial r}+\nu\left(\Delta u_{r}-\frac{u_{r}}{r^{2}}-\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}\right) \\
& \frac{D u_{\theta}}{D t}+\frac{u_{r} u_{\theta}}{r}=-\frac{1}{\rho} \frac{1}{r} \frac{\partial p}{\partial \theta}+\nu\left(\Delta u_{\theta}-\frac{u_{\theta}}{r^{2}}\right. \\
&\left.+\frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta}\right) \\
& \frac{D u_{z}}{D t}=-\frac{1}{\rho} \frac{\partial p}{\partial z}+\nu \Delta u_{z} \quad \text { two balances }
\end{aligned}
$$

DEAN problem
N.S equations in cylindrical coord's $\quad U r=U z=0$

$$
\begin{aligned}
\frac{D u_{r}}{D t}-\frac{u_{\theta}^{2}}{r} & =-\frac{1}{\rho} \frac{\partial p}{\partial r}+\nu\left(\Delta u_{r}-\frac{u_{r}}{r^{2}}-\frac{2}{r^{2}} \frac{\partial u_{\theta}}{\partial \theta}\right) \\
\frac{D u_{\theta}}{D t}+\frac{u_{r} u_{\theta}}{r} & =-\frac{1}{\rho} \frac{1}{r} \frac{\partial p}{\partial \theta}+\nu\left(\Delta u_{\theta}-\frac{u_{\theta}}{r^{2}}\right. \\
\frac{D u_{z}}{D t} & =-\frac{2}{r^{2}} \frac{\partial u_{r}}{\partial \theta} \frac{\partial p}{\partial z}+\nu \Delta u_{z}
\end{aligned}
$$

where

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{\partial^{2}}{\partial z^{2}}
$$

and

$$
\frac{D}{D t}=\frac{\partial}{\partial t}+u_{r} \frac{\partial}{\partial r}+\frac{u_{\theta}}{r} \frac{\partial}{\partial \theta}+u_{z} \frac{\partial}{\partial z}
$$

Mass conservation is again given by

$$
\frac{\partial u_{r}}{\partial r}+\frac{u_{r}}{r}+\frac{1}{r} \frac{\partial u_{\theta}}{\partial \theta}+\frac{\partial u_{z}}{\partial z}=0
$$

Dean instability

* Small gap approximation :
$\mathbf{d} \ll R_{\mathbf{0}}$ where $d=R_{2}-R_{1}$ and $R_{0}=\left(R_{1}+R_{1}\right) / 2$

$$
\begin{aligned}
& x=\overline{\mathrm{rd} R_{0}} \quad \text { and }-\mathrm{I} / 2 \leq x \leq \mathrm{I} / 2 \\
& ==>\vee(\mathrm{r}) \approx 3 / 2 \mathrm{~V}_{\mathrm{m}}\left(1-4 x^{2}\right) \quad V_{m}=\left.\frac{-d^{2}}{12 \rho \nu^{2} R_{1}} \frac{\partial P}{\partial \theta}\right|_{0}
\end{aligned}
$$

Note: Rayleigh centrifugal criterion (instability) $\frac{d}{d r}\left(r^{2} \Omega\right)^{2}<0$
Flow is unstable for $0<x<1 / 2$
Flow is table for $\quad-1 / 2<x<0$

Thus directly from the Navier Stokes equation we have the two balances

$$
\frac{V^{2}}{r}=\frac{1}{\rho} \frac{\partial p}{\partial r} \quad \text { and } \quad \nu D D_{*} V=\left.\frac{1}{\rho r} \frac{\partial p}{\partial \theta}\right|_{0}
$$

The general solution of this flow is given by

$$
V(r)=\left.\frac{1}{2 \rho \nu} \frac{\partial p}{\partial \theta}\right|_{0}\left(r \ln (r)+C r+\frac{E}{r}\right)
$$

and boundary conditions

$$
V\left(R_{1}\right)=V\left(R_{2}\right)=0
$$

providing expressions for $E=f\left(\left(R_{1}, R_{2}\right)\right.$ and $C=g\left(R_{1}, R_{2}\right)$.

Dean instability

* As for Taylor-Couette flow axisymmetric perturbations give

$$
\begin{array}{ll}
\left(D^{2}-a^{2}-\sigma\right)\left(D-a^{2}\right) u=\left(1-4 x^{2}\right) v & a=k d \\
\left(D^{2}-a^{2}-\sigma\right) v=-a^{2} \lambda x u & \sigma=\frac{s d^{2}}{\nu}
\end{array}
$$

With boundary conditions $\quad D u=u=v=0$ at $x= \pm \frac{1^{\nu}}{2}$

$$
\Lambda=\frac{36 R e^{2} d}{R_{1}} \quad \text { and } \quad R e=\frac{V_{m} d}{\nu}
$$

Λ is equivalent to the Taylor number $\mathbf{T a}$
In the literature, the Dean number is used $D e=\operatorname{Re}\left(\frac{d}{R_{1}}\right)^{\frac{1}{2}}$
Critical values for onset of instability are

$$
\Lambda_{c}=46458 \text { and } D e=35.92 \text { for } \mathrm{a}_{\mathrm{c}}=3.95
$$

Dean instability

Exercise:
Compare this with a Poiseuille flow perturbed with a 2D disturbance which is unstable for

$$
\frac{3}{2} V_{m}\left(\frac{d}{2}\right) \frac{1}{\nu}>5772 \quad \text { i.e. when } \quad R e>R e_{c}=7696
$$

How straight should a canal be to see this instability and NOT the Dean instability ? \square
\square
\square

