L = OSUG Universite ’

CLee] | /_.\ Joseph Fourier
GRENOBLE

LABORATOIRE DES ECOULEMENTS
GEOPHYSIQUES ET INDUSTRIELS cobservatoie des

nce n
de Grenoble

M2R Internship

Modelling the multiscale interactions of the coupled
atmosphere-ocean-sediment system, induced by Marine
Renewable Energy Devices

Supervisors : Julien CHAUCHAT & Achim WIRTH

LEGI Laboratory - Team MEIGE

Tim NAGEL

M2R SIM - UJF

Abstract

While the world assist to an increasing development of offshore wind energy, the environmental
impact of offshore wind farms remains still unknown. If some recent studies have recently light
up the impact of offshore wind farms piles on the seabed morphodynamic or the slight influence
of wind farm presence on regional climate, no one has, as far as we know, ever considered the
turbine wake impact upon both ocean and sediment layers. The purpose of this internship was
to study this phenomenon an a local scale with an idealized 2D numerical model.

A large part of the work has consisted in the building and testing of the numerical model. Start-
ing from nothing, the model consist in two modules, on for the ocean which solves the Shallow
Water equation and one other for the sediment transport, solving the sediment mass conserva-
tion equation. The two modules are coupled with a quadratic friction law. Tests undertaken in
one and two dimensions and comparisons with analytical solutions show the model accuracy and
robustness.

The results light the fact that Kelvin-Helmholtz instabilities generated in the ocean by the wake
presence seems to be controlled by the bottom friction. Sufficiently low friction induces a ho-
mogeneous turbulence state. Increasing the water depth leads to that turbulence state. Due to
the turbulence, the morphological impact is thus lower. In the short time (days) main effects
on the seabed are linked to the mean wake when in the long term, changes in the seabed could
be dominated by turbulent or laminar nature of the wake. Nevertheless, more computations are
necessary to ensure these first conclusions.

Résumé

Alors que l'on assiste & un développement croissant de 1’éolien offshore au niveau mondial, I’im-
pact environnemental des fermes eoliennes offshore demeure pour le moment assez peu connu. Si
certaines études récentes on montré 'impact de ces constructions sur la dynamique climatique
européenne ou encore celui des piles de turbines sur I’évolution de fond, aucune, ne fait a notre
connaissance état de 'impact du sillage de ces structures sur la dynamique océanique et sédi-
mentaire. Le but de ce stage était d’étudier ce phénomeéne a 1’échelle locale griace a un modéle
numérique idéalisé en deux dimensions.

Une importante partie du stage & consisté en 1’élaboration et la phase de tests du modele
numérique. Ce dernier se compose de deux modules, le premier résolvant les équations de Shal-
low Water pour ’océan et le second résolvant 1’équation de conservation de la masse du sédi-
ment pour le transport sédimentaire. Les deux modules sont couplés a I'aide d’une loi de friction
quadratique. Les tests entrepris en 1D et 2D ainsi que les comparaisons avec des solutions ana-
lytiques ont permis de prouver efficacité et la précision du modéle.

Les résultats indiquent que la genération par le sillage d’instabilités de Kelvin-Helmholtz dans
l’océan semble étre controlée par la la friction du fond. Une friction suffisamment basse permet
la génération une turbulence homogéne dans 'océan. L’augmentation de la profondeur entraine
un tel état de turbulence. A cause de la turbulence, I'impact morphologique est donc plus faible.
A court terme (de l'ordre du jour) les perturbations du fond sont du a la présence du sillage
tandis qu’a long terme elles sont induites par la nature turbulente ou laminaire du sillage et
de I'écoulement. Néanmoins, d’autres simulations sont nécessaires pour confirmer ces premiéres
conclusions.

Acknowledgments

The first two persons I would like to thank are my two supervisors, Julien Chauchat and
Achim Wirth, with whom I had the pleasure to work on a very interesting and profound subject.
Their kindness and their availability immediately made me feel comfortable for my intership.
I would specially thank them for their advices, for their precious help and knowledges and
especially for the time they spend with me, always constructive. I really hope continue to work
with them for my Ph.D Thesis!

As my internship was entirely numerical work, I couldn’t manage it without the help of computer
specialists: Cyrille Bonamy and Olivier De-Marchi, thank you.

The LEGI is a very pleasant place to work, I wish to thank everybody (interns, Ph. D. fellows,
permanents) for the greats moments shared at the lunch-time or around a barbecue: thank you
guys! I would just address a special thank to Thibault for his help and for the climbing sessions.
Finally, I thank Charlotte for all that she brings to me.

Contents

1 Introduction

2 Physical and Mathematical Model
2.1 Physical Model
2.2 Mathematical Model
2.2.1 Morphodynamic Model
2.2.2 Shallow Water Equations
2.2.3 Wake Induced by Turbines. o0
2.2.4 Wake Interaction with Ocean Surface

3 Numerical Model
3.1 Numerical Grid, Boundary Conditions and Stability Criterion
3.1.1 Numerical Grid
3.1.2 Boundary Conditions
3.1.3 Stability Criterion
3.2 Morphodynamic Model
3.2.1 NOCS Non-Staggered Scheme
3.2.2 NOCS Staggered Scheme
3.2.3 Avalanche Management L.
3.3 Discretization of the Shallow Water Module

4 Morphodynamic Module Validation
4.1 Simple Bed-load Formulae oo
4.2 MPM Formulae
4.3 NOCS Staggered and 2D Extension,

5 Shallow Water Module Validation

6 Wake Effects
6.1 Wake Effects on the Ocean Free Surface
6.2 Wake Effects on the Seabed
6.2.1 Spatial Evolution
6.2.2 Time Evolution

7 Conclusion and Perspectives

A Numerical Model in Fortran

10
10
10
10
12
13
13
14
16
17

19
20
22
23

26

30
30
33
33
34

38

43

Chapter 1

Introduction

Because of the rising need for sustainable energy, and because up to now wind energy is one

of the few forms of renewable energy that can be harvested efficiently, many European countries
are planning and building offshore wind farms to increase the proportion of renewable energy
in their energy mix. According to the European Wind Energy Association 2013 annual report
[EWEA, 2013|, installed the European capacity was 5 GW at the end of 2012, and by 2020 it
could be multiplied by 8 (40 GW), corresponding to 4% of the European electricity demand. By
2030, offshore wind capacity could totalize 150 GW, corresponding to 14% of the actual EU’s
total electricity consumption.
France has the ambition to install 6 GW off offshore wind turbines before 2020 and would be-
come one of the world leaders in terms of offshore wind turbines capacity. In this context the
French Institut for Renewable Marine Energy (France Energies Marines) has been created in
order to support the research and the development on Marine Renewable Energy Devices.

In this context, the environmental impact of offshore wind farms has to be studied. In-
deed, most the wind farms are localized in coastal areas (in 2012 the average water depth of
offshore wind farms was 22m and the average distance to shore was 29km [EWEA, 2013]). It
has been shown that wind farms have an impact on the seabed |Van der Veen et al., 2007| but
also on the atmosphere via the wake generation behind the rotor and on the ocean when the
wakes impact the free surface |Barbe, 2013]. On a larger scale, impact of wind farms on the
European regional climate |Vautard et al., 2014] or on hurricanes [Jacobson et al., 2014] have
been studied recently, showing that the wind farms environmental impacts are an important
questions nowadays.

The understanding of the impact induced by the construction of offshore wind farms in
coastals areas requires the modeling of the ocean-atmosphere-sediment coupled system. How-
ever, if air-sea and ocean-sediment interaction have been the subject of an important literature,
to the best of our knowledge, no study has been done on the multi-scale interactions in an
atmosphere -ocean-sediment coupled system. This is even more true in the vicinity of Marine
Renewable Energy Devices.

The aim of this internship is to build, starting from the mathematical model, an idealized 2D
numerical model to study the impact of an offshore turbine wake on the ocean and the sediment
dynamics.

Chapter 2

Physical and Mathematical Model

2.1 Physical Model

The physical model consists in two superposed layers (figure 2.1). The upper one is an
homogeneous shallow water ocean layer. The lower one is the sediment bed layer, composed of
cohesionless particles. The atmospheric layer is not considered in this internship work, the wind
acts as the external forcing F'.

h p,u
7 0. hs Ps: b

[Lx
Yi X

Figure 2.1 — Sketch of the physical model, exponent “s” refers to the sediment bed. From Moulin [2012]

The domain length in the z-direction is denoted as L, and as L, in the y-direction. The
average depth of the ocean layer is denoted as H. The local thickness of the ocean layer and the
seabed elevation, are denoted as h(x,y,t) and hs(z,y,t) respectively. The ocean layer elevation
can be described by the following equation:

h(l’,y,t) =H + 77(177%75), (21)

where 7 represents the free sea surface perturbations, depending on space and time. The dimen-
sional variables are consigned in the table 2.1. Densities are denoted as p, ps and p, for the ocean,
the sediment and the atmosphere, respectively. The ocean layer is forced by the local wind stress
at its upper surface. The spatial variation of the wind stress incorporates the wake-profile of a
wind turbine. The wind stress is a quadratic function of the wind-speed following the classical
drag law: f = Cp pa | g | uqg

A large scale forcing acting on the ocean (G) can be added in the model. Physically it represents
an horizontal pressure gradient (VjP), that is large scale or tidal currents. The oceanic motion
induces a shear stress 7, on the sediment bed layer. This stress is responsible for the coupling

Table 2.1 — Domain parameters.

p (kgm™) p; (kgm™) p. (kgm~’) L. (m) Ly (m) H (m)
1025 2650 1.2 10° 10° 1-10

between the ocean and the sediment bed layers. It is also parametrizes by a quadratic friction
law (see section 2.2.2). For a bed composed of cohesionless grains (equivalent to sand), the sed-
iment start to move when the drag force exerted by the flow is higher than the friction force
between the grains. This is characterized by the dimensionless Shields parameter,|Buffington,
1999] which gives the threshold of motion for sediments at the bed:

Tb

o=,
(ps — p)gd

(2.2)

where g is the gravitational acceleration and d is the characteristic sediment particle diameter.
The sediment starts to move as soon as the Shields parameter exceeds a typical critical value
(0 > 6.). The critical Shields parameter, 6., depends on several sediment properties as the
density or the grain size.

The Shields parameter represents the ratio between the drag force and the apparent submerged
grains weight.

2.2 Mathematical Model

The physical model presented in the previous section can be represented by a mass conserva-
tion for the sediment, and by the Shallow Water (SW) equations for the ocean. Their coupling
is done by a turbulent drag law, this law allow also to compute the bed shear stress. Friction
forces are the link between the three phases and are therefore one of the most important parts
of the model, this laws have thus to be well parametrized in order to ensure the model accuracy.

2.2.1 Morphodynamic Model

Bed motion results from a local flux balance. The mass conservation equation, also called
Exner equation, allows to calculate time evolution of the seabed elevation (hy):

8ths($’ Y, t) + 8xQx(x7 Y, t) + 8yQy($7 Y, t) =0, (23>

4y
load transport and suspended load transport. In this work, only bed-load will be considered, this

type of transport is generally dominating for rather low bed shear stress, i.e when the Shields
number of the flow is closed to the critical one
Total sediment flux can be written as:

where q (O > is the total sediment flux. mainly two types of sediment transport exists, bed-

1

q$<xay7t) = ﬁ (be(xa y7t) + qu(x7yat))

(2.4)
1

QZ/(xvyat) = ﬂ (qby(l‘ayat) + C]sy(l"ayat)))

where p is the bed porosity, g, is the bed load transport rate and g, is the suspended load
transport rate.
If only bed-load transport is considered, the total sediment flux becomes:

1
4z (7,y,1) = -, (qva (2, y,1))

(2.5)
1

Qy(xa?/,t) = E (Qby(x’y’t)) 3

Many flux formulas have been proposed in the literature but the most widely used for bed-load
transport is the Meyer-Peter and Miller [1948] (MPM) formula which relates the particle flux
gy to the excess Shields parameter:

B _80-0.)3 0> 0,
N z (26)

=0 otherwise

The other transport formula implemented in the code is a simpler bed-load formula in which
the total flux is proportional to the fluid velocity at a given power:

@ = ou’ (2.7)

where a, § are two constants.

The choice in the sediment transport law is therefore very important, given that the resulting
fluxes are used in the seabed morphodynamic calculation. The MPM formula has always been
implemented except for 1D model validation, because comparisons with analytical results were
only possible with equation 2.7 (see chapter 4).

2.2.2 Shallow Water Equations
The Shallow Water equations are derived from the Navier-Stockes equations assuming several
simplifications:
- The ocean is composed of an incompressible fluid.
- The vertical scale is very small compared to horizontal one (i.e ocean layer is very thin)
=> The density variations within the ocean layer are very low.

In two dimensions, the SW equations are given by:

Oyu 4+ u0yu + vOyu + goyn = vWu+ F, — G, (2.8)
v + udpv + voyv + gy = vViu+ F, — G, (2.9)
O¢th + 0z (hu) + 0y(hv) = 0, (2.10)

Where F' and G correspond to the forces applied on the ocean layer by the atmosphere and the
sediment, respectively. The atmosphere acts the ocean layer thanks to the wind shear stress. It
can be written as:

A

:—h s
P fu

(2.11)
Fy

where f; and f, are the surface forces depending on = and y axes for which a quadratic friction
law is used:

faz C1D Pa | Ugq | Uq
= , (2.12)
fy C1D Pa | Ugq | Va

where | u |= vu? + v? and where C is the drag coefficient, Wu [1982] and Smith [1988| suggest:
Cp = (0.6 +0.07u).1072 for 6 m/s < u <26 m/s (2.13)

The range of availability of this friction law is in agreement with the good working conditions of
wind turbines (from 3 m.s™! to 30 m.s7!) ! A similar quadratic friction law is used to modelise
the friction between the ocean and the sediment layer:

G:L" 1 Tox
= 7 , (2.14)
Gy Thy
Tbx CDs ‘ u ‘ u
= , (2.15)
Thy Cps |u|v

where Cps = 0.005 is the friction coefficient between the sand and the ocean.
The ocean layer is thus reacting to the wind forcing via a quadratic friction law and in return,

the ocean layer transmits this stress to the sediment layer via the a similar quadratic friction
law.

2.2.3 Wake Induced by Turbines

As air flows through a wind turbine and energy is extracted from it, some of the properties
of the flow are changed: the air is decelerated and turbulence intensity is increased. The region

of the flow behind a turbine where these properties are changed is called the wake of a wind
turbine and the effects are referred to as wake effects.

D +kx

Figure 2.2 — Illustration of a turbine wake (a) and of Jensen wake downstream the rotor (b). The red zone on
(a) correspond to the ocean surface which is affected by the wake. From Barbe [2013].

1. http://www.france-energies-marines.org/Les-energies-marines-renouvelables/L-energie-eolienne-en-mer

When regarding wakes, a distinction can be made between the near and far wake regions.
The near wake is the area just behind the rotor, where the properties of the rotor can be dis-
criminated. It extends approximately up to one rotor diameter downstream. The far wake is the
region beyond the near wake, where the focus is put on the bulk influence of wind turbines,
so modeling the detailed rotor motion is less important | Vermeer et al., 2003]. In the far wake
the two main mechanisms determining the flow conditions are advection and turbulent diffusion
and in many situations a parabolic approximation is appropriate to deal with this region. It is
expected that sufficiently far downstream, the effects of momentum deficit and increased level
of turbulence will vanish because of turbulent diffusion in the wake.

Obviously, in the case of offshore wind turbines, the downstream ocean surface is affected
by the presence of the wake, as illustrated in figure 2.2. According to Barbe [2013], the turbine
wake affects the ocean by decreasing its surface velocity. This perturbation is maximal at the
impact location and then decreases downstream. A distance of 40 to 60 times the rotor diameter
D is necessary for the wake effects to vanish.

Several models describe the velocity deficit induced by the wake behind a turbine, but the
two major ones are now as Jensen’s [Jensen, 1983] and Larsen’s [Larsen et al., 1996] models.
Both are kinematic models, i.e they only use the momentum equation to model the velocity
deficit. In this work, I will use a modified exponential model similar to the Jensen’s one. The
later is the oldest and simplest wake model, assuming a linearly expanding wake with a velocity
deficit which only depends of the distance to the rotor. Because the velocity in the wake is
constant for a given downstream distance, the velocity profile is called ‘hat-shaped’. This model
is given by the following relationship:

1-y/1=-C
U=Us |1 - ——F5—— 2“’
(1+59)

, (2.16)

where Uy, is the wind velocity far from the turbine, C, the drag coefficient between the turbine
and the air and k& the Wake Decay Constant, equivalent to the wake’s linear slope (figure 2.2).
For offshore turbines, the admitted value is equal to 0.04 [Renkema, 2007).

important in order to avoid interferences between the wake and the periodic boundaries. Such
domain would be computationally too expensive in respect to the internship duration. The
solution chosen is to implement a similar linear perturbation model using a wake decay modeled
by an exponential function. The velocity deficit profile has the same shape as Jensen’s model,
but, for a same wind turbine size, perturbations can be easily parametrized in order to reduce
the wake length. This model gives the velocity in the wake as:

r—a

u= U [1 — e_T] , (2.17)

where a and b are adjustable coefficients.

2.2.4 Wake Interaction with Ocean Surface

The wake impacts the ocean surface at a given distance downstream the rotor position
(figure 2.16). Determination of this distance is done using the Jensen’s model, indeed, usual
trigonometry gives:

H.—D/2
Timpact = d A / , (218)
This impact distance depends on the wind turbine height and on the rotor diameter, increasing
with the turbine size. Nevertheless, even for small turbines (H, = 70 m and D = 80 m), the

impact distance is equal to 750 meters, several times the turbine height. Perturbations in the
seabed induced by the turbine pile are localized in the pile vicinity, the seabed is thus perturbed
on a local scale (10 times the pile diameter). As the pile diameter doesn’t exceed 20 meters
for the biggest turbines, seabed perturbations induced by the pile and the wake presence are
uncorrelated. The effect of the pile is thus not considered here.

=Tk
P
||
I H
‘.
Ocean surface | 1 .
Ximpact

Figure 2.3 — Scheme of Jensen wake. From Barbe [2013].

Chapter 3

Numerical Model

Written in Fortran 90, the overall model can be divided in two coupled modules, the hydro-
dynamic and the morphodynamic modules, subject to input data, such as atmospheric forcing,
bedform elevation and imposed currents, the hydrodynamic module solves the SW equations,
using a second order Runge-Kutta scheme (see section 3.3). Output from this module are veloc-
ity fields u and v along with the free surface elevation 7. These velocity fields are necessary to
compute the Shields number. As morphological timescale is large compared to the to hydrody-
namic one, two time-steps are used, one for the hydrodynamic module (At) and the other for the
morphodynamic module (Aty,orpho) With Atporpro = 1000 X At. The morphodynamic module
is only called if Shields number exceeds the critical value in one or more of the grid points. The
morphodynamic module solves the Exner equation using a NOCS scheme (see section 3.2).

3.1 Numerical Grid, Boundary Conditions and Stability Crite-
rion

3.1.1 Numerical Grid

The numerical grid is two dimensional (z and y) and is the same for the two layers. Because
of SW approximation, only the horizontal velocities u and v are considered explicitly.

The discretization domain is a rectangle of Lz x Ly. As described in section 3.2, boundary
conditions are periodic for all the layers in both x and y directions. The grid is regular, with
identical spatial resolutions in the x and y directions, Ax = La/nx =1 m and Ay = Ly/ny =1
m where nx and ny are the number of grid points in the x and y direction, respectively.

3.1.2 Boundary Conditions

The periodic boundary condition is explained here for a one dimensional case in the z-
direction, extension to two dimensions is straightforward. For the shallow water and the mor-
phological modules, the value calculated at grid point ¢ involves values at points ¢ — 1 and ¢+ 1.
Thus, at the boundaries, values of each variable has to be given. Here, periodic boundary con-
ditions are used. As shown in figure 3.2, every point which is coming out of the domain at a
boundary reappears at its opposite side.

10

Atmospheric
"5’ forcing: F Sediment: Bathymetry:
o Large scale hy
— | oceanographic Ps d
_— forcing: G

After nmorpho
iterations

At hydro

At morpho

Figure 3.1 — Organization chart of the code, nmorpho = Atmorpho/At

11

Figure 3.2 — Scheme of the periodic boundary conditions in the x-direction. Source: Moulin [2012].
The same process is applied in the y direction.

3.1.3 Stability Criterion

For the stability of the numerical scheme, the Courant-Friedrichs-Lewy criterion (CFL) has

to be respected: | |
C+ Umaz | dt

— <1, (3.1)
where ¢ is the wave velocity.
The ratio on the left side of this condition is called the CFL number. The criterion has a simple
interpretation show in figure 3.3. The domain of dependency, shown shaded, consists of all points
in the past from which information can propagate at or slower than the wave speed c. For any
differencing scheme, the differencing domain consists of the set of points used to determine the
next value of the solution. If the differencing domain is wider in z than the domain of dependency,
then the algorithm is CFL stable. If the differencing domain is narrower in x than the domain
of dependency, then the algorithm is CFL unstable.
To summarize, the distance of wave propagation during one time step (At) must be smaller than
the mesh grid size.

(o] o] (o] o]
t
¥
° °
o] (@] (o] (o] (o]
° ° 1) . °
° ® ° ° .
° ° ° ° °
[] ® [] [] []
[] o [] [] [] [] [] ® [] []
> X CFL Unstable

Figure 3.3 — Scheme of the CFL conditions. Source: www.physics.buffalo.edu/phy410-505

CFL condition must be filled for both ocean and sediment layers. While ocean waves propa-
gation celerity is classically defined as cocean = v/gho (ho is the ocean layer thickness), sand waves
propagation celerity (csqng) corresponds to dunes migration speed. As in the model h € [6;20]
m, Cocean € [7.7;14] m.s™! and cygng ~ 107 m.s~!, if the CFL conditions for the ocean is filled,
it is also the case for the sedimentary CFL.

12

3.2 Morphodynamic Model

This section describes the morphodynamic module implemented into the code to solve equa-
tion (2.3). Because of the possible presence of steep slopes, conservative shock-capturing schemes
have to be used. Here, a NOCS (Non-Oscillatory Central Scheme) collocated with the mesh has
been chosen. This type of scheme is able to solve the conservative forms of equations and have
a strong stability on shock areas |LeVeque, 2002].

In order to be closer to the granular flow physic, an avalanche management module has been
added to the morphodynamic model. Indeed, for strong enough dune slopes, local avalanches
can occur, this phenomenon has to be taken into account.

Two types of NOCS schemes have been tested in this work. In one dimension, I used a

non-staggered NOCS scheme, developed by Nessyahu and Tadmor [1990] and successfully used
by Marieu [2007] in his work to solve the Exner equation. For this scheme, and for the avalanche
management, the module tests have been done on an simple advection case explained in chapter
4. Furthermore, comparisons of non-staggered NOCS scheme and Upwind scheme with analyti-
cal solution obtained from the characteristic method have also been undertaken.
Nevertheless, 2D extension of this non-staggered NOCS scheme has not been proposed in the
literature, but such work have been done by Jiang et al. [1998] for the staggered NOCS scheme.
Tests undertaken in (4.3) show that for a one dimensional case, the two schemes give similar
results.

3.2.1 NOCS Non-Staggered Scheme

The NOCS scheme solves the Exner equation in two steps: a predictor-step, that gives a tem-
porary bedform from which fluxes are recalculated and the corrector-step in which the definitive
bedform is obtained. The NOCS used in this work is collocated with the mesh.

The numerical scheme presented here has been used by Marieu [2007].

The predictor step gives the bed elevation at grid point ¢ after one half time-step calcu-
lation (n+1/2):

1ot
_Z . 3.2

200 (32)

where ¢; is the flux derivative approximation at grid point 7. The temporary flux depends only
1
on the bed elevation h;""2:

n—i—l _ n
hi 2 = hi

"7 =g (hi"+%> ; (3.3)

The corrector-step gives the bed elevation at grid point ¢ at time n+1:

ot

1 1
n+1 n n
hi = = (hi—i-l + hi—l) 4+ - (hi_ll — hi—i—l/) - —

1 1
<Qi+ln+2 - Qi—ln+2) ; (3.4)
where h' is the approximation of the bed elevation derivative.
The calculation of ¢; and h;’ involves a slope limiter, in order to ensure TVD (Total Variation

Diminishing) properties of the solution. In the present work, S—limiter has been used. In order
to compute the derivative approximation of a function ¢, the S—limiters are define as follow:

¢i = MinMod | B(¢; — ¢i_1), %(¢i+1 — ¢i-1), B(dig1 — &) - (3.5)

13

where (is the limiter parameter and MinMod the function such as:

min{zy, x2, 3} if x> 0; Vk=1,2,3,
MinMod{x1,x2,x3} = { max{xi,z2, 23} if z <0; Vk=1,2,3, (3.6)
0 else

when § = 1, the limiter is the so-called MinMod and when 8 = 2 it is the Superbee limiter,
the latter is less diffusive.

3.2.2 NOCS Staggered Scheme

One Dimensional Scheme

The NOCS staggered scheme is also composed of a predictor and a corrector step, the latter
is on a staggered grid. It is based on the reconstruction of a piecewise-linear interpolant from
the known staggered cell-averages at time ¢™:

hz,t") =Y [hi” — by <‘T;f)] (@), (3.7)

7

where h;’ is the discrete slope involving the slope limiter described in equations 3.5 and 3.6, and
where y;(z) is the characteristic function of the cell I; :=| z — z; |< Az /2.

This interpolant is then projected on the staggered cell-averages on the next time step, t"+1 |
resulting in the two-step predictor-corrector form:

16t
hinJrl — hzn U i/ 3.8
2 555 4 (3.8)
1 1 ot 1 nal
hi+%n+1 =3 (hi" +hip1™) + 3 (hi" = hina") — 5o <Qz‘+1n+2 — i +2> ; (3.9)

The staggered corrector has to be reprojected on the non-staggered grid by using a piecewise-
linear interpolant through the calculated staggered cell-averages at time t"+1:

n+1 / T :UH'%

where h, 1 " is the staggered discrete derivative of the staggered corrector term.
2

" n+1l __
hi+% =hiy

[NIES

Finally, the cell-averages at time t"*! are obtained by averaging this interpolant,resulting in the
non-staggered corrector scheme:

1 1 B 1 T o 1
hin+ — hi—anr 4 hH_anr
A"'E xX. 2 xX; 2

1 1 1 (3.11)
n+1 __ oon n .o.n . .
hi = Z (hz—l - 2hz + hz-l—l) - E (hz—i-l/ - hz—ll) - é (hi—&-%/ - hi_%/>
ot
“a5 (™ —a")

Figure 3.5 shows the second order construction process leading to the non-staggered corrector
scheme.

For staggered variables, boundary conditions slightly differ from the ones described in section
3.2. Indeed, as the grid is staggered extreme points are out of the domain. In 1D, the non
staggered grid has the size n, while the staggered one has the size n + 1, starting from 0 to n.
For a given f function, periodic boundary conditions are given by:

14

f(0)=f(n—2)

f(n) = f(2)
fln—=1) = f(1)
hn+1i
P
| hn+1|_1’l;2 !
h"it1
| h
h% .
| | —
Xi-l Xi Xi+1

Figure 3.4 — Second order reconstruction. From Jiang et al. [1998].

Two Dimensional Extension

The arguments applied in the one-dimensional case can be easily extended to higher dimen-
sions. This extension is straightforward and is based on exactly the same procedure described in
section 3.2.2. A non-staggered scheme is created from a staggered scheme by averaging the inter-
polants constructed from the given staggered values. In two dimensions, predictor and staggered
corrector become respectively:

16t ., 1ét

+3 —
hij"72 = h; " — 352 qTi; — 5@ qYij (3.12)
where gz; ;' and qy; ;' are the flux derivative approximation in the z and y directions respectively.
1
1
hi+%,j+%n+ = 1 (hig™ 4 hiv1" + hij"™ + hiv1,j41")
1 / / / /
16 (Rij + Mgy + B ja + higa)
1
+og (Wi + Pivrg + Rijon + Rirrga) (3.13)
ot 1 1 1 1
82 <Q$i+1,j”+2 — i "2 g - q1tz’,j+1"+2>
ot 1 1 1 1
~ 25y (qyi,j+1n+2 —qyii" T2 QYT — qyi+1,jn+2>

15

EIGL YA S A ? (i+1,+1)
[(if)
; j+1/2
[N SN e ReE
| 1(i,j |
| | 1
| | I
| | I
B B =) :- =TT Thi+LL
y i : i
X

Figure 3.5 — Two-dimensional staggered (red) and non stagerred (black) grids. From Jiang et al. [1998].

The prime and back-prime notation denote the discrete derivatives in the x and y directions,
respectively. The piecewise-linear interpolant reconstruction is then averaged, resulting in the

non-staggered corrector at time step "t and in cell I; j:

1 — —
h. nt+l hoo1 . 1n—&—l + h o+l +
©J 4A$Ay I +5,J+5 I 1 t=5,J+3
L i+5,0+5 i—5,0+5 |
71 ;L I Lt ;L ;g
4AzAy I, 2973 L, TaiTa
L =397 3 g3 J
1 (3.14)
oon+1l n+1 n+1 n+1 n+1
hig™ =g (hz‘+é,j+% th L1 R 1 T Ry)

K,) (h’. -
i+3.—3 T i—15+3

1 . ‘ ‘
+E |:(h i_%“j_% n h Z_%J"'%) + (h Z'"F%?j_%

3.2.3 Avalanche Management

!
hz’+$,j+%)]

_ 4
Mistiiy))

As the NOCS scheme is able to capture sharp shocks, it can thus simulate bottom sand
dunes with strong slopes. The computed slope can become too steep to be realistic. In such

16

cases, considering local avalanches is necessary to ensure a realistic shape of the bedforms. In-
deed, if the slope angle of a non-cohesive bed «; becomes larger than the angle of repose a.
(between 28° and 33° for submerged sand), the bed material will slide (avalanche) to form a
new slope approximately equal to a,. [Sdnchez and Wu, 2011].

The avalanche management used here is inspired by Marieu [2007] and Sdnchez and Wu
[2011] works. The process of avalanching is simulated by calculating the local slope between the
grid points and by enforcing «; < «, while maintaining mass continuity between adjacent mesh
points when the slope is supercritical.

The equation for bed change due to avalanching (eq. (4.3)) is obtained by combining the equation
of angle of repose and the continuity equation between two adjacent mesh points and summing
over the previous and the next grid points compared to the considered location:

R (1/2)dl‘ (>\i+1 — Sg’rl[)\zqu])\r) if)\j+1 > A
Ahz‘ = R (1/2)d:): (/\i—l — sgn[)\i_l]/\r) if Aic1 > Ar (3.15)
0 else

where A\;_1, A\it+1, A and R are respectively the slope between the grid points ¢ and ¢ —1, between
the grid points i + 1 and 7 and the repose slope and the under-relaxation factor (approximately
0.25-0.5). The under relaxation allows to stabilize the avalanching process.

Equation (4.3) is applied by sweeping through all computational grid points to calculate
the local bed increase or decrease and then modifying the bathymetry as:

hin+1 = h;" + Ah; (3.16)

Because avalanching between two grid points may induce new avalanching at neighboring grid
points, the sweeping process is repeated until no supercritical slope is detected. This module
has been implemented in the 1D model only, in order to allow the MPM formula validation (see
section 4.2). A 2D extension does not appear necessary in regards to the smooth shapes obtained
for 2D simulations. The avalanche management module test is described in section 4.1.

3.3 Discretization of the Shallow Water Module

The SW module is spatially discretized using the centered finite difference method. Such
discretization is based on the Taylor series development, for a function f(x,y), first and second
order space derivative are written by:

[z + Ax,y) — flz - Ax,y)

O f(x,y) = N + O(Az?), (3.17)
8m2f(x,y) _ f(l’ + Axa y) — zfA(a;Qy) + f(.fC — Ax,y) + O(A.%‘Q), (3.18)

A second-order Runge-Kutta time scheme is used for the time discretization. As the morpholog-
ical ones, this scheme is also a predictor-corrector scheme, the function derivative is evaluated
for one half time-step calculation (¢ + At/2) as shown in equation (3.19), the complete iteration
time step (¢ + At) in then calculated from this evaluation (equation (3.20)).

flt+At/2) = f(t) + %F(t, (1), (3.19)

17

where F(t, f(t)) = O.f (¢)

flE+At) = f(t) + AtF(t + %,f(t)—i—%), (3.20)

More details about this numerical discretization process are available in Moulin [2012].

18

Chapter 4

Morphodynamic Module Validation

In order to validate the numerical schemes implemented in the morphodynamic module, a
1D test case on the migration of an isolated dune is presented. The system and the variables are
described on figure 4.1. The test case consist in a unidimensionnal flow with a constant imposed

discharge: Qy = 10 m?.s~1.

Fixed surface

0 4. Q. —%h _Be—dform X

=1 0 i+

Figure 4.1 — Descriptive scheme of the advection test. Source: Marieu [2007].

The free-surface is fixed (sliding wall with a depth of H = 6 m), so fluid velocity variations
depend on bathymetry variations only. The fluid velocity u can written as a function of the fluid
discharge:

Qy
= — 4.1
where h is the bottom height.

The initial bedform consist in a Gaussian sand dune:
h(x) = 2@_7(37—5%)2 (42)
where v = 0.01 m~2,0 <z <300 m and z. = 150 m.

An analytical solution for the dune migration can be obtained by solving the sediment mass

19

conservation equation by using the simple bed-load formula (eq. (2.7)). Under such assumption,
the sediment flux can be linked to the discharge and the water depth only:

8
q(z) =« (E’—C);L(l') > , (4.3)

The chain rule derivation allows to rewrite the horizontal sediment flux gradient as:

0q Oq Oh
— N — 4.4
Oxr Ohox’ (4.4)
Therefore mass conservation can be rewritten under non-conservative form as:
oh oh
— — =0 4.5
ot + a&c ’ (4.5)
where a is the bedform celerity:
d B
a(h) _ % _ ﬂ (4.6)

“dh (H—h)Ft1’

where o = 0.001s?m ™! and 3 = 3.0, following Marieu [2007].

In this simple case, the solution of equation (4.5) can be calculated analytically using the
characteristic method. Indeed, the height is conserved on characteristic lines given by the fol-
lowing equation:

h(z,t) = h(z,0) on x(t) = xg + a(h)t (4.7)

4.1 Simple Bed-load Formulae

Figure 4.2 shows the bottom evolution at different time computed with the Upwind scheme
(panel a), the NOCS collocated using the MinMod limiter (panel b) and the NOCS collocated
using the Superbee limiter (panel c). For all simulations space and time steps are the same,
dt =1s and dz = 0.5 m.

The sand dune is advected downstream and the lee side of the dune becomes steeper and steeper,
a shock is formed at t = 2000 s. After this time, the dune spreads out and its amplitude decreases.

Figure 4.2.d shows that the numerical scheme closest to the analytical solution is the NOCS
collocated with the Superbee limiter. Indeed, for the time and space step chosen, the Minmod
limiter presents a strong numerical diffusion that is too strong (figure 4.2.b), the shock is even
not predicted. The Upwind scheme is worse than the Superbee, however the shock is predicted.

In order to validate the avalanche management module, two cases have been considered. The
first one is a "slump test" currently used for concrete, the second one concern the application
to dune migration.

The "slump test" consist in the construction of an immerged sand heap at initial angle
«; greater than the angle of repose (a; = 35° > a,, = 28°). As observed in figure 4.3.a, the local
avalanche processing leads to a final heap state where the maximal slope angle is lower or equal
than the angle of repose (af = 27.9°).

Application to the dune migration (figure 4.3.b) shows that the avalanche management
module ensure that the maximal value of the downstream slope is always lower than the critical

20

t=0 sec

t=1000 sec

£=2000 sec

t=3000 sec

t=4000 sec

t=5000 sec

analytic t=0 sec
analytic t=1000 sec
analytic t=2000 sec

analytic

4000 sec
analytic t=5000 sec

analyt

3000 sec | |

200 220

t=0 sec

t=1000 sec

£=2000 sec

t=3000 sec

t=4000 sec

t=5000 sec

analytic t=0 sec
analytic t=1000 sec
analytic t=2000 sec

analytic t=3000 sec | |

analytic t=4000 sec
analytic t=5000 sec

Figure 4.2 — Morphodynamic module test using Upwind scheme (a), NOCS collocated with the MinMod
limiter (b) NOCS collocated with the Superbee limiter (c) and errors between the different schemes used and the

analytical solution (d).

200 220

21

2.5

D.?

t=0 sec

t=1000 sec
£=2000 sec
t=3000 sec
t=4000 sec
t=5000 sec
analytic t=0 sec 8
analytic t=1000 sec
analytic t=2000 sec
analytic t=3000 sec | |
analytic t=4000 sec
analytic t=5000 sec

T

10

200 220

10

— Upwind
~— NOCS-MINMOD
— NOCS-Superbee

-20

-30

T T
o 160 0 200 20

stability (dashed lines).
The two tests described here validate the avalanche management module.

4.0

+—+ Initial state

+——+ 10 iterations
+—+ 40 iterations
Final state (it=93) | |

/£ \
”9 o 150 155 160 165
X (m)

(a) (b)

Figure 4.3 — Avalanche management module test on a sand heap (a) and on the dune migration case, with
Q=14 m?s™! (b).

Parameters have the following values: ps = 2650 kg.m3, p = 1025 kg.m?, v = 1076 m?.s7!,
d = 0.2 mm. According to Liu [2001], for the parameters set used here, the critical Shields
number is equal to 0.052.

4.2 MPM Formulae

For the MPM formula, no analytical solution exists. In order to validate the MPM transport
formula, the present model solution is compared with experimental date obtained at LEGI by
Rossi et al. [2003]. This test case has been proposed by Marieu [2007]. In his work Marieu used
a flow law based on one dimension SW (Barré de Saint Venant) equations because of the non-
uniform flow and empirical sediment transport law based on Rossi et al. [2003| results, as the
ones compared in figure 4.4 are obtained with H and @ fixed and the MPM transport formula.
The studied scale, as the dune size, are quite small, with a maximum dune height of 0.177 m
and a maximal water depth of 0.297 m. Figure 4.4.a shows that the MPM transport law gives
qualitatively closed results compared to the Marieu ones. The sediment motion doesn’t occurs
everywhere on the dune, which confirms that the morphodynamic module is able to reproduced
the threshold sediment motion as described by Meyer-Peter and Mdller [1948]. For the input
flux used here, the local Shields stays always subcritical on the bottom part of the upstream
slope, so this part remains steady in the time, showing that, locally, the system is under the
transport threshold. The MPM transport law seems to well reproduced a real dune migration.

Figure 4.4.b, present the bed elevation profile along the x-direction at different times (upper
panel) and the local bed slope along the z-direction (lower panel). The predicted dune migra-
tion is similar to the one obtained with the simple bedload formula (section 4.1). Therefore, the
implementation of the morphological module with the MPM formula is validated.

22

— MPM=00s — 1=00s
— MPM-t=31300 s L5} — 1=009.0s
— Marieu-t=0.0 s . — 1=1999.0s
020r — Marieut=3130.0s] E 1ol — 1220990 s
= — 1=3999.0's
05t 1=4999.0 5
015 — 1=5001.0's

.10t g o4l

021

slope

0.0
—0.2

—0.4F

Figure 4.4 — Morphodynamic module tests with MPM formulae for the flume dune case Q; = 0.07 m%.s™" (a),
and the section 4.1 case (Qf = 20 m*.s™1).

4.3 NOCS Staggered and 2D Extension

+—+ NOCS staggered - Atmorpho = 1000A¢
+—+ NOCS staggered - Atmorpho = 100A¢

L0} +—— NOCS non-staggered

0930 ET 160 T80 200 220
X (m)

(a)

Figure 4.5 — Comparison between the NOCS staggered and non-staggered scheme for a 1D simulation with an
imput flux of 20 m?.s™! and At = 0.02 s.

All the 1D test cases presented above were done using non-staggered NOCS scheme. As the
2D extension of this scheme was not found in the literature, the 2D morphodynamic model has
been implemented based on a staggered scheme. On a 1D case in the x direction, comparisons
between both schemes have been done (figure 4.5). As described by Marieu [2007], because of
the double interpolant projection necessary to obtain the corrector step on the non-staggered
grid (see 3.2.2), the staggered scheme is more diffusive than the non-staggered one. Introducing a
second time-step Atorpho and calling the morphodynamic module only when the critical Shields

23

is exceeded at some location in the grid allows to reduce the NOCS natural numerical diffusion.
The choice of the morphodynamic time-step is also important. As the changes in sediment are
very slow compared to the oceanic motion, a morphodynamic time step 1000 times higher than
the hydrodynamic one appears to be a good compromise.

The 2D extension is validated by comparing the Gaussian dune migration in three different
directions (x, y as well as the diagonal x — y direction). Dune migration is induced by an im-
posed flow discharge. Figure 4.6 shows that the dune migration and deformation is absolutely
identical in the z and y directions. Furthermore, the dune behavior in the diagonal directions is
almost identical to the axial ones, showing that the cross terms in the morphodynamic model
are correctly implemented. Slight variations can be imputed to the TVD estimator and to the
fact that sediment fluxes are computed in the x and y direction only and then projected on the
diagonal. Nevertheless, variations are small enough to be ignored, and the 2D extension of the
NOCS scheme is validated.

2.0 16
+— vy direction — vy direction

— x direction 14p — x direction

e—e xy direction e—e xy direction

(m
h (m)

051

0.0

0 0 20 10 i 50 o 120 1o SR T 0 B o o) ™o 1 o
Flow direction (m) Flow direction {m)

(a) (b)

Figure 4.6 — dune motion with the input flux variation direction =20 m2.s7Y).
g p f

2D plots of the dune motion (figure 4.7) confirm that dune deformation in the flux direction
are extremely similar for the three given directions.

24

h_s (m)

3.8575e-22

h_s (m)
00

—1,00

I0,00

-0,182

h_s (m)
00

1,00

E0,00

-0,182

Figure 4.7 — 2D plot dune motion with the input flux variation direction (Q; = 20 m?.s™'), initial state (a),

z—direction (b), y—direction (¢) and zy—direction (d).

25

Chapter 5

Shallow Water Module Validation

The Shallow Water module and its coupling with the morphodynamic module have also to

be validated. The classical test case for the SW equations consists in a gravity wave celerity
verification. In fact, the speed of the waves is given by ¢ = v/gh,, where h, is the water depth.
Perturbation travel at a speed ¢ in the positive or negative x direction (in 1D).
The wave is generated by a bump of the free surface at the initial time (figure 5.1.a). In this test
case, the water depth is equal to 20 m, the corresponding waves celerity is ¢ = 14 m.s~!, which
is the one observed on figure 5.1.a. For this test, the friction coefficient between the sediment
bed layer and the ocean layer and the atmospheric forcing are set equal to zero.

22.0 T T T T 20 T T T T T
15} =005
25} | £=20.0004 5
o} £=39.9993 5
£=59.9059 5
s £=79.9087 5
20 =005 £=100.003 5
=20 o B , -
t=4.0s 460 480 500 520 540
£=6.00004 5 N : X (m) ‘ .
2035 t=8.00009 s |1 sl t=0.0s
£=10.0001 s w02 £=20.0004 s
£=12.0002 5 00 - £=39.9993 5 [1
)i £=14.0002s || E sy £=50.9059 s

20.0 - -
t=16.0003 s 19.6¢ t=79.9987 s
£=18.0003 5 1.4} £=100.003 s

£=20.0004 s 19.2

1 00 300 400 500 600 700 800 10 460 480 500 520 540

X (m) X (m)

(a) (b)

h (m)

LTI

h (m)
LT

m

h

Figure 5.1 — SW module tests for waves celerity (a) and coupling with the morphodynamic module (b).

Figure 5.1.b shows a result of the coupled SW and morphodynamic modules, the free surface
is affected by the dune presence. The slight dissymetry of the free surface inflection, compared
to the dune shape, is due to the bed friction. More precisely, the gap between the dune shape
and the free surface deformation is induced by the drag force.

It can also be observed that the dune slope is grater than the angle of repose at the initial time,

so avalanches occur.

A third test case has been done to confirm the accuracy of the shallow water module, it
concerns the non linear part of the equation: without the presence of friction, the free surface
deformation has to follow the Bernoulli solution (Energy conservation). For a flow with a free

26

surface the Bernoulli equation can be applied to that free surface, which is a streamline with
constant pressure, the equation becomes:
2 u(x)Z 2

h0+hs+;—g:c0nst. < ho(z) + hs(x) + % :hl—i-%, (5.1)

where hg is the bed elevation, h, is the water depth and u is the fluid velocity. Far from the
obstacle, the fluid velocity and the water depth are respectively equal to u; and h;.
The free surface deformation induced by the presence of the bedform can be written as:

n=hy—ho— hs, (5.2)

So from equation (5.1), the free surface deformation 7 could be rewritten as:

uQ — ’LL12

TR (53)

’[7:

where, for small free surface variations, u = q/(h1 —hs) and u; = q/h1, with ¢ the flow discharge.
So the free surface deformation becomes:

_ i q2 B q2
Y <(h1 — hs)? (h1)2> ’ 54

Periodic boundary conditions imposed in the SW equations have to be changed in this case.
As in subcritical free surface hydraulic problem an input flux and an output depth need to be
imposed.

t=0.0s

t=20.0004 s
t=39.9993 s [
t=59.9959 s
t=79.9987 s [
t=100.003 s

160 180 500 520 540
21.0 ‘ ‘ x (m)

(
LTI

t=0.0s
t=20.0004 s |
t=39.9993 s
t=59.9959 s |4

t=79.9987 s
19.5 F t=100.003 s [

160 80 300 520 510

x (m)

Figure 5.2 — SW module test with no friction and an imposed input flow discharge of Q; = 50 m?.s™*.

Figure 5.2 shows that the free surface deformation induced by the presence of the bedform
follow the Bernoulli solution in a qualitative way, the deflection is symmetric and exactly opposed
to the bedform elevation. The deformation is also quantitatively closed to the Bernoulli solution
as shown in table 5.1. The maximum free surface deflection values obtained from the numerical
model (Mmoder) tends to differ from the solution given by equation 5.3 (9gpproz) When the input
flow rate (s is increased. The comparison of numerical results with the analytical solution

27

Table 5.1 — Maximal values of free surface deflexion for five different input fluxes.

Qf (m2 ~571) Nmodel (m) Napprox (I'Il) error (%) Nanalytical (m) €rror (%)
2 3.966.10~1 3.964.10~1 0 3.964.10~1 0

10 9.941.1073 9.910.1073 0.8 9.941.1073 0

20 0.0401 0.0396 1.2 0.0401 0

50 0.2686 0.2477 7.8 0.2686 0

100 1.5377 0.9684 37 1.5384 0.04

shows a very good agreement for all flow discharges. This shows that the non linear terms, non
accounted for the approximate solution, becomes dominants as the flow discharge is increased.
These non-linear terms are well implemented and solved in the proposed numerical model.
Tests have also been carried in two dimensions. For this case, the conservation of the Bernoulli
Potential has been checked. From equation 5.1, the Bernoulli Potential has to be constant along
the surface streamline, in 2D it can thus been written as:

u2+v2

Bpot:ho‘i'hs"i'i

5% = const, (5.5)

As shown in figure 5.3.a and 5.3.b, tests have first been done with input fluxes in the x and y
directions only for a sandbar (the dune is the same in all the or y direction), then for a 2D
Gaussian sand dune with an imput flux in the x direction (figure 5.3.d). For all these cases, a
steady state is represented, the simulation time is t=1000 seconds. The Bernoulli potential is
recovered in all the three configurations, even if, as shown on figure 5.3.d, small variations can
be observed. These variations are acceptable with a maximal relative error of 0.015%.

28

20
15
)
g
Ul
<
51
=+ Bed
— Free surface
~—— Bernoulli Potential
1) P _ = "
460 480 500 520 540

x (m)
(a)

540

520

=

500

480

460

Figure 5.3 — Bernoulli potential conservation test in the = (a) and y (b) directions

h (m)

10

0

Bernoulli potential elevation (m

+— Bed

— Free surface

~—— Bernoulli Potential

460

a 2D gaussian sand dune with a input fluxe in the x direction only.

29

480

M
500 520 540

= ¢

0.0272

0.025¢

0,022

0.020¢

0.0172

0.015¢

0.012%

0.010¢

0,007

0.005¢

0.0027

0.000C

. Bernoulli potential (c) for

Chapter 6

Wake Effects

All the numerical simulations presented in this work involve the same wake parameters, such
as rotor diameter or wind velocity. The rotor diameter is small (D = 40 m) in order to reduce the
domain size and the computation time. Forcing wind has been chosen as 20 m.s~!, corresponding
to the high range part of turbine good working (from 3 m.s~! to 30 m.s~!). Concerning the time-
step, Atyorpho = 1000At for all the simulations. In order to respect the CFL condition, when
water depth H is equal to 6 meters, At = 0.02 s and when H = 20 m, At = 0.01 s. Simulations
with different horizontal viscosity v, water depth and a large scale flow of varying strength and
angle have been performed. An overview of the different simulations parameters is given in table
6.1:

Table 6.1 — Wake simulations and their parameters.

Viscosity Water

Simulation name (m2.s~1) Ly (m) Ly (m) depth (m) Turbulent
H6NUSE-2 5.1072 1500 300 6 No
H6NU1E-2 1.1072 1500 300 6 Yes
H6NUSE-3 51073 1500 300 6 Yes
H6NUI1E-3 1.1073 1500 300 6 Yes
H20NUSE-3 5.1073 1500 300 20 Yes

6.1 Wake Effects on the Ocean Free Surface

As shown on figure 6.1.a, for simulation HENU5SE-2, the wake creates a velocity decrease in
the ocean, the perturbation intensity is maximum a few hundred meters after the wake impact
and decreases downstream. Outside the wake, the flow is not subjected to the velocity reduction
and a strong velocity gradient is generated, across the wake boundaries, at the transition between
the perturbed and the unperturbed zones. The forcing is symmetric with the y = 150 m plane
(figure 6.1.b), periodic boundary conditions are used. Indeed, in the results presented here, the
study domain is surrounded by an infinity of other identical domains in both x and y directions.
This is particularly conspicuous in the z direction, were the wake that is coming out of the
domain at the right boundary reappears at the left one. The wake present in the study domain
is thus perturbed by an upstream wind wake.

Simulation HENUBE-2 is taken as the referent one, corresponding to a laminar wake case.

30

30¢ E
B E o

24 E !
10

5€

8o 0,2 0,4 0.6 0,8 10 12 14 E

K-Axis (x10%3)

(a)

— y=150 m

+—+ y=50m

0441 — y=250m |]
a2} \-
0.33

0.36 /

300 £ 500 i o0 200 [E0)

Figure 6.1 — 2D x-velocity field (a) and 1D transect in the x direction (b) for a simulation time ¢ = 50 hours.

Decreasing the ocean viscosity leads to instabilities in the wake, the ocean flow becomes
turbulent, starting from a vortex formation at the wake boundaries. Figure 6.2 shows the 2D
vorticity field at the same simulation time and for different ocean viscosities. While the viscosity
is decreased, the vorticity anomalies of the flow are increased, i.e the vortex intensity becomes
stronger. Decreasing the viscosity leads thus to the appearance of a Kelvin-Helmhotz instability.
Here, this instability is induced by a strong velocity shear in the ocean layer, inside and outside
the wake, generating strong vorticity.

Figure 6.3 shows that for a water depth equal to 20 m, vorticity picture is completely different
to the 6 m case. For h = 20 m, vortex spacing is higher, approx. 400 m against approx. 100 m for
h = 6 m and the size of the vortices is higher too. Contrary to the 6 m water depth case, the two
vortex streets interact, generating a broader turbulent domain. An increase of approximately a
factor 4 in water depth leads to a change of the same order in the vortex spacing. It appears
that vortex size and spacing seems to depends on the water depth. This water depth appears
in the bottom friction terms G = 7,/h in the SW equations. As the simulations are undertaken
at a imposed stress, the bottom shear stress doesn’t depend on the water depth. The influence
of the bottom friction force is thus decreasing when the water depth is increasing, allowing for
stronger instabilities.

The water depth and the bottom friction seems to be the controlled parameters for the

31

Vorticity
,00645

0,00500

-0,00250

0,00

-0,00250

0,8
X-Axis (x10%3)

-0.00500
-0,00645

(a)

Vorticity
0126

0.0100

0,00

0.8
H-AXIS (x1043)

-0,0100
-0.0126

(b)
Vorticity

0168
0,0100

0,00

-0,0100

-0,.0168

()

Vorticity
0253

0,0200

0.00

-0,0100

10

0,8
H-AXls (1073}

-0,0200
-0,0253

(d)

Figure 6.2 — 2D vorticity field for HENU5SE-2 (a), HENU1E-2 (b), HGNU5E-3 (c) and H6NU1E-3 (d). Viscosity
is decreasing from top to the bottom. Simulation time is the same for each snapshot, ¢ = 50 hours.

32

size and the spacing between vortices. Nevertheless, to the best of our knowledge, no study has
been done on Kelvin-Helmhotz instability formation in presence of bottom friction. As more
and more deep water wind farms are planned [EWEA, 2013|, a better understanding of the local
impact on the circulation is important. An analytical development could be undertaken in order
to give insights into this open question.

Vorficity
00744
0,00500
~0,00250
80,00
-0,00250
1,0

0.8 ; R
X-Akis (110°3) -0,00500

-0,00742

Figure 6.3 — 2D vorticity field for H20NU5E-3. Simulation time is ¢ = 50 hours.

6.2 Wake Effects on the Seabed

6.2.1 Spatial Evolution

For all the simulations undertaken, spatial qualitative impact on the wake upon the seabed

is similar. Figure 6.4 shows the impact for the laminar (HGNU5E-2) case. The velocity deficit
induced by the wake leads to a sediment accumulation, i.e a dune formation close to the impact
abscissa (between z = 200 and = = 300 m). Downstream in the wake, after the z = 650 m
abscissa point, the velocity deficit becomes less important, corresponding to a bottom shear
stress that induces bed erosion. Outside the wake, the flow accelerates by bypassing the dune,
such acceleration increases the bottom shear stress and thus the sediment transport, leading to
a hole formation on each side of the dune. The hole depth is much important than the dune
height (0.0017 m against 0.0010 m for the dune) after 80 hours of simulation. After x = 650
m, the velocity and the bottom shear stress decrease along the x-direction, producing sediment
accumulation in this region.
The dune width corresponds to the local wake width, showing that the local velocity deficit
induced by the wake is the main cause of the seabed evolution. Sediment deposition is also
much more important because of the periodic boundary conditions. Sediment transport inside
the wake which is coming out at the right boundary reappears at the left one, increasing the
amount of sediment available to be deposited in the velocity deficit zone.

The dune shape is inversed compared to the classical one, here a strong slope appears up-
stream and a smooth slope downstream. The velocity deficit generated by the wake just after
the impact point is strong enough to induce a sharp sediment drop off. This deposit maximum
occurs at the dune upstream position, where the longitudinal velocity gradient is the stronger.

33

h_s (M)

00103
0.00100
0,00
-0,00100
0,8
X-Axis {x 103}
-0,00200
-0,00208
(a)
0.0015 . ' ' '
0.0010 1
0.0005 T ——
— 0.0000 1
=
= —0.0005 |
~0.0010 |
— =150 m
—0.0015 — y=7hm |1
— y=2T5m
—0.00204 200 100 600 S00 1000 1200 1100

X (m)

(b)

Figure 6.4 — 2D seabed height field (a) and z-direction transect (b) for HENU5E — 2. Simulation time is ¢ = 80
hours.

6.2.2 Time Evolution

Figure 6.5 shows that the bathymetry variation between two consecutive output (At = 1800
s) of the same simulation. The morphodynamical evolution between turbulent and laminar cases
is completely different. The vortices strongly affect seabed morphodynamics. For the 6 m water
depth case, the wake boundary imprint in the seabed becomes unstable and for the 20 m water
depth case, the wakes imprint is totally annihilate by large scale vortices. Difference in vortex
scale observed in the ocean is found again in the seabed, showing that vortex formation on
the free surface has a significant impact on the seabed morphodynamics. However, even if this
impact appears clearly, its intensity remains quite small. Indeed, the order of change in height
correspond to 2.107% m for an hour. Changes of the order of the mm will only appear after one
month of simulation. Long term simulations should be carried out in order to better modelize
the morphodynamic impact of the ocean vortices.

34

dh (m)
4,630-06

0,00

< -2,90e-06

-7.50e-06
-9.17e-06

dh (m)
8.41e-06

-1.00e-05

-1.66e-05

dh (m)
7,16e-06

—4,00e-06
0,00

-4,00e-06

-7.78e-06

()

Figure 6.5 — 2D bathymetry difference field between two consecutive output for HENU5SE-2 (a), HENU5E-3 (b)
and H20NU5E-3 (c) after 70 hours of simulation.

Changes of seabed evolution in specific seabed points for HONU5E-2, HENU5E-3 and H20NU5E-
3 are presented on figures 6.6 and 6.7. A first important result is that, even for the laminar case,
seabed evolution is not linear in time. A very common method to increase time simulation in
morphological numerical model consists in using a morphological prefactor: sediment fluxes are
multiplied by a prefactor x (x >> 1) so that for a given simulation time correspond finally to
x times this simulation time. Because of the non-linear seabed behavior observed herein such
method seems to be not justified. For a given xate depth (H = 6 m), the seabed evolution is
not affected by the vortices at short-time. However, for a greater water depth (H = 20 m), the

35

seabed evolution is much lower (one order of magnitude), even if the instantaneous bed shear
stress magnitude and the Shields number are similar in both cases. This difference in the sedi-
ment transport can be explained by the homogeneous turbulence for the 20 m water depth case.
This turbulence induces a non local relation between the momentum input and the momentum
outtake, positive and negative vorticity alternate in time resulting in an average transport close
to zero. In conclusion, the seabed pattern is similar for both water depth but the magnitude of
this disturbances is one order of magnitude lower for the 20 m water depth case. This result is
extremely important, showing that the sediment transport physic induced by the wake presence
seems to be completely different depending on the water depth. This recent and astonishing
result needs further confirmations.

0.0010 ———

0.0005

0.0000

=
~Z —0.0005

Dune
Near Wake
00010 Far wake
Wake Boudary

Hole

Outside

Dune-laminar

Near Wake-laminar
Far wake-laminar
Wake Boudary-laminar
Hole-laminar

—0.0015

Lrerrerrrend

Outside-laminar

—0.0020

50000 100000 150000 200000 250000 300000 350000 100000 150000

(a)

Figure 6.6 — Time evolution of specific seabed points, comparison between HENU5E-2 and HENU5E-3. Maximal
simulation time is equal to 116 hours, i.e ~4.5 days.

36

0.0010 "

0.0005

0.0000

Dune
Near Wake

00010 Far wake

Wake Boudary
Hole

Outside
Dune-20 m

—0.0015

Wake Boudary-20 m
Hole-20 m
Outside-20 m

Lrrrrrrertl

—0.0020 50000 100000 150000 200000 250000 300000 350000 100000

t(s)

(a)

Figure 6.7 — Time evolution of specific seabed points, and between H6NU5SE-3 and H20NU5E-3. Maximal
simulation time is equal to 100 hours, i.e ~4 days.

37

Chapter 7

Conclusion and Perspectives

During this internship an idealized 2D numerical model has been proposed to study the

impact of an offshore wind turbine wake on the ocean and sediment dynamics. To the best of
our knowledges no study has been done on this subject.
A simplified physical model has been proposed and a mathematical model has been consis-
tently built. My main task during the internship has been to write a numerical model, starting
from nothing. An important effort has been dedicated to the careful validation of the sediment
transport and the hydrodynamic modules. Classical test cases and comparisons with analytical
solution have been undertaken, showing the model accuracy and robustness.

The present results show that the turbine wake has an impact on both ocean and sediment
bed layers. Turbine wake impact on ocean surface can generates Kelvin-Helmholtz instabilities
and vortex streets formation. Size and spacing between these vortices seems to be controlled
by the friction between the bed and the ocean layer. When friction is decreased, large scale
instabilities are easily generated, leading to an homogeneous turbulence state in the ocean. As
the in model the wind stress is imposed such state appears when water depth increases. Two
morphodynamics evolutions are noticeable, in the short-time (days), main effects on the seabed
are linked to the mean wake and not to its turbulent or laminar nature. In the long term, change
in seabed elevation could be dominated by the turbulent nature of the wake. When the turbu-
lence is homogeneous long-term and short-term impacts on the wake seems to be dominated
by the turbulence. At short-term, the homogeneous turbulence decreases the average sediment
transport. Wake imprint in the seabed is thus quantitatively lower than less turbulent or laminar
cases. Therefore, when the water depth is increased, the morphological impact are lower and the
turbulent ocean dynamic is increased. This phenomenon can have a significant feed back on the
atmospheric dynamic, that should be taken into account as more and more offshore wind farms
are planned at important water depth.

The present numerical model shows very important and promising results. Nevertheless,
many improvements have to be implemented into the numerical model. If the addition of an
large scale oceanic forcing is under construction, an other important point would be, as men-
tioned above, to consider the atmospheric dynamic differently by introducing a shallow water
module for the atmosphere. Furthermore, the wake model used herein is extremely simplified,
using more realistic model such as the parabolic Larsen’s one would provide more realistic sim-
ulations. As impact of turbine wake on the ocean is, as far as we know, still understudied, data
assimilation from natural sites are essential in order to better parametrize the numerical models.

38

Bibliography

Barbe, J. B., Etude de l'impact des eoliennes offshores sur l'ocean et l’atmosphere - Internship
report, 2013.

Buffington, J. M., The legend of af shields, Journal of Hydraulic Engineering, 125(4), 376-387,
1999.

EWEA, Deep water, the next step for offshore wind energy, 2013.

Jacobson, M. Z., C. L. Archer, and W. Kempton, Taming hurricanes with arrays of offshore
wind turbines, Nature Climate Change, 4(3), 195-200, 2014.

Jensen, N., A note on wind generator interaction, 1983.

Jiang, G.-S., D. Levy, C.-T. Lin, S. Osher, and E. Tadmor, High-resolution nonoscillatory central
schemes with nonstaggered grids for hyperbolic conservation laws, SIAM Journal on Numerical
Analysis, 35(6), 2147-2168, 1998.

Larsen, G., J. Hojstrup, and H. Madsen, Wind fields in wakes, in FWEC 1996 Proceedings,
Goteborg (Sweden), 1996.

LeVeque, R. J., Finite volume methods for hyperbolic problems, vol. 31, Cambridge university
press, 2002.

Liu, Z., Sediment transport, Laboratoriet for Hydraulik og Havnebygning, Institut for Vand, Jord
og Miljateknik, Aalborg Universitet, 2001.

Marieu, V., Modélisation de la dynamique des rides sédimentaires générées par les vagues, Ph.D.
thesis, Bordeaux 1, 2007.

Meyer-Peter, E., and R. Miiller, Formula for the bedload transport, in 3rd Meeting of the Inter-
national Association of Hydraulic Research, 1948.

Moulin, A., Air-sea interaction at the synoptic and the meso-scale - Internship report, 2012.

Nessyahu, H., and E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation
laws, Journal of computational physics, 87(2), 408-463, 1990.

Renkema, D. J., Validation of wind turbine wake models, Master of Science Thesis, Delft Uni-
versity of Technology, 2007.

Rossi, L., H. Michallet, P. Bonneton, et al., Morphodynamique d’une dune, couplage avec 1’é-
coulement, Acte du Congrés Frangais de Sédimentologie, 2003.

Sanchez, A., and W. Wu, A non-equilibrium sediment transport model for coastal inlets and
navigation channels, Journal of Coastal Research, pp. 39-48, 2011.

39

Smith, S., Coefficients for sea surface wind stress, heat flux, and wind profiles as a function of
wind speed and temperature, Journal of Geophysical Research: Oceans (1978-2012), 93(C12),
15,467-15,472, 1988.

Van der Veen, H. H., S. Hulscher, and B. Perez Lapena, Seabed morphodynamics due to offshore
wind farms, in River, Coastal and Estuarine Morphodynamics: RCEM, 2007.

Vautard, R., F. Thais, I. Tobin, F.-M. Bréon, J.-G. Devezeaux de Lavergne, A. Colette, P. Yiou,
and P. M. Ruti, Regional climate model simulations indicate limited climatic impacts by
operational and planned european wind farms, Nature communications, 5, 2014.

Vermeer, L., J. N. Sgrensen, and A. Crespo, Wind turbine wake aerodynamics, Progress in
aerospace sciences, 39(6), 467-510, 2003.

Wu, J., Wind-stress coefficients over sea surface from breeze to hurricane, Journal of Geophysical
Research: Oceans (1978-2012), 87(C12), 9704-9706, 1982.

40

List of Figures

2.1
2.2

2.3

3.1
3.2
3.3
3.4
3.5

4.1

4.2

4.3

4.4

4.5

4.6
4.7

5.1
5.2
9.3

6.1
6.2

6.3
6.4

6.5

Sketch of the physical model, exponent “s” refers to the sediment bed. From Moulin [2012]
Ilustration of a turbine wake (a) and of Jensen wake downstream the rotor (b). The red zone
on (a) correspond to the ocean surface which is affected by the wake. From Barbe [2013].
Scheme of Jensen wake. From Barbe [2013]. o

Organization chart of the code, nmorpho = Atmorpho/At . . .« oL L.
Scheme of the periodic boundary conditions in the x-direction. Source: Moulin [2012].
Scheme of the CFL conditions. Source: www.physics.buffalo.edu/phy410-505
Second order reconstruction. From Jiang et al. [1998]. oo

Two-dimensional staggered (red) and non stagerred (black) grids. From Jiang et al. [1998].

Descriptive scheme of the advection test. Source: Marieuw [2007].
Morphodynamic module test using Upwind scheme (a), NOCS collocated with the MinMod
limiter (b) NOCS collocated with the Superbee limiter (c) and errors between the different
schemes used and the analytical solution (d).
Avalanche management module test on a sand heap (a) and on the dune migration case, with
Qr=14m?s7 (b). e e
Morphodynamic module tests with MPM formulae for the flume dune case Q; = 0.07 m*.s™*
(a), and the section 4.1 case (Q; =20m%.s™h).
Comparison between the NOCS staggered and non-staggered scheme for a 1D simulation with
an imput flux of 20 m?.s™ and At =0.028.
dune motion with the input flux variation direction (Qf =20 m?.s™).
2D plot, dune motion with the input flux variation direction (Q = 20 m?.s™"), initial state (a),

x—direction (b), y—direction (¢) and zy—direction (d).

SW module tests for waves celerity (a) and coupling with the morphodynamic module (b).
SW module test with no friction and an imposed input flow discharge of Q; = 50 m?.s™'. . . .
Bernoulli potential conservation test in the z (a) and y (b) directions. Bernoulli potential (c)

for a 2D gaussian sand dune with a input fluxe in the = directiononly.

2D x-velocity field (a) and 1D transect in the x direction (b) for a simulation time ¢ = 50 hours.
2D vorticity field for HENU5SE-2 (a), HONU1E-2 (b), HONU5E-3 (c) and H6NU1E-3 (d). Vis-
cosity is decreasing from top to the bottom. Simulation time is the same for each snapshot,
t=>50 hours. L L e e e e e e e e e e
2D vorticity field for H20NUSE-3. Simulation time is ¢ =50 hours.
2D seabed height field (a) and z-direction transect (b) for HENUSE — 2. Simulation time is
t=80hours. L e
2D bathymetry difference field between two consecutive output for HEINUSE-2 (a), HENU5SE-3
(b) and H20NUSE-3 (c) after 70 hours of simulation.

41

11
12
12
15
16

19

21

22

23

23
24

25

26
27

29

31

6.6

6.7

Time evolution of specific seabed points, comparison between HGNU5E-2 and HGNU5E-3. Max-
imal simulation time is equal to 116 hours, i.e =4.5 days.
Time evolution of specific seabed points, and between HGNU5E-3 and H20NU5E-3. Maximal

simulation time is equal to 100 hours, t.e =4 days.

42

0N U WN R

Appendix A

Numerical Model in Fortran

program main

1 sk sk ke sk ke ok ke ok ke ok ke ok ke ok ke sk ke sk ke ok ke ok ke sk ke sk ke sk sk ok ke sk ke sk ke sk ke ok ke sk sk sk ke sk sk ok sk sk sk sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk ok ok sk ok ok sk ok ok ok ok ok ok ok
Program by Tim NAGEL - LEGI *

1

! *
! date: 31/03/2014 *
! *
! This program tends to modelise a seabed evolution in time, by solving Exner *
! equation coupled with the SW equation for the ocean. Equations are solved *
! in 2D *
! *
! All units sgi *
1 sk sk ok sk sk ok sk ok ok sk ok ok sk ok oK sk ok ok sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok sk ok ok ok sk ok sk ko ok ok ok

use netcdf
implicit none
include ’common.inc’

!variables definitions

real(8) :: t 'time

real(8) :: tf !'simulation final time

real (8) :: phi,maxslope,maxutest ,maxeta,maxs,theta_c,tramp,qOmax

integer :: 1i,j,iprint !elements and iterations number

character (1len=80) :: outputfile

character (1en=80) :: restartfile

real (8), dimension(nx) :: x,cfl

real (8), dimension(ny) :: y

real (8), dimension(nx,ny) :: u,v,s,u_c,u_test,s_b,eta,eta_c,h,hmean,h_n,theta,v_c,
u_dip,v_dip,bpot

real (8), dimension(nx,ny) :: u_half,v_half,bqbx,qby,qbxl,qgbyl,sigma,sigma_a,W,Wu,omega

real (8), dimension(nx) :: c,u_abs

real (8) :: maxc,maxhn,maxh,maxtheta,maxv,M,Wxmax ,Wymax ,maxsigma,W0,dx1,dyl,maxu

real (8) :: delta_t,t_iter,vaO

CHARACTER (len=4) ,dimension (1) :: restart_option

CHARACTER (len=10) :: parm

logical :: restart

1ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok o ok ok o ok ok ok ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok ok ok ok ok ok ok kK ok K K
! Restart option
1k ok sk ok ok ok ok ok ok ok ok ok ok ok sk ok o ok ok o sk ok ok sk ok o ok ok o sk ok ok sk ok o ok ok o sk ok ok sk ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok ok koK R K
call getarg(1l,parm)
read (parm,*)restart_option (1)
if (restart_option(1)=="RES") then
restart=.true.
print *, "Restart=true"
elseif (restart_option(1)=="NORE") then
irestart_name=0
restart=.false.
print *, "Restart=flase"
else
print *, "Reminber: Argl = NORE/RES (NORE=NoRestart, RES=Restart)"
endif
1 sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok K ok ok ok ok ok o ok ok ok ok ok s ok ok ok ok ok ok ok ok s ok ok s ok sk sk ok ok s ok sk ok ok ok ok ok s ok ok o ok ok ok ok R K
! Read the input file
1ok ok ok K ok ok o oK ok K oKk K oK ok K oK ok K oK ok K oKk K ok K oK ok K oK ok oK ok K K ok K K ok R oK ok K K ok oK ok K K ok K K ok K K R K ok K KOk K KK K K
open (12,file=’input_morpho.txt’)
read (12,*) !skip a line
read (12,*) !skip a line
read (12,%) !calculation parametrisation
read (12,%*) dt
read (12,*) nmorpho
read (12,*) niter
read (12,%*) nprint
read (12,%) !outputfile name

43

66 read (12,"(a80)") outputfile
67 read (12,"(a80)") restartfile
68 read (12,*) !domain parametrisation
69 read (12,*) xlim

70 read (12,*) ylim

71 read (12,%*) locean

72 read (12,*) rho

73 read (12,*) hO

74 read (12,*) nu

75 read (12,%) cdl

76 read (12,%) Wx

77 read (12,%) Wy

78 read (12,%*) qOx

79 read (12,*) qOy

80 read (12,*) x0_oc

81 read (12,*) yO_oc

82 read (12,%*) amp_oc

83 read (12,%*) kappa

84 read (12,%*) !'sediment

85 read (12,%*) rho_s

86 read (12,*) d

87 read (12,*) xO0

88 read (12,%*) yoO

89 read (12,%*) amp

90 read (12,*) cd

91 read (12,%*) alpha

92 read (12,*) beta

93 read (12,*) slope_lim

94 read (12,*) slope_lim_post
95 read (12,*) !wake and turbines
96 read (12,%*) kj

97 read (12,%) dr

98 read (12,%*) ht

99 read (12,*) ua0

100 read (12,%) drag

101 read (12,*) rho_a

102 read (12,*) !'numerical scheme
103 read (12,%*) ibedflux

104 read (12,*) ischeme

105 read (12,*) icase

106 read (12,*) icase_oc

107 read (12,%*) iav

108 read (12,*) 1lim

109 read (12,*) ibc

110 read (12,*) ibcew

111 read (12,*) ibcns

112 read (12,%) idip

113 read (12,*) iwake

114 close (12)

115

116 outputfile=trim(outputfile)//’.nc’

117 print *,’Fichier de sortie -->’,outputfile

118

119

120 dx=xlim/float (nx-1) !space grid size

121 dy=ylim/float (ny-1) !space grid size

122 tf=float (niter) *dt !final time calculation

123 dtmorpho=nmorpho*dt '!morphodynamic timescale

124 tramp=1000.

125 pi=3.1415926

126 maxu=maxval (u)

127 |1 skook ok ok ok ok ok ok ok ok oK K o K K K K K ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K K Kk ok
128 | ! creation of the x and abcsisse gridspaces

129 | 1ok osk ok ok ok ok ok ok ok ok K ok K K K K K Kk kR ok ok ok ok ok ok ok ok ok oK oK K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok oK oK K K K K K K K K K K K Kk ok
130 'x

131 x(1) =0

132 do i=2,nx

133 x(i)=x(i-1)+dx

134 enddo

135 'y

136 y (1) =0

137 do j=2,ny

138 y(j)=y(j-1)+dy

139 enddo

140 | 1 % s sk ok ok ok ok ok ok ok ok ok ok ok 3K 3K K K K K 3K K K K K K K K ok ok ok ok ok ok ok ok ok ok oK 3K K K K K K K K K K K K K K ok ok ok ok ok ok ok oK ok oK oK K K K K K K K K
141 | ! creation of the initial bedform and free surface elevation

142 |1 sk ook ok ok ok ok ok ok ok oK K K K K K K K K K ok ok ok ok ok ok ok ok ok ok ok oK 3K 3K K K K K K K K K K K K ok ok ok ok ok ok ok ok ok ok ok K K K K K K K K K K K K K Kk ok
143 call init(x,y,h,eta)

144 !! read the restart file here t,h0,x,dx,u,eta,h

145 |1 % s sk ok ok ok ok ok ok ok ok ok ok ok 3K 3K K K K K 3K K K K K K K ok ok ok ok ok ok ok ok oK ok ok ok 3K K K K K K 3K K K K K K K K ok ok ok ok ok ok oK ok ok ok K K K K K K K K
146 | ! initial conditions

147 |1 sk ook ok ok ok ok ok ok ok oK K K K K K K K K K koK ok ok ok ok ok ok ok ok oK 3K K K K K K K K K K K K Kk ok ok ok ok ok ok oK ok ok ok oK K K K K K K K K K K K K K kK ok
148 hmean=h0

149 s=hmean+eta

150 if (ibc==1) then

151 u=(q0x/(s-h)) !*cos(pi/4)

152 v=(q0y/(s-h)) '*sin(pi/4)

153 else

154 u=0.

44

155 v=0

156 eta=0.

157 h=0.

158 endif

159 u_test=0

160 va0=0.

161 u= sqrt((rho_a/rho)*(cdl/cd))*ua0!-(0.1) '*(1.41421356237/2)

162 ! u= (1.0)%*(1.41421356237/2)

163 ! v= sqrt((rho_a/rho)*(cdl/cd))*va0+(0.05)*(1.41421356237/2)

164 t=0 ! initial time

165 omega=0 !Vorticity initialisation

166 iter=0 !time loop initialization

167 iprint=1

168 delta_t=0

169 | 1 ok ok ok ok ok ok ok ok ok ok ok K oK ok ok ok ok K K oK ok ok ok K K ok ok ok ok K K K ok ok ok ok K K oK ok ok ok K K ok ok ok ok K K ok ok ok K K K ok ok ok K K K ok K
170 | ! Read Restart

T70 | sk ok ok ok ok ok ok ok ok ok ok ok o K oK ok ok ok ok K oK ok ok ok o K ok ok ok ok o K K ok ok ok ok K K oK ok ok ok K K ok ok ok ok K oK ok ok ok K K oK ok ok ok K K K ok K
172 | if (restart) then

173 Call restart_sub(l,t,eta,u,v,h) !read the last state

174 tf=t+tf

175 | endif
176 | print *, ’t’, t, ’maxu’, u(10,10), ’maxv’, v(10,10)

177 | 1 skook ok ok ok ok ok ok ok ok ok K ok K K K K Kk ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K K Kk ok
178 | ! Atmospheric forcing

179 | 1 skook ok ok ok ok ok ok ok ok ok ok o Kk kK ok ok ok ok ok ok ok ok ok ok oK K K K K K K K KKk ok ok ok ok ok ok ok ok ok oK oK K K K K K K K K KKK Kk ok
180 call atm_forcing(x,y,sigma_a)

181 | 1ok ok ok ok ok ok ok ok ok ok oK K K K K K K Kk ok ok ok ok ok ok ok ok ok ok ok oK oK K K K K K K K K K K K ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K K Kk ok
182 | ! Bpot calculation: Bernoulli potential

183 | 1ok ok ok ok ok ok ok ok ok ok ok oK K K K Kk ok ok ok ok ok ok ok ok ok ok ok oK oK K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K KK K Kk ok
184 bpot=s+(u*x*2+v*x2) /(2*g)

185 | 1ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K K ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K K Kk ok
186 | ! Netcdf creation

187 | 1ok ok ok ok ok ok ok ok ok ok K K K K K K K K kR ok ok ok ok ok ok ok ok ok ok oK oK K K K K K K K K KKk ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K K Kk ok
188 call netcdf_creation_ocean(outputfile ,x,y,h,s,u,v,t,bpot,W,Wu,omega,eta)
189 | 'if (.not. restart) then

190 call netcdf_save_ocean(t,h,s,u,v,iprint ,bpot,W,Wu,omega,eta)

191 | 'endif

192 |1 % sk sk sk ok ok ok ok ok ok ok ok ok ok ok 3K K K K 3 3 K K K K K K ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K K K K K ok ok ok ok ok ok ok ok oK ok oK K K K K K K K X
193 | ! Time loop

194 | 1ok ok ok ok ok ok ok ok oK K K K K K K K K K K ok ok ok ok ok ok ok ok ok ok 3K 3K K K K K K K K K K K K K ok ok ok ok ok ok ok ok oK oK ok ok K K K K K K K K K K K K K Kk K
195 do while (t.LE.tf)

196 !time and iteration advancing

197 t=t+dt

198 iter=iter+1

199 if (mod(iter ,nmorpho)== 0) then

200 delta_t=t-t_iter

201 print *,’t=’,t,’s - iter=’,iter

202 ! print *,’dt=’,dt

203 ! write(99,°(2(1x,1i8) ,3(1x,e15.8))’) iter, iprimnt, t, dt, delta_t
204 t_iter=t

205 endif

206

207 !Atmospheric stress ramp

208 ! if (t.le.tramp) then

209 ! sigma=(t/tramp)*sigma_a

210 ! else

211 sigma=sigma_a

212 ! endif

213

214 ! Wu=(sigma/(rho*(hmean-h+eta)))

215

216 !'0Ocean SW calculation

217 call ocean(u,v,eta,hmean,h,sigma,u_c,v_c,eta_c,s)

218

219 maxeta=maxval (abs(eta))

220 if (mod(iter ,nmorpho-1)== 0) then

221 call sedimentary_fluxes(u,v,qbx,gby)

222 gbx1l=qgbx

223 gqbyl=qby

224 endif

225 !Seabed morphodynamic

226 theta_c=0.052e0

227 if (mod(iter ,nmorpho)== 0) then

228 do j=1,ny

229 do i=1,nx

230 theta(i,j)=0.5%rho*xcd*(u(i,j)**2+v(i,j)**2)/((rho_s-rho)*g*d)
231 enddo

232 enddo

233 maxtheta=maxval (theta)

234 ! print *,’maxtheta’, maxtheta

235 if (maxtheta.ge.theta_c) then

236 call morpho(eta,hmean,u,v,qbxl,qgbyl,h,h_n)

237 h=h_n

238 endif

239 !mass conservation

240 M=sum (h) *dx*dy

241 ! print *,’Mass’, M

242 endif

243

244 'updating h, u and eta

245 u=u_c

246 eta=eta_c

45

247
248
249
250
251
252
253
254
255
256

258
259

261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282

284
285
286
287
288

290
291
292

0N WN

v=v_c
s=hmean+eta

!'Vorticity calculation
dxil=dx**(-1)
dyl=dy*x*(-1)
do i=2,nx-1

do j=2,ny-1

omega(i,j)=0.5*dx1*(v(i+1,j)-v(i-1,3j))-0.5*%dyl*(u(i,j+1)-ul(i,j-1))

enddo

enddo

!BC

do i=1,nx
omega(i,1)=omega(i,ny-1)
omega (i,ny)=omega(i,2)

enddo

do j=1,ny
omega(1l,j)=omega(nx-1,j)
omega (nx, j)=omega (2, j)

enddo

!Bpot calculation: Bernoulli potential
bpot=s+(u*x*2+v**2) /(2*g)

maxeta=maxval (abs(eta))

!save solution every nprint iteration
if (mod(iter ,nprint)== 0) then
iprint=iprint+1
call netcdf_save_ocean(t,h,s,u,v,iprint ,bpot,W,Wu,omega,eta)
print *, ’t’, t, ’maxu’, u(10,10), ’maxv’, v(10,10)
! call netcdf_close_ocean
endif
enddo
13k sk ok 3k ok ok ok 3k K s ok 3k K 3 ok ok 3Kk ok ok 3K K ok ok 3 K ok ok 3 K ok ok K K 3k ok K K 3k ok ok K 3k ok ok K 3k ok ok 3 K ok ok 3K K ok ok %k K 3k ok K K 3k ok Kk K * ok K K K
! Write Restart
13k sk ok 3k ok 3k ok ok K s ok 3k K 3 ok ok K ok ok K K ok ok K K 3k ok 3 K ok ok 3k K 3k ok K K 3k ok ok K 3 ok oK 3K 3 ok ok 3 K 3k ok 3K K ok ok % K 3k ok K K 3k ok Kk K K ok K K K
irestart_name=irestart_name+1
Call restart_sub(2,t,eta,u,v,h)
13k sk ok 3k ok ok ok 3k K 3 ok ok K 3 ok ok 3K K ok ok 3K 3 ok ok 3 K ok ok 3 K ok ok 3k K 3k ok K K 3k ok ok 3Kk ok ok 3K 3 ok ok 3 K ok ok 3K K ok ok % K 3k ok K K ok ok Kk K K ok K K K
! Close the netcdf file
13k sk ok ok ok 3k ok 3k K 3 ok ok K 3 ok ok 3K ok ok K K ok ok K K ok ok 3K K ok ok 3k K 3k ok K K 3k ok ok K 3 ok oK 3K 3 ok ok 3K K 3k ok 3 3k ok ok %k K 3k ok K K 3k ok Kk K K ok K Kk
call netcdf_close_ocean

print *, ’t’, t, ’maxu’, u(10,10), ’maxv’, v(10,10)
end program main

15k sk ok sk ok ok ok ok sk ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok k ok sk 5k sk 5k ok 3k ok k ok k 5k sk 5k sk %k ok k >k k >k >k >k %k >k >k 5k %k %k >k k >k %k % %k k *k %

Program by Tim NAGEL - LEGI
date: 28/02/2014

This subroutine computes initial conditions for the morphodynamic model,
the free surface elevation. Choice is done in the input_morpho.txt file.

All units sgi

*
*
*
*
and *
*
*
*

15k sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok %k sk ok ok ok ok sk sk ok ok ok ok sk sk ok 5k ok ok sk 5k 5k ok ok %k sk ok ok ok sk %k 5k 5k >k sk sk %k %k 5k >k >k %k %k %k >k >k >k %k %k >k >k %k %k k k k k

subroutine init(x,y,h,eta)

implicit none
include ’common.inc’

'integer ,intent (in) :: icase

real (8) ,dimension(nx),intent (in) :: x
real (8) ,dimension(ny),intent(in) :: y
real (8) ,dimension(nx,ny),intent (out) :: h,eta
real (8), parameter :: sigma = 1.5
real (8) :: x1,x2,x3,h1,h2,h3

integer :: i, J

x1=0.03

x2=0.28

x3=0.59

h1=0.

h2=0.177

h3=0.

1 sk sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk o ok sk K ok ok o ok sk o ok ok o ok ok o ok sk o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o oK ok R oK ok o oK ok ok oK ok R K
! creation test case 0: slump test of a sand heap
1 sk ok sk sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk o ok ok K ok ok o ok sk o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o oK ok o oK ok K K
if (icase==0) then
do i=1,nx
if (x(i).ge.xl.and.x(i).le.x2) then
h(i,j)=(x(i)-x1)*(h2/(x2-x1))
elseif (x(i).ge.x2.and.x(i).le.x3) then
h(i,j)=h2*(1-((x(i)-x2)/(x3-x2)))
else
h(i,j)=0
endif
enddo
endif
1 sk ok sk sk ok ok ok ok ok sk ok ok sk ok ok ok ok ok sk o ok ok K ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o oK ok o ok ok o ok ok o oK ok o ok ok o oK ok ok K

46

108

0N U WN R

! creation test case 1: of the initial sand dune
1ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok kR ok ok
if (icase==1)then
do j=1,ny
do i=1,nx
h(i,j)=amp*exp(-0.01*%(x(i)-x0)**2)
enddo
enddo
elseif (icase==2) then
do j=1,ny
do i=1,nx
h(i,j)=amp*exp(-0.01*%(y(j)-y0)**2)
enddo
enddo
' h(i)=(1/(x(i)*sigma*sqrt (2*xpi))) *exp (-10*((log(x(i)) -nu)**2) /(2*xsigma**2))
dissymetric gaussian
endif
1 sk sk sk sk ok ok ok sk sk sk sk ok sk sk sk sk ok ok ok sk sk ok sk ok ok ok sk sk sk sk ok ok ok sk sk sk sk ok ok sk sk sk sk ok ok sk sk ok sk ok ok ok sk sk sk sk ok ok ok sk sk sk ok ok ok sk sk ok ok o ok K
! creation test case 2: erosion pit in LEGI or test SW
1 sk sk sk sk ok ok ok sk sk sk sk ok sk sk sk sk ok ok ok sk sk sk sk ok ok ok sk sk sk ok ok ok ok sk sk sk sk ok ok sk sk sk ok k ok sk sk sk sk ok ok ok sk sk sk ok ok ok ok sk sk sk ok ok ok sk ok ok ok ok ok K
if (icase==3)then
do j=1,ny
do i=1,nx
h(i,j)=0
enddo
enddo
endif
!'2D gaussian
if (icase==4) then
do j=1,ny
do i=1,nx
h(i,j)=amp*exp(-(0.01*x(x(i)-x0)**x2+0.01*x(y(j)-y0)*%*2))
enddo
enddo
endif
1 sk sk sk ok ok ok ok sk ok ok sk ok sk sk sk sk ok ok ok ok sk ok sk ok ok ok sk sk sk sk ok ok ok sk sk sk ok ok ok ok sk sk sk ok ok sk sk ok sk ok ok 3k sk sk ok sk ok ok ok sk sk sk ok ok ok ok sk ok ok ok ok K
! creation test case sw: initial gaussian at the free surface
1 sk sk sk sk ok ok ok sk sk ok sk ok sk sk sk sk ok ok ok sk sk ok sk ok ok ok sk sk sk ok ok ok ok sk sk sk sk ok sk sk sk sk sk ok ok ok sk ok sk ok ok ok sk sk sk ok ok ok ok sk sk sk ok ok ok sk sk ok ok o ok K

if (icase_oc==0) then

do j=1,ny
do i=1,nx
eta(i,j)=0
enddo
enddo
elseif (icase_oc==1)then
do j=1,ny

do i=1,nx
eta(i,j)=amp_oc*exp(-0.01*(x(i)-x0_oc) **2)
enddo
enddo
elseif (icase_oc==2) then
do i=1,nx
do j=1,ny
eta(i,j)=amp_oc*exp(-0.01*(y(j)-x0_oc) **2)
enddo
enddo
elseif (icase_oc==3) then
do j=1,ny
do i=1,nx
eta(i,j)=amp_oc*exp(-(0.001*(x(i)-x0_oc)**2+0.001*(y(j)-yO_oc)**2))
enddo
enddo
endif

end subroutine init

1 sk sk ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok s ok sk s ok sk ok sk s ok sk ok sk o ok sk sk ok sk ok ok sk ok ok sk ok ok sk ok sk ok ok sk ok ok sk ok sk ok ok sk R oK sk ok oK Sk ok K
Program by Tim NAGEL - LEGI

* *

date: 21/05/2014

*
*
This subroutine computes the atmospheric forcing induce by the wind on the *
ocean free surface, including the presence of one/several offshore wind *
turbines. *
Wind turbine wake is take into account using the exponential model close to.*
the Jensen one *

*

*

*

! All units sgi
1 sk sk ok sk ok ok ok ok ok ok ok ok ok ok oK ok o ok ok o ok sk o ok ok ok ok ok ok ok sk ok ok sk ok ok sk sk ok sk sk ok sk sk ok sk sk ok sk sk ok ok sk ok ok ok K ok sk K ok ok ok ok ok ok ok ok o ok ok K ok ok oKk

subroutine atm_forcing(x,y,sigma_a)

implicit none
include ’common.inc’

real (8) ,dimension(nx),intent (in) :: x

real (8) ,dimension(ny) ,intent (in) :

real (8) ,dimension(nx,ny),intent (out) :: sigma_a

real (8) ,dimension(nx,ny) :: dua,ua

real (8) ,dimension(nx) :: delta_y

real(8) :: x1,x2,x3,nyd2,maxdua,Deff,i0,Rnb,R95,cl,x_origin
integer :: 1i,]j

47

13k 3k 3k K K K K K K K ok ok ok ok ok ok ok ok oK oK ok oK 3K K K K K K K K K K K K K K ok ok ok ok ok ok ok ok oK oK 3K 3K K K K K K K K K K K K K K ok ok ok ok ok ok ok oK K K
! wake creation
13k 3k 3k K K K K K K K ok ok ok ok ok ok ok ok ok ok oK 3K 3K K K K K K K K K K K K K K ok ok ok ok ok ok ok ok ok ok ok 3K 3K K K K K K K K K K K K K ok ok ok ok ok ok ok ok ok K K
if (iwake==0) then
!parameters.

x2=200. !distance from the boundary to the impact point of the wake with the

ocean surface
x1=((ht-0.5*dr)/kj) !distance from the turbine pile to the boundary
print *,’x1’,x1
x3=1300.
nyd2=150.
rho_a=1.2

dua=0
do i=x2,x3

delta_y(i)=int (kj*(x(i)+x1))
enddo

do i=x2,x3
do j=nyd2-delta_y(i),nyd2+delta_y (i)
!' dua(i,j)=(l-sqrt(l-drag))/(1+(2xkj*(x(i)+x1)/(dr)) **2)
dua (i, j)=exp(-(x(i)-200)/300)
enddo
enddo
endif

maxdua=maxval (dua)

print *, ’maxdua’, maxdua

ua=ual0*(1-dua)
13k ok ok ok ok K K K K Kk ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K K ok ok ok ok ok ok ok ok ok K
! Atmospheric shear stress
13k ok ok ok K K K K Kk ok ok ok ok ok ok ok ok ok ok oK oK K K K K K K K KK K Kk ok ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K Kk ok ok ok ok ok ok ok ok K

sigma_a=rho_a*cdl*(ua**2)

end subroutine atm_forcing

13k sk ok ok ok ok ok ok K sk ok K K 3k ok 3k 3k 3 ok ok K 3 ok 3k 3 3 ok ok K K ok ok K K ok ok 3 K ok ok K 3 3k ok 3 K ok ok 3k 3k 3k ok K K 3k ok ok 3 3 ok ok K 3 ok ok K K ok ok K K ok ok K K K k X
Program by Tim NAGEL - LEGI

date: 31/03/2014

1
1
1
!
! Restart subroutine (reading (1) and writing(2))
1

1

*
*
*
*
*

All units sgi *

! *

1k ok sk ok ok ook ok ok ok ok ok ok ok sk ok ok ok ok o ok ok ok sk ok o ok ok o sk ok o sk ok o ok ok sk ok o ok ok s ok ok ok ok ok o ok ok o ok ok ok sk ok o ok ok o ok ok o ok ok o ok ok ok ok ok kK ok R K

SUBROUTINE restart_sub(irestart,t,eta,u,v,h,omega)

implicit none

include ’common.inc’

INTEGER, intent (inout) :: irestart

real (8), intent (inout) :: t

real(8), intent(inout),dimension(nx,ny) :: eta,u,v,h,omega

CHARACTER(2) :: filename_irestart

CHARACTER (75) :: filename_restart

WRITE(filename_irestart ,FMT=’(I2) ’)10+irestart_name

print *, ’restart ok’
13k sk ok 3k ok ok ok 3k K ok ok 3k 3 ok ok 3K k ok ok 3 3 ok ok 3 K sk ok % 3k ok ok % 3k sk ok 5 3K 3k ok ok 3K 3 ok K 3k 3 ok ok 3K %k 5k ok 3K 3 >k ok % %k >k ok % %k > >k % K * >k K * *

! readin
!**************************************%*********************************
if (irestart==1) then

filename_restart="restart_rs.data"
Open(unit=16,status=’0ld’,Form=’Unformatted’,file=filename_restart)

read (16) irestart_name

read (16) eta

read (16) u
read (16) v
read (16) h

read (16) t
'read (16) omega

13k ok ok ok ok ok ok ok o ok ok ok ok ok o K ok ok ok ok ok K ok ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok 3 K K ok ok ok ok K oK ok ok ok ok K K ok ok ok ok K K ok ok ok kK K K
! writing

13k ok ok ok ok ok ok ok ok ok ok ok ok ok o K ok ok ok ok ok ok ok ok ok ok o K ok ok ok ok ok ok K ok ok ok 3 ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok kK K K
elseif (irestart==2) then
filename_restart="restart_"//trim(filename_irestart)//".data"
Open(unit=16,status=’new’,Form=’Unformatted’,file=filename_restart)

write (16) irestart_name

write (16) eta

write (16) u

write (16) v

write (16) h

write (16) t

'write (16) omega

endif

close (16)

Return
END SUBROUTINE restart_sub

48

0N U WN e

42

43
44
45
46
47
48
49

50

51
52
53
54
55

57
58

73

74
75
76
7
78

80

subroutine ocean(u,v,eta,hmean,h,sigma,u_c,v_c,eta_c,s)

1 sk ok ok sk ok ok ok ok ok ok o ok sk o ok ok ok ok sk o oK sk o ok ok ok ok 3k ok ok ok ok ok 3k ok ok sk ok ok sk ok ok ok ok ok sk ok ok sk ok ok ok sk ok sk ok ok ok ok ok sk sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok
Program by Tim NAGEL - LEGI

date: 26/03/2014

1
1
1
1
1
! ocean are solved.

1

! All units sgi

13k sk ok sk ok ok ok ok sk ok sk ok ok ok 3k sk sk sk ok ok ok sk ok sk sk ok ok ok sk ok sk sk ok ok ok sk ok sk ok ok ok ok sk ok sk ok ok ok sk sk ok sk ok ok ok sk sk sk ok ok ok ok sk ok sk ok ok ok ok sk ok ok ok ok ok %k
use netcdf

implicit none

include ’common.inc’

*
*
*
This subroutine is the ocean part of the main program, 2D SW equations for x*
*
*
*
*

real (8) ,dimension(nx,ny),intent (in) :: u,v,eta,hmean,h,sigma

real (8) ,dimension(nx,ny),intent (out) :: u_c,v_c,eta_c,s

real (8) ,dimension(nx,ny) :: cfl,u_p,eta_p,v_p,u_bc,v_bc,eta_bc

real (8) :: maxu,maxeta,maxcfl,maxup,maxetap ,maxvp,maxvc,dxl,dx2,dyl,dy2
integer :: i,]j

u_c=u

eta_c=eta

v_c=v

dx1l=dx**(-1)
dx2=dx**(-2)
dyl=dy**(-1)
dy2=dy**(-2)

call boundary_conditions (hmean,u_c,v_c,eta_c)

1((0.005) /(hmean(i,j)-h(i,j)+eta_c(i,j))) &!

1ok ok ok ok ok ok K ok oK K oK K oK K oK R K oK K oK K KoK K K oK K oK oK K K oK K oK K K oK K K K K K oK K K oK K K K K K oK K K K K K K K K K Kk K

! SW equation, second order RK time scheme

! predictor step u_p=u_predictor and u_c=u_corrector

D sk ok ok koK KKK KRR R R R R KR R R o ok ok o K ok ok ok ok oK KK KK KKK KK R R R K K K R R ok ok oK oK ok ok ok ok ok oK KKK K K K K

do J =2,ny-1
i=2,nx-1
u p(; ,j)=u_c(i,j)+0.5*%dt*((sigma(i,j)/(rho*x(hmean(i,j)-h(i,j)+eta_c(i,j)))) &!
orcing
-((u_c(i, J)*cd*sqrt(u c(i,j)**2+v_c(i,j)**2))/((hmean(i,j)-h(i,j)+eta_c(i,j))))
glfriction

-dxl*u_c(i,j)*0.5*%(u_c(i+1,j)-u_c(i-1,j)) &'!'advection x
-dyl*v_c(i,j)*0.5*x(u_c(i,j+1)-u_c(i,j-1)) &'!advection y
+dx2*nu*(u_c(i+1,j) -2*xu_c(i,j)+u_c(i-1,j)) &!diffusion x
+dy2*nu*(u_c(i,j+1) -2%u_c(i,j)+u_c(i,j-1)) &!diffusion y
-dx1*xgx0.5*x(eta_c(i+l,j)-eta_c(i-1,j))) !pressure gradient

v_p(i,j)=v_c(i,j)+0.5*dt*(&!sin(pi/4) *(&!(0.0000125) /(hmean(i,j)-h(i,j)+eta_c(i,
j)))&!'(sigma(i,j)/(rho*(hmean(i, j)-h(i,j)+eta_c(i,j)))) &!forcing

-((v_c(i,j)*cd*sqrt(u_c(i,j)**2+v_c(i,j)**2))/((hmean(i,j)-h(i,jl+eta_c(i,j))))
&!friction

&!'advection x

-dxl*u_c(i,j)*0.56*%(v_c(i+1,j)-v_c(i-1,j
1 &!advection y

-dyl*v_c(i,j)*0.56%(v_c(i,j+1)-v_c(i,j-

))
s))
+dx2*nu*(v_c(i+1,j) -2*v_c(i,j)+v_c(i-1,j)) &!'diffusion x
+dy2*nu*(v_c(i,j+1) -2*xv_c(i,j)+v_c(i,j-1)) &!diffusion y
-dyl*g=*0.5*%(eta_c(i,j+1)-eta_c(i,j-1))) !pressure gradient

eta_p(i,jl)=eta_c(i,j)+0.5*xdt*x(&

dx2+*kappa*(eta_c(i+1l,j)-2%xeta_c(i,j)+eta_c(i-1,j)) & 'artificial diffusion x (
stabilisation)

+dy2*kappa*(eta_c(i,j+1) -2*eta_c(i,j)+eta_c(i,j-1)) & l'artificial diffusion y (
stabilisation)

-(u_c(i+1,j)*(hmean(i+1,j)-h(i+1,j)+eta_c(i+1,]j

-u_c(i-1,j)*(hmean(i-1,j)-h(i-1,j)+eta_c(i-1,j)

-(v_c(i,j+1)*(hmean(i, j+1)-h(i,j+1)+eta_c(i,j+1

-v_c(i,j-1)*(hmean(i,j-1)-h(i,j-1)+eta_c(i,j-1)

enddo
enddo

)) &
))*0.5*xdx1 &
)) &
))*0.5xdy1)

call boundary_conditions (hmean,u_p,v_p,eta_p)

!corrector step
do J =2,ny-1
i=2,nx-1
u_ c(1 j)=u_c(i,j)+dt*((sigma(i,j)/(rho*(hmean(i,j)-h(i,j)+eta_c(i,j)))) &!
forc1n
-(Cu_ p(l J)*cd*sqrt(u p(i,j)**2+v_p(i,j)**2))/((hmean(i,j)-h(i,j)+eta_p(i,j))))
glfriction

-dxl*u_p(i,j)*0.5*%(u_p(i+1,j)-u_p(i-1,3)) &'advection x

-dyl*v_p(i,j)*0.5*x(u_p(i,j+1)-u_p(i,j-1)) &!advection y

+dx2*nux*(u_ p(1+1 j)-2%u_p(i,j)+u_p(,j)) &!'diffusion x

+dy2*nux(u_p (i, j 1) -2%u _p(i,j)+u_ p(1)) &!diffusion y
!

)

i-

i
-dx1*g*0.5*%(eta_p(i+1,j)-eta_p(i-1,j))) !pressure gradient

&1(0.0000125) /(hmean(i,j)-h(i,j)+eta_c(i,j)))
i

v_c(i,j)=v_c(i,j)+dt*(&!sin(pi/4) *(
,j)+teta_c(i,j)))) &!forcing

1
J-
)
(
&!(sigma(i,j)/(rho*(hmean (i, j)-h(

49

81 -((v_p(i,j)*cd*sqrt(u_p(i,j)**2+v_p(i,j)**2))/((hmean(i,j)-h(i,jl)+eta_p(i,j))))
&' friction

82 -dx1*u_p(i,j)*0.5*(v_p(i+1,j)-v_p(i-1,j)) &'advection x

83 -dyl*xv_p(i,j)*0.5*%(v_p(i,j+1)-v_p(i,j-1)) &'advection y

84 +dx2*nu*(v_p(i+1,j) -2*v_p(i,j)+v_p(i-1,j)) &!'diffusion x

85 +dy2*nux(v_p(i,j+1) -2%v_p(i,j)+v_p(i,j-1)) &!'diffusion y

86 -dyl*gx0.5*x(eta_p(i,j+1)-eta_p(i,j-1))) !pressure gradient

87

88 eta_c(i,j)=eta_c(i,j)+dt*(&

89 kappa*xdx2*(eta_p(i+1,j)-2*eta_p(i,j)+eta_p(i-1,j)) & 'artificial diffusion x (
stabilisation)

90 +dy2*kappa*(eta_p(i,j+1) -2*xeta_p(i,j)+eta_p(i,j-1)) & t!artificial diffusion y (
stabilisation)

91 -(u_p(i+1,j)*(hmean(i+1,j)-h(i+1,j)+eta_p(i+1,j)) &

92 -u_p(i-1,j)*(hmean(i-1,j)-h(i-1,j)+eta_p(i-1,3)))*0.5%dx1l &

93 -(v_p(i,j+1)*(hmean(i, j+1)-h(i,j+1)+eta_p(i,j+1)) &

94 -v_p(i,j-1)*(hmean(i,j-1)-h(i,j-1)+eta_p(i,j-1)))*0.5%dyl)

95 enddo

96 enddo

97

98 call boundary_conditions (hmean,u_c,v_c,eta_c)

99

100 | 1ok ok sk ok ok ok ok ok ok ok ok K ok ok K ok ok K oK oK K oK oK K oK oK K oK oK K oK K K KK K KK KK KK K KK K KK o KK o oK K oK oK K o oK K K oK K K oK K K oK K K

101 | ! updating eta and u

102 | 1ok ko ok ok ok ok ok ok ok ok ok ok oK ok ok K ok ok K ok ok K ok oK K ok oK K ok oK K oK oK K ok oK K ok oK K ok oK K ok oK K oK oK K oK oK K ok oK K oK oK K oK oK K ok oK K oK oK K K oK Kk

103 s=hmean+eta_c

104 |1k sk okok ok ok ok ok ok K ok ok oK ok ok K ok ok K ok oK K ok oK K ok oK K ok oK K ok oK K ok oK K ok oK K ok oK K ok oK K oK oK K oK oK K ok oK K oK oK K oK oK K ok oK K oK oK K K oK Kk

105 | ! CFL calculation

106 | 1k sk ok ok ok ok ok ok ok ok ok ok oK ok ok K ok ok K ok oK K ok oK K ok oK K oK KK oK oK K ok oK K oK KK ok oK K ok oK K oK oK K ok oK K o oK K oK oK K oK oK K o oK K oK KK K K Kk

107 cfl=sqrt (g*s)*(dt/dx)+sqrt (g*s)*x(dt/dy)

108 maxcfl=maxval (cfl)

109 if (maxcfl.gt.1) then

110 print *,’CFL>1 ==> CFL:’,maxcfl

111 stop

112 endif

113

114 | end subroutine ocean

1 subroutine boundary_conditions (hmean,u_bc,v_bc,eta_bc)

2

3 13k ok ok ok ok ok K 3k ok ok 3 K ok ok 3 K ok ok K K ok ok K K ok ok K K 3k ok K 3K 3k ok ok K ok ok 3K 3 ok ok 3K K ok ok 3K K ok ok 3K K ok ok K 3k ok ok K K sk ok K K ok ok Kk K K ok K K K ok K K
4 ! Program by Tim NAGEL - LEGI *
5 ! *
6 ! date: 22/04/2014 *
7 ! *
8 ! This subroutine establish the BC for the SW model. *
9 ! *
10 ! A1l units sgi *
11 13k ok ok ok ok ok K ok ok K K ok oK K K ok ok K K 3k ok K K 3k ok ok K 3 ok oK 3 3k ok ok K K ok oK 3 3 ok ok 3 K ok oK K 3 ok ok K K ok ok K 3 ok ok K K 3k ok K 3k 3k ok K K K ok K K K ok K K
12 use netcdf

13 implicit none

14 include ’common.inc’

15

16 real (8) ,dimension(nx,ny),intent (in) :: hmean

17 real (8) ,dimension(nx,ny),intent (inout) :: u_bc,v_bc,eta_bc

18 integer :: 1i,j

19

20 |1 sk sk ok sk ok ok k ok ok K K ok ok K K 3k ok K K 3k ok ok K 3 ok oK 3 3 ok ok 3 3 ok ok 3 % ok ok 3 K 3k ok K 3 3k ok ok K 3 ok K K 3 ok ok K 3 ok ok K K 5k ok K K ok ok K K kK

21 | ! East_West BC

22 | ! Bermnoulli: imposed input velocity and imposed output height

23 | 1ok ook ok ok ok ok ok ok ok K K K K K K K K K K ok ok ok ok ok ok ok ok ok ok oK oK oK K K K K K K 3 K K K K K K ok ok ok ok ok ok ok oK ok oK K K K K K K K K K K K K K Kk K

24 if (ibcew==1) then

25 'East

26 do j=1,ny

27 u_bc(nx,j)=u_bc(nx-1,j)

28 v_bc(nx,j)=v_bc(nx-1,j)

29 eta_bc(nx, j)=0

30 'West

31 eta_bc (1, j)=eta_bc(2,])

32 u_bc(1,j)=q0x/(hmean(1l,j)+eta_bc(1l,j))

33 v_bc(1,j)=v_bc(2,])

34 enddo

35 |1 sk sk ok sk ok ok k sk ok ok K K ok ok K K ok ok K K sk ok 3k K 3 ok 3k 3 3 ok ok 3 3 ok ok 3 K ok ok 3 K ok ok 3 3 3k ok 3k K 3 ok K 3K 3 ok ok K 3 ok ok K K ok ok K K ok ok K * k kK

36 | ! East_West BC

37 | ! Periodic

38 |1 sk sk ok sk ok ok ok ok ok K K ok ok K K 3k ok K K 3k ok ok K ok oK K 3 ok ok K K ok ok K K ok ok K K 3k ok K 3 3k ok ok K 3 ok K 3 3 ok ok K K ok ok K K ok ok K K ok ok K K kK

39 elseif (ibcew==0) then

40 do j=1,ny

41 'East

42 eta_bc(nx,j)=eta_bc(2,j)

43 u_bc(nx,j)=u_bc(2,j)

a4 v_bc(nx,j)=v_bc(2,])

45 !'West

46 eta_bc(1l,j)=eta_bc(nx-1,j)

47 u_bc(1,j)=u_bc(nx-1,j)

48 v_bc(1l,j)=v_bc(nx-1,j)

49 enddo

50 endif

B1 |1 ok ok ok sk ok ok ok sk ok ok K K ok ok K K ok ok K K ok ok 3k K 3 ok ok 3 3 ok ok 3K 3 ok ok 3 3 ok ok 3k K ok ok 3 3k 3k ok K K 3 ok ok 3K 3 ok ok K 3k ok ok K K ok ok K K ok ok K K k kK

52 ! South_North BC

53 | ! Bernoulli: imposed input velocity and imposed output height

50

1ok ok ok K ok ok o ok ok K oKk K oK ok K oK ok R oK ok K oKk oK ok K oK ok K oK ok oK ok K K ok K K ok oK ok K K ok K ok K K ok K K ok K K K R K K K KK K KK K K
if (ibcns==1) then
!'North
do i=1,nx
u_bc(i,ny)=u_bc(i,ny-1)
v_bc(i,ny)=v_bc(i,ny-1)
eta_bc (i,ny)=0
!South.
eta_bc(i,1)=eta_bc(i,2)
u_bc(i,1)=u_bc(i,2)
v_bc(i,1)=q0y/(hmean(i,1)+eta_bc(i,1))
enddo
1k ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok s ok ok ok sk ok o ok ok sk ok ok sk ok s ok ok ok ok ok sk ok s ok ok ok ok ok sk ok s ok ok o ok ok ok ok ok ok ok ok ok R Kok R K

! South_North BC
! Periodic
1 sk ok sk ok s ok sk ok ok ok ok ok s ok ok ok sk ok ok ok s ok sk ok ok ok ok ok s ok ok o ok ok o ok ok R K
elseif (ibcns==0) then
do i=1,nx
'North
u_bc(i,ny)=u_bc(i,2)
v_bc(i,ny)=v_bc(i,2)
eta_bc(i,ny)=eta_bc(i,2)
!South
eta_bc(i,1)=eta_bc(i,ny-1)
u_bc(i,1)=u_bc(i,ny-1)
v_bc(i,1)=v_bc(i,ny-1)
enddo
endif

end subroutine boundary_conditions

subroutine morpho (eta,hmean,u,v,gbxl,qbyl,h,h_n)

13k % ok kK kR ok ok ok ok ok ok ok ok ok ok oK K K K K K K KK Kk ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K ok ok ok ok ok ok ok ok ok ok K K K K K K K K K
Program by Tim NAGEL - LEGI

date: 31/03/2014

*
*
*
*
Exner equation. *
*
*
*

A1l units sgi
3k ok K oK ok K oK oK K oK oK K oK oK K K oK K oK oK K oK oK K K oK K K oK K oK oK K K oK K oK oK K K oK K K oK K oK oK K K oK K K oK K oK oK K K oK K K oK K K oK K K oK K K K K K K K K

]

]

]

1

! This subroutine tends to modelise a seabed evolution in time, by solving
]

]

!

!

use netcdf

implicit none
include ’common.inc’

real (8) ,dimension(nx,ny),intent(in) :: u,v,h,eta,hmean,qgbxl,qgbyl

real (8) ,dimension(nx,ny),intent (out) :: h_n

real (8) ,dimension(nx,ny) :: cfl,slope,qb,hl,qbx,gby,h_st,u_c,eta_c,v_c
real (8) :: maxu,maxgb,maxcflmorpho ,maxeta,maxhst

integer :: i

if (icase==1.o0r.icase==2.o0or.icase==3.o0r.icase==4) then
call sedimentary_fluxes(u,v,qgbx,qby)

if (ischeme==0) then
call upwind(h,gb,h_n)
endif

if (ischeme==1) then
call NOCS_coloc_jiang(u,v,qbxl,qgbyl,eta,hmean,h,qbx,qby,h_n)
endif
endif
end subroutine morpho

15k ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok k ok ok ok ok ok ok ok ok sk ok k ok ok dk ok dk ok 5k >k k >k ok k ok k %k ok *k %

! Program by Tim NAGEL - LEGI *
! *
! date: 18/02/2014 *
! *
! This subroutine calculates the sedimentary fluxes for the morphodynamics *
! model, resolution method depends of initals conditions (see input_morpho) *
! *
! All units sgi *
1ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok sk ok ok sk ok ok sk ok ok ok ok ok sk ok ok sk ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok Kok R ok

subroutine sedimentary_fluxes(u,v,gbx,qgby)

implicit none
include ’common.inc’

real (8) ,dimension(nx,ny),intent(in) :: u,v

real (8) ,dimension(nx,ny),intent (out) :: gbx,qgby
real (8) ,dimension(nx,ny) :: theta,gb_b,qgb
real(8) :: m,theta_c ,maxtheta,p,qgsc,pl

integer :: i,]

51

© 00N TS WN R

!parameters

theta_c=0.052e0 !'Critical Shields Number normal:0.052e0

=0.5 !bed porosity
pl=1/(1-p)

gsc=d*sqrt (((rho_s/rho) -1) *g*d) !sediment flux scale

13k ok ok ok o K Kk kK ok ok ok ok ok ok ok ok ok oK oK oK K K K K kK KK K kK ok ok ok ok ok ok ok ok ok ok oK oK K K K K K K K K K Kk ok ok ok ok ok ok ok ok K
! Current Shields number calculation
13k ok ok ok ok o Kk ok ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K Kk Kk ok ok ok ok ok ok ok ok ok ok ok K K K K K K K K K Kk Kk ok ok ok ok ok ok k K
do j=1,ny
do i=1,nx
theta(i,j)=0.5*xrho*cd*(u(i,j)**2+v(i,j)**2)/((rho_s-rho)*g*d)
enddo
enddo
maxtheta=maxval (abs (theta))
print *,’maxtheta_inside’,maxtheta

if (ibedflux==0) then
do j=1,ny
do i=1,nx
gb(i,j)=alphax*(u(i,j))**beta
enddo
enddo
elseif (ibedflux==1) then
do j=2,ny-1
do i=2,nx-1
'gb(i,j)=MAX(pl*gsc*alpha*(theta(i,j)-theta_c)**(beta) ,0.e0)
gqb_b(i,j)=MAX(pl*gsc*alpha*(theta(i,j)-theta_c)x**(beta) ,0.e0)
gbx(i,j)=qb_b(i,j)*(u(i,j)/sqrt(u(i,j)**2+v(i,j)**2))
gby (i,j)=qb_b(i,j)*(v(i,j)/sqrt(u(i,j)**x2+v (i, j)**2))
enddo
enddo
endif
1ok ok ok ok ok ok K o oK KR K oK K K R K K R oK KR K K oK K K oK K K K K K K oK K K K K K K oK K K K K K K K oK K K K K K K K K R K K K K K

! Flux Boundary Conditions
1ok ok ok ok ok ok ok K ok ok K oK ok K oK ok K oK ok K oK ok K oK ok K oK ok K oK ok K oK ok K oK ok K oK ok K oK ok K oK oK K oK ok K oK oK K oK oK K oK oK K oK oK K oK oK K K oK K K K K K

do j=1,ny
gbx (1,3j)=0.
gbx (nx, j)=qbx(nx-1,j)
enddo
elseif (ibcew==0) then
do j=1,ny

gbx (1,j)=qbx(nx-1,j)
gbx (nx, j)=qbx (2, j)

if (ibcns==1) then
do i=1,nx

qby (i,1)=0.
gby (i,ny)=qby(i,ny-1)
enddo

elseif (ibcns==0) then
do i=1,nx
gby (i,1)=gby(i,ny-1)
gby (i,ny)=qby(i,2)
enddo
endif

end subroutine sedimentary_fluxes

subroutine bc_morpho(h,h_pred,h_n)

1 5k ok ok ok ok ok ok ok ok ok %k %k ok ok %k ok ok ok ok ok ok ok %k %k %k ok %k %k ok ok ok ok ok sk %k %k %k %k %k %k %k %k ok ok ok ok sk %k %k %k %k %k %k %k ok 5k 5k 5k 5k %k %k k k %k %k %k %k ok >k ok >k >k %k k k k k%

! Program by Tim NAGEL - LEGI *
! *
! date: 28/04/2014 *
! *
! This subroutine establish the BC for the morphodynamic model. *
! BC are normally periodic but can also respect Bernoulli conditions *
!
! A1l units sgi *

13k ok ok 3k ok ok ok K K ok ok K K ok ok 3K 3k ok ok 3 K ok ok K 3 ok ok %k K 3k ok K 3K 3k ok ok 3K 3 ok ok 3K 3 ok ok 3K 3k ok ok 3K 3k ok ok 3K 3k ok ok K 3k >k ok % 3k >k ok % 3k >k ok % K * ok *k K * ok k %
use netcdf

implicit none

include ’common.inc’

real (8) ,dimension(nx,ny),intent(in) :: h
real (8) ,dimension(nx,ny),intent (inout) :: h_pred,h_n
integer :: 1i,j

1ok sk ok ok ok ok o ok ok ok sk ok ok ok ok o ok ok ok ok ok ok ok ok o ok ok ok ok ok ok ok ok ok ok ok ok Kok ok ok
! East_West BC

! Bernoulli: imposed input velocity and imposed output height

1ok ok sk ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok sk ok o sk ok ok sk ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok o oKk ok ok ok R Kok ok Kok Rk

if (ibcew==1) then

do j=1,ny
h_n(1,j)=h(1,j) 'West
h_pred(1,j)=h(1,j)
h_n(nx,j)=h_n(nx-1,j) 'East

52

No oA W R

h_pred(nx,j)=h_pred(nx-1,j)
enddo
1ok ok ok K ok ok o ok ok K oK ok K ok ok o ok ok oK ok K oK ok o ok ok ok ok ok ok o ok ok 3 oK ok K oK ok o oK ok oK ok o oK ok o oK ok K K ok oK ok K K ok K Kk K KK K K
! East_West BC
! Periodic
1ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok ok ok ok o ok ok o ok ok R ok ok R Kk kK ok R K
elseif (ibcew==0) then

do j=1,ny
h_n(1,j)=h_n(nx-1,j) IWest
h_pred(1,j)=h_pred(nx-1,j)
h_n(nx,j)=h_n(2,j) 'East
h_pred(nx,j)=h_pred(2,j)
enddo
endif

1ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok o ok ok ok sk ok ok ok ok o ok ok ok ok ok ok ok ok ok okok ok Kok R ok
! South_North BC
! Bernoulli: imposed input velocity and imposed output height
1ok ok sk ok sk ok ok ok ok ok sk ok ok sk ok o sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok oKk o ok ok ok ok ok ok Kok R ok
if (ibcns==1) then
do i=1,nx

h_n(i,1)=h(i,1) !'South
h_pred(i,1)=h(i,1)
h_n(i,ny)=h_n(i,ny-1) !'North
h_pred(i,ny)=h_pred(i,ny-1)

enddo

13k sk ok 3k ok ok ok 3k K sk ok 3k K 3 ok ok 3K K ok ok K K ok ok 3K K ok ok 3 K ok ok K K sk ok K K 3k ok ok K 3k ok ok 3K 3k ok ok 3K K ok ok 3K K ok ok K K 3k ok K K ok ok K K K ok K K K
! South_North BC
] Periodic
13k sk ok ok ok 3k ok ok K 3 ok ok K 3 ok ok K K ok ok K K ok ok K K 3k ok K K ok ok 3k K 3 ok K K 3k ok ok K K ok oK K K ok ok K ok ok K K ok ok K K 3k ok K K 3k ok K K K ok K K K
elseif (ibcns==0) then
do i=1,nx

h_n(i,1)=h_n(i,ny-1) !'South
h_pred(i,1)=h_pred(i,ny-1)
h_n(i,ny)=h_n(i,2) !'North
h_pred(i,ny)=h_pred(i,2)

enddo

endif

end subroutine bc_morpho

15k ok %k ok ok ok ok ok %k %k %k %k %k %k %k %k ok 5k ok ok ok %k %k %k %k %k %k %k %k ok ok ok ok sk %k %k %k %k %k %k %k %k 5k ok ok ok %k %k k %k %k %k %k %k ok 5k >k 5k 5k %k %k *k k %k %k %k %k %k >k >k >k >k k k k k k%

! Function by Tim NAGEL - LEGI *
! *
! date: 24/02/2014 *
! *
! This function calculates the derivative approximation of a so called phi *
! function. This function assures a TVD (Total Variation Diminishing) in the
! scheme in the main program. Here the Beta-limiters are used. *

! *
! All units sgi *
!

3k 3k 5k 3k >k ok %k %k %k 5k 5k %k %k ok %k %k ok 5k 3k %k %k 5k %k %k 3k 5k 3k >k 5k 5k %k %k 3k 5k %k %k 5k 5k %k %k >k 3k %k %k 5k 3k >k % > %k %k % 5k 3k >k % >k %k %k % 5k %k %k 5% >k %k %k % %k %k %k % %k k % % % *

function phi(a,x1,x2,x3)

implicit none

real ,intent (in):: a,x1,x2,x3 ! a=function which will be derivated
real:: phi ! in a function its name must be declared

if ((x1.gt.0).and.(x2.gt.0).and.(x3.gt.0)) then
phi=min(x1,x2,x3)

elseif ((x1.1t.0).and.(x2.1t.0).and.(x3.1t.0)) then
phi=max (x1,x2,x3)

else

end function phi

function phi_bis(x1,x2)

implicit none

real,intent (in) :: x1,x2 ! a=function which will be derivated
real:: phi_bis ! in a function its name must be declared

if ((x1.gt.0).and.(x2.gt.0)) then
phi_bis=min(x1,x2)

elseif ((x1.1t.0).and.(x2.1t.0)) then
phi_bis=max(x1,x2)

else
phi_bis=0

endif

end function phi_bis

15k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok dk sk ok ok ok ok ok ok sk ok k ok ok ok ok ok ok ok ok %k >k k ok ok ok sk dk ok 5k >k k >k >k >k %k k %k ok *k %

This subroutine computes the bedform elevation in time for the morphodynamic*
model using NOCS staggered scheme. NOCS scheme is described in Jiang and al.x*

! Program by Tim NAGEL - LEGI *
! *
! date: 15/05/2014 *
! *
!
!

93

HIGH-RESOLUTION NONOSCILLATORY CENTRAL SCHEMES WITH NONSTAGGERED GRIDS FOR *

]
! HYPERBOLIC CONSERVATION LAWS (1998) *
! *

! All units sgi *
15k 3k K K K K K K K K ok ok ok ok ok ok ok ok ok oK oK oK K K K K K K 3K K K K K K K ok ok ok ok ok ok ok oK ok oK oK 3K K K K K K K K K K K K K ok ok ok ok ok ok ok ok ok ok K K K K K K K X
subroutine NOCS_coloc_jiang(u,v,gbxl,qbyl,eta,hmean,h,qgbx,gby,h_n)

implicit none
include ’common.inc’

real (8) ,dimension(nx,ny),intent (in) :: gbx,qgby,h,u,v,eta,hmean,qgbxl,qbyl

real (8) ,dimension(nx,ny),intent (out) : h_n

real (8) ,dimension(nx,ny) :: s

real (8) ,dimension(0:nx,0:ny) :: h_stagg_prime_y,h_stagg,delta_hx,delta_hy,
h_stagg_prime_x

real (8) :: maxupred,maxu,maxeta,maxhn,maxgb,maxqbpred,maxhpred

integer :: i,]j

real(8) :: phi,phi_bis,x1,x2,x3

real (8), dimension(nx,ny) :: gbx_prime,qby_prime,qbx_pred,qby_pred,hx_prime,hy_prime,
h_pred

1k sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok %k ok ok ok ok ok dk sk ok %k ok ok ok ok ok ok k ok k ok sk 5k sk ok dk k >k k >k >k >k sk %k >k %k >k %k >k >k >k k >k %k k *k k

! predictor step gbx
1ok ok ok ok ok ok ok ok ok ok K ok ok ok oK ok K oK ok K ok ok K ok ok K oK ok K ok ok K ok ok K ok ok K oK ok K oK ok K oK ok K oK ok K oK ok K oK oK K oK oK K oK oK K oK oK K K K K K K K K

do j=2,ny-1
do i=2,nx-1
x1=1im*(qbx (i,j)-qbx(i-1,3))
x2=0.5%(qbx (i+1,j)-qbx(i-1,3))
x3=1im*(qbx (i+1,3) -qbx (i, j))
dgbx_prime(i,j)=phi(qu(i,j),xl,x2,x3) !derivative approximation of gbx (i)
enddo
enddo
print *, ’morpho ok’
13k ok ok ok ok oKk ok oK K ok oK oK oK K o oK K ok oK K oK KK o KK ok oK K ok oK K ok oK K ok oK K oK oK K ok oK K oK oK K oK oK K ok oK K ok oK K oK oK K ok oK K oK oK K oK oK K K K
! predictor step qb
13k ok ok ok ok ok oK ok oK K o oK oK oK oK KK o oK oK KK o oK K o oKk oK KK o K K ok oK K oK K o oK K oK oK K oK KK o oK K oK oK K oK oK K o oK K oK oK K oK K K K K
do j=2,ny-1
do i=2,nx—1
x1=1im*(qby (i,j)-gby(i,j-1))
x2=0.5%(qby (i,j+1) -qby(i,j-1))
x3=1im*(qby (i, j+1) -gby (i, j))

qby_prime (i, j)=phi(gby(i,j),x1,x2,x3) '!derivative approximation of gby (i)
enddo
enddo
do j=2,ny-1
do i=2,nx-1
h_pred(i,j)=h(i,j)-(dtmorpho*0.5/dx)*qbx_prime(i,j)-(dtmorpho*0.5/dy)*qby_prime (i,
j)
enddo
enddo

call bc_morpho(h,h_pred,h_n)
1k sk sk sk ok K ok ok ok ok ok o ok ok K ok ok K ok ok ok ok ok K ok ok K ok ok ok ok ok o ok ok K ok ok o ok ok K ok ok ok oK ok o K
! compute predicted sediment fluxes
1 sk sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok K ok ok K ok ok K ok ok K ok ok K ok ok K oK ok K oK ok K ok ok ok oK K K K
gbx_pred=qbx+0.5*x(gbx-gbx1)
gqby_pred=gby+0.5*(gby-qby1l)
1k S ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk K ok ok K oK ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o oK ok o ok ok o oK ok oK oK ok o oK ok o oK ok ok K
! derivative approximation of h(i,j) in the x direction
1 sk ko ko s ook ok o o o K oK o K o oK K o K ok R o K o K K o K o K ook o K oo kK K o K o K ok o K o K ok o K o o ko K o o K o K ok
do j=2,ny-1
do i=2,nx-1
x1=lim*(h(i,j)-h(i-1,3))
x2=(0.5)*(h(i+1,j)-h(i-1,3))
x3=1lim*(h(i+1,j)-h(i,j))
hx_prime (i, j)=phi(h(i,j),x1,x2,x%x3)
enddo
enddo
1 sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok K ok ok K ok ok o ok ok o ok ok K ok ok o ok ok K ok ok o ok ok o ok ok o ok ok ok ok ok o ok ok ok ok ok o ok ok o K
! derivative approximation of h(i,j) in the y direction
1 sk ok ko ok ok ok ok o ok o o K ook o K ook K o K o o ok o K o oK K ok K o K o ok o ok ok o ok kK K o oK K ok K o o K Sk ok o K o oK ko K o o K o K o o
do j=2,ny-1
do i= 2,nx-1
x1= llm*(h(l j)-h(i,j-1))
x2=(0. 5)*(h(1 j+1) - h(1 j-1))
x3=1im*(h(i,j+1)—h(i,j))
hy_prime (i, j)=phi(h(i,j),x1,x2,x3)
enddo
enddo
1 sk sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok K ok ok ok ok ok K ok ok K ok ok K ok ok K ok ok K ok ok K ok ok K oK ok K ok ok K oK ok K oK ok K oK ok o oK K K K
! stagerred corrector step
1 sk ok sk ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok K ok ok K K ok K oK ok K ok ok K ok ok K oK ok K ok ok K ok ok o oK ok K ok ok K ok oK K oK oK K oK ok K oK oK K oK oK K K oK K K K K K
do j=1,ny-2
do i=1,nx-2
h_stagg(i,j)=(0.25)*(h(i,j)+h(i+1,j)+h(i,j+1)+h(i+1,j+1))&
+(0.0625) *x(hx_prime(i,j)-hx_prime(i+1l,j)+hx_prime(i,j+1)-hx_prime (i
+1,j+1))&

54

106
107
108
109
110

112
113

115
116
117
118
119

121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140

141

142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168

169

170
171
172
173
174
175
176

+(0.0625) *(hy_prime (i, j)-hy_prime(i,j+1)+hy_prime(i+1,j)-hy_prime (i
1,j+1))&
-(dtmorpho/(2*dx))*(gbx_pred(i+1,j)-gbx_pred (i, j)+qgbx_pred(i+1,j+1) -
gbx_pred (i, j+1))&
-(dtmorpho/(2*dy))*(qby_pred (i, j+1)-gby_pred (i, j)+gby_pred(i+1,j+1) -
gby_pred (i+1,3j))

enddo
enddo

do j=0,ny
h_stagg(0,j)=h_stagg(nx-2,j) 'West
h_stagg(nx,j)=h_stagg(2,j) 'East
h_stagg(nx-1,j)=h_stagg(1,]j)

enddo

do i=0,nx
h_stagg(i,0)=h_stagg(i,ny-2) !'South
h_stagg(i,ny)=h_stagg(i,2) !North
h_stagg(i,ny-1)=h_stagg(i,1)

enddo

15k sk ok ok ok ok sk ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok sk sk ok ok ok ok sk sk ok ok ok ok sk sk 5k ok ok %k sk ok 5k ok ok %k %k ok 5k sk sk %k %k 5k >k >k %k %k 5k >k %k >k %k k >k >k %k %k k ok k %

! stagerred discrete derivative
1 sk sk sk sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk o ok ok o ok ok o ok sk o ok ok ok ok ok s ok sk o ok sk ok ok ok o ok ok o ok sk ok ok ok o ok sk o ok sk o oK ok R oK ok o oK ok o oK ok ok K

do j=1,ny-2
do i=1,nx-2
delta_hx(i,j)=h_stagg(i,j)-h_stagg(i-1,j)
delta_hy(i,j)=h_stagg(i,j)-h_stagg(i ,j-1)

enddo
enddo
!'BC
do j=0,ny
delta_hx (0, j)=delta_hx(nx-2,j) IWest
delta_hy (0, j)=delta_hy(nx-2,j)
delta_hx(nx,j)=delta_hx(2,j) 'East

delta_hy(nx,j)=delta_hy(2,j)
delta_hx(nx-1,j)=delta_hx(1,])
delta_hx(nx-1,j)=delta_hx(1,j)

enddo

do i=0,nx
delta_hx(i,0)=delta_hx(i,ny-2) !South
delta_hy(i,0)=delta_hy(i,ny-2)
delta_hx(i,ny)=delta_hx(i,2) !North

delta_hy(i,ny)=delta_hy(i,2)
delta_hx(i,ny-1)=delta_hx(i,1)
delta_hx(i,ny-1)=delta_hx(i,1)

enddo
do j=1,ny-2
do i=1,nx-2
h_stagg_prime_x(i,j)=phi(h_stagg(i,j),delta_hx(i,j) ,0.5*%(delta_hx(i,j)+delta_hx(i
+1,j)),delta hx(1+1 i))
h_stagg_prime_y(i,j)=phi(h_stagg(i,j),delta_hy(i,j),0.5*(de1ta_hy(i,j)+de1ta_hy(i,
j+1)) ,delta_hy(i,j+1))
enddo
enddo
!'BC
do j=0,ny
h_stagg_prime_x(0,j)=h_stagg_prime_x(nx-2,j) !'West
h_stagg_prime_y(0,j)=h_stagg_prime_y(nx-2,j)
h_stagg_prime_x(nx,j)=h_stagg_prime_x(2,]) 'East
h_stagg_prime_y(nx,j)=h_stagg_prime_y (2, j)
h_stagg_prime_x(nx-1,j)=h_stagg_prime_x(1,])
h_stagg_prime_y(nx-1,j)=h_stagg_prime_y(1,])
enddo
do i=0,nx
h_stagg_prime_x(i,0)=h_stagg_prime_x(i,ny-2) !South
h_stagg_prime_y(i,0)=h_stagg_prime_y(i,ny-2)
h_stagg_prime_x(i,ny)=h_stagg_prime_x(i,2) !North
h_stagg_prime_y (i,ny)=h_stagg_prime_y(i,2)
h_stagg_prime_x(i,ny-1)=h_stagg_prime_x(i,1)
h_stagg_prime_y(i,ny-1)=h_stagg_prime_y(i,1)
enddo

1k ok sk sk ok sk ok ok ok ok ok sk sk ok sk ok ok ok ok ok ok sk ok k ok ok ok ok ok ok sk ok k ok ok ok ok k ok %k >k k >k ok >k ok k %k k *k k

! non stagerred corrector step
1ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ook ok ok ok ok ok ok ok ok ok ok ok ok ok o ok ok ok ok ok R koK R K

do j=2,ny-1
do i=2,nx-1
h_n(i,j)=(0.25)*(h_stagg(i,j)+h_stagg(i-1,j)+h_stagg(i-1,j-1)+h_stagg(i,j-1))&
+(0.0625) *(h_stagg_prime_x(i-1,j-1)-h_stagg_prime_x(i,j-1)+h_stagg_prime_x(i
-1,j)-h_stagg_prime_x(i,j))&
+(0.0625) *(h_stagg_prime_y(i-1,j-1)-h_stagg_prime_y(i-1,j)+h_stagg_prime_y(i,j-1)-
h_stagg_prime_y(i,j))
enddo
enddo

call bc_morpho(h,h_pred,h_n)

maxhn=maxval (h_n)
print *, ’maxhn’, maxhn

55

177
178 | end subroutine NOCS_coloc_jiang

1 1ok ok sk ok ok ok ok ok ok ok K ok ok K oK ok K oK ok K oK ok K oK ok K oK ok K oK ok K oK oK K oK oK K oK ok K oK oK K oK oK K oK oK K oK oK K oK oK K oK oK K oK oK K K oK K oK oK K K oK K K K K K K K K

2 | ! Program by Tim NAGEL - LEGI *

3 |! *

4 | ! date: 28/02/2014 *

5 | ! *

6 | ! This subroutine changes the bedform elevation when the slope angle of *

7 | ! betwee, two grid points is higher than the repose angle of the sediment. *

8 |! It simulates local avalanches by reducing this slope to the repose angle *

9 | ! Equations are inspired from Sanchez et Al 2011 paper: A non-equilibrium *

10 | ! sediment transport model for coastal inlets and navigation channels, Journalx*

11 ! of Coastal Research, pp. 39 to 48, 2011. *

12 | ! module develloped for 1D cases only *

13 | ! *

14 | ! All units sgi *

15 |1k ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk K ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o oK ok o oK ok o oK ok o oK ok

16 | subroutine avalanche_manag(h,h_n,h_st)

17

18 | implicit none

19 | include ’common.inc?

20

21 | real,dimension(nx),intent(in) :: h

22 | real,dimension(nx),intent (out) :: h_n

23 | real ,dimension(nx,2) ,intent(out) :: h_st ! only in the case of the slump test

24

25 | integer :: i,test,m

26 | real :: R,maxslope ,maxdh

27 |real, dimension(:), ALLOCATABLE :: slope,dh,h_av

28

29 | ALLOCATE (slope (nx) ,dh(nx),h_av(nx))

30 test=1

31 m=0

32 h_av=h

33 ! do while ((test==1).and.(k.1t.100))

34 do while ((test==1))

35 m=m+1

36 test=0

37 !'print *, ’avalanche’

38 R=0.5

39 do i=1,nx-1

40 | 1 skskok ok ook ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok K ok ok K ok ok ok ok ok K ok ok K ok ok ok ok ok o ok ok ok ok ok ok ok ok o ok ok K ok ok o ok ok o ok ok K ok ok o ok ok ok

a1 | ! predictor step gbx

42| 1 sk ok ook ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok K ok ok ok ok ok K ok ok o ok ok K ok ok K ok ok ok ok ok ok ok ok K ok ok K ok ok ok ok ok K ok ok K ok ok o oK ok ok

43 !compute the local bed slope

44 slope(i)=(h_av(i+1)-h_av(i))/dx

45 enddo

46 slope(nx)=(h_av(nx)-h_av(nx-1))/dx

47

48 do i=1,nx

49 dh (i) =0.

50 enddo

51

52 do i=2,nx-1

53 dh (i)=0.

54 | 1 skosk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok o ok sk o ok ok K ok ok o ok sk K ok sk o ok ok o ok sk K ok sk o oK ok o ok sk o ok ok o oK ok o oK sk oK ok ok oK ok ok

55 | ! bathymetry correction calculation

56 | 1ok sk ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok sk ok sk sk ok ok ok o ok sk o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o ok ok o oK ok o oK ok o oK ok o oK ok ok

57 if (abs(slope(i-1)).gt.slope_lim) then

58 test=1

59 dh(i)=dh(i)-R*0.5*x(h_av(i)-h_av(i-1)-sign(slope_lim_post*dx,h_av(i)-h_av(i-1)))

60 endif

61

62 if (abs(slope(i)).gt.slope_lim) then

63 test=1

64 dh(i)=dh(i)+R*0.5*x(h_av(i+1)-h_av(i)-sign(slope_lim_post*dx,h_av(i+1)-h_av(i)))

65 endif

66 enddo

67 | 1 ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K ok ok K ok ok K ok ok K ok ok K ok ok K ok ok K ok ok K ok ok K oK ok K ok ok K ok ok K ok oK K oK ok K ok ok K oK oK K oK ok K oK oK K oK K K

68 | ! bathymetry correction application

69 | 1 sk sk ok sk ok ok ok ok ok ok ok K ok ok K ok ok K ok ok K ok ok K ok ok K oK ok K ok ok K oK ok K ok ok K ok ok K oK ok K ok ok K oK ok K oK oK K oK ok K oK ok K oK oK K K oK K K oK K K K K

70 do i=1,nx

71 h_n(i)=h_av(i)+dh(i)

72 h_av(i)=h_n(i)

73 enddo

74 | '!'$lonly in the case of the slump test, in order to visualize process for intermediary
times steps

75 | 118 if (k == 10) then

76 | 118 do i=1,n

7 | 1S h_st(i,1)=h_n(i)

78 | 11§ enddo

79 | 11§ endif

80 | !!'$

81 | !!$ if (k == 40) then

82 | !!'$ do i=1,n

83 | !!$ h_st(i,2)=h_n(i)

8e | 1'% enddo

85 | !'!$ endif

86 enddo

87 | end subroutine avalanche_manag

56

© 0 NOUNWN

subroutine netcdf_creation_ocean(outputfile,x,y,h,s,u,v,t,bpot,W,Wu,omega,eta)

use netcdf
implicit none
include ’common.inc’

real (8) ,dimension(nx,ny),intent (in) :
real (8) ,dimension(nx),intent (in) :: x
real (8) ,dimension(ny),intent(in) :: y
real (8) ,dimension(nx,ny),intent (in) :

: h,s,u,v,bpot,W,Wu,omega,eta

ok ok ok ok ok K oK ok ok ok ok K ok ok ok ok ok 3 ok ok ok ok ok o K ok ok ok ok ok o K ok ok ok ok ok K ok ok ok ok ok o K K ok ok ok ok K ok ok ok ok 3k K ok ok ok ok K K ok ok ok
name of the data file which will be create.

ok ok ok ok ok K ok ok ok ok ok K ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok 3 ok ok ok ok ok ok K ok ok ok ok ok 3 K ok ok ok ok ok ok ok ok ok ok 3k ok ok ok ok ok K K ok ok ok

character (1len=80) :: outputfile

ok ok ok ok ok K oK oK ok ok ok K K ok ok ok ok K ok ok ok ok ok K ok ok ok ok o K ok ok ok ok ok K K ok ok ok ok o K K ok ok ok ok K ok ok ok ok 3 K ok ok ok ok K K ok ok ok
writing 3D data, with lenght (x,y), and time (t)

ok K ok ok ok K K ok ok ok ok K K ok ok ok ok K K ok ok ok o K K ok ok ok ok o K K ok ok ok ok K K ok ok ok ok K K ok ok ok ok K K ok ok ok ok K ok ok ok ok K K ok ok ok

integer, parameter :: NDIMS = 3

character (len = *), parameter :: XDIM_NAME = "xdim"
character (len = *), parameter :: YDIM_NAME = "ydim"
character (len = %), parameter : TDIM_NAME = "timedim"
character (len = *), parameter :: X_NAME = "x"
character (len = *), parameter :: y_NAME = "y"
character (len = *), parameter :: T_NAME = "time"
integer :: x_dimid, y_dimid, t_dimid

ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok sk ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
The start and count arrays will tell the netCDF library where to
write our data.
sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok sk sk ok ok sk ok ok sk sk ok ok ok ok ok sk ok ok ok ok sk ok sk ok ok ok sk ok sk ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
integer :: start(NDIMS), count(NDIMS), iprint
ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
These program variables hold the lenght and height variables.
ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok 3k ok sk sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok
integer :: x_varid, y_varid
sk ok ok ok sk ok ok ok ok ok sk sk sk ok ok ok ok sk sk sk ok ok sk sk sk sk sk ok ok ok sk ok sk ok ok ok ok sk ok sk ok ok ok sk sk sk ok ok ok sk ok sk ok ok ok ok sk ok s ok ok ok ok ok ok ok ok ok ok k
variables name
sk ok ok sk sk ok ok ok ok ok sk sk sk ok ok ok ok sk sk sk ok ok sk sk sk sk sk ok ok ok sk ok sk ok ok ok sk sk ok sk ok ok ok sk sk sk ok ok ok ok sk sk sk sk ok ok ok sk ok sk ok ok ok sk ok ok ok ok ok ok ok ok

character (len = *), parameter :: H_NAME="h"

character (len = %), parameter :: S_NAME="surface"

character (len = *), parameter :: U_NAME="velocity x"

character (len = *), parameter :: V_NAME="velocity y"

character (len = *), parameter :: BPOT_NAME="Bernoulli Potential"
character (len = *), parameter :: OMEGA_NAME="Vorticty"

character (len = %), parameter : ETA_NAME="Free surface elevation"
integer :: dimids (NDIMS)

1k sk sk ok ok ok ok ok ok ok ok ok ok ok ok sk ok sk ok ok ok ok ok ok ok ok %k ok ok ok ok ok ok sk ok k ok ok ok ok ok ok k ok k ok sk 5k sk %k ok k >k k >k sk >k >k >k >k k %k %k >k >k >k %k >k %k k *k %

! each variable carry a "units" attribute.
1ok ok sk ok ok ok ok oK ok ok K ok ok K oK ok K oK ok K oK ok K ok ok K oK ok K ok ok K ok ok K oK ok K oK ok K oK ok K oK oK K oK ok K oK oK K oK oK K oK oK K oK oK K K oK K K oK K K K K K

character (len = %), parameter :: UNITS = "units"

character (len = *), parameter :: H_UNITS = "meters"
character (len = *), parameter :: X_UNITS = "meters"
character (len = *), parameter :: Y_UNITS = "meters"
character (len = *), parameter :: T_UNITS = "seconds"
character (len = *), parameter :: S_UNITS = "meters"
character (len = *), parameter :: U_UNITS = "meters/seconds"
character (len = *), parameter :: V_UNITS = "meters/seconds"
character (len = *), parameter :: BPOT_UNITS = "meters"
character (len = *), parameter :: OMEGA_UNITS = "(second)~-1"
character (len = *), parameter :: ETA_UNITS = "meters"

ko ok ok ok ok ok ok ok ok ok ok oK oK K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok ok 3K K K K K K K K K K K K K ok ok ok ok ok ok ok ok ok ok K K K K K K K
Create the file.
ko ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok ok K K K K K K
call check(nf90_create(outputfile, nf90_clobber, ncid))
ko ok ok ok ok ok ok ok ok ok ok oK oK K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok ok ok 3K K K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok ok ok K K K K K K
Define the dimensions. The record dimension is defined to have

unlimited length - it can grow as needed. Here it is the time dimension
ok ok ok ok ok ok ok ok ok ok ok K K K K K K K K K K K K R ok ok ok ok ok ok ok ok ok ok ok K K K K K K K K K K K Kk R ok ok ok ok ok ok ok ok ok kR K K K K KKK
call check(nf90_def_dim(ncid, XDIM_NAME, NX, x_dimid))

call check(nf90_def_dim(ncid, YDIM_NAME, NY, y_dimid))

call check(nf90_def_dim(ncid, TDIM_NAME, NF9O_UNLIMITED, t_dimid))
kK ok ok ok ok ok ok ok ok oK oK oK oK oK K K K K K K K K K K K K ok k ok ok ok ok ok ok ok oK ok K K K K K K K K K K K K K K ok ok ok ok ok ok ok ok ok ok oK K K K K K K K X

Define the coordinate variables
K ok ok ok ok ok ok oK oK oK oK 3K K K K K K K K K K K K K K K ok ok ok ok ok ok ok oK ok oK oK K K K K K K K K K K K K K K ok ok ok ok ok ok ok oK oK oK oK K K K K K K K K
call check(nf90_def_var(ncid, X_NAME, NF90_DOUBLE, x_dimid, x_varid))
call check(nf90_def_var(ncid, Y_NAME, NF90_DOUBLE, y_dimid, y_varid))
call check(nf90_def_var(ncid, T_NAME, NF90_DOUBLE, t_dimid, t_varid))
ko ok ok ok ok ok ok ok ok ok ok oK oK K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K K Kk k ok ok ok ok ok ok ok ok ok ok ok K K K K K K
Assign units attributes to coordinate variables.

ko ok ok ok ok ok ok ok ok ok oK oK K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok ok oK oK K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok ok ok K K K K K K
call check(nf90_put_att(ncid, x_varid, UNITS, X_UNITS))

call check(nf90_put_att(ncid, y_varid, UNITS, Y_UNITS))

call check(nf90_put_att(ncid, t_varid, UNITS, T_UNITS))

3k ko ok ok ok ok ok ok ok ok ok K K K K K K K K Kk kK ok ok ok ok ok ok ok ok ok ok ok K K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok K K K K K K K K

The dimids array is used to pass the dimids of the dimensions of
the netCDF variables. Both of the netCDF variables we are creating
share the same four dimensions. In Fortran, the unlimited
dimension must come last on the list of dimids.

ok ok ok ok ok ok ok ok oK ok oK K K K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok 3k 3K K K K K K K K K K K K Kk ok ok ok ok ok ok ok ok ok ok K K K K K K K K
dimids = (/ x_dimid, y_dimid, t_dimid /)

o7

101

104
105
106
107
108
109
110
111
112
113
114
115

117
118
119
120
121

123
124
125
126
127

129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

157
158

160
161
162
163
164
165
166
167
168
169
170
171
172

174

15k 5k 5k 5k ok ok ok ok %k %k %k %k %k %k %k ok ok ok ok 5k ok %k %k %k %k %k %k %k %k kK ok ok ok k k k k kK %

% %k %k ok >k ok %k ok ok ok %k %k k 5k %k >k 5k %k k %k %k %k %k %k 5k %k %k % k k k %

! Define the netCDF variables data.

15k 5k ok ok ok ok ok ok %k %k %k ok %k %k %k ok ok ok ok ok ok %k %k %k %k %k %k %k ok ok ok ok ok k k k ok k k%

%k %k ok >k ok %k ok ok 5k %k >k k 5k %k %k 5k 5k %k Xk %k %k %k %k 5k %k %k % k k k %

! Define the netCDF variables for the pressure and temperature data.

call check(nf90_def_var(ncid, H_NAME, NF90_DOUBLE, dimids, h_varid))

call check(nf90_def_var(ncid, S_NAME, NF90_DOUBLE, dimids, s_varid))

call check(nf90_def_var(ncid, U_NAME, NF90_DOUBLE, dimids, u_varid))

call check(nf90_def_var(ncid, V_NAME, NF90_DOUBLE, dimids, v_varid))

call check(nf90_def_var(ncid, BPOT_NAME, NF90_DOUBLE, dimids, bpot_varid))
call check(nf90_def_var(ncid, OMEGA_NAME, NF90_DOUBLE, dimids, omega_varid))
call check(nf90_def_var(ncid, ETA_NAME, NF90_DOUBLE, dimids, eta_varid)

1k ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok k ok ok k ok k k k %

! Assign units attributes to t
1 sk sk sk sk ok sk sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok sk ok ok sk ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok

>k >k >k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k 3k %k %k %k %k %k %k >k >k >k >k 3k % %k k xk k k %k

he netCDF variables
K kK ok ok ok ok ok ok ok ok oK K K K K K K KK K KKK K Kk ok

call check(nf90_put_att(ncid, h_varid, UNITS, H_UNITS))

call check(nf90_put_att(ncid, s_varid, UNITS, S_UNITS))

call check(nf90_put_att(ncid, u_varid, UNITS, U_UNITS))

call check(nf90_put_att(ncid, v_varid, UNITS, V_UNITS))

call check(nf90_put_att(ncid, bpot_varid, UNITS, BPOT_UNITS))
call check(nf90_put_att(ncid, omega_varid, UNITS, OMEGA_UNITS))
call check(nf90_put_att(ncid, eta_varid, UNITS, ETA_UNITS))

13k ok ok K ok K K K K ok ok ok ok ok ok ok ok ok ok ok ok ok K K K K K K K K K K K K K ok ok ok ok ok
! End define mode
13k ok ok ok K K K K K Kk ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K K K kK ok ok
call check(nf90_enddef (ncid))
13k 3k 3k K K K K K K K ok ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K K K Kk ok ok ok
! Write the coordinate variable dat
! and y of our data grid into
13k ok ok ok ok K K K K ok Kk ok ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K kK ok ok
call check(nf90_put_var(ncid, x_varid,
call check(nf90_put_var(ncid, y_varid,
end subroutine netcdf_creation_ocean

%k >k 3k 3k 3k 3k %k 3k % % % % % % %k Xk Xk Xk %k %k %k %k %k % % % % % % % % %
%k 3 3k 3k 3k %k %k 3k % %k %k %k % % %k %k %k %k %k %k %k %k %k %k % % % % % % % %k

%k %k % %k %k %k %k 3k %k %k % % %k %k %k 3% % %k % % % %k % % % %k % % %k % % %
a. This will put the x
the netCDF file.
%k %k %k %k %k %k >k %k %k %k >k % %k %k %k > % %k % % % %k %k % % %k % % % %k %k %
x))
y))

subroutine netcdf_save_ocean(t,h,s,u,v,iprint,bpot,W,Wu,omega,eta)

use netcdf
implicit none
include ’common.inc’

integer ,intent (in) iprint

real (8) ,dimension(nx,ny),intent (in)
real (8) ,dimension(nx,ny),intent (in)
integer, parameter NDIMS = 3

h,s,u,v,bpot,W,Wu,omega,eta
t

)

integer start (NDIMS), count (NDIMS)

call check(nf90_put_var(ncid, t_varid, t, start = (/ iprint /), count = (/ 1 /)))
count = (/ NX, NY, 1 /)

start = (/ 1, 1, iprint /)

call check(nf90_put_var(ncid, h_varid, h, start = start, count = count))

call check(nf90_put_var(ncid, s_varid, s, start = start, count = count))

call check(nf90_put_var(ncid, u_varid, u, start = start, count = count))

call check(nf90_put_var(ncid, v_varid, v, start = start, count = count))

call check(nf90_put_var(ncid, bpot_varid, bpot, start = start, count = count))
call check(nf90_put_var(ncid, omega_varid, omega, start = start, count = count)
call check(nf90_put_var(ncid, eta_varid, eta, start = start, count = count))

end subroutine netcdf_save_ocean

subroutine netcdf_close_ocean
use netcdf
implicit none
include ’common.inc’
13k sk ok ok ok ok ok ok K 3k ok oK K 3k ok ok K 3 ok oK K 3 ok ok K K ok ok K % ok ok K K ok ok K K k K
! Close the file. This causes netCDF
! sure your data are really
15k 3k K K K K K K K K ok ok ok ok ok ok ok ok ok ok oK oK oK K K K K K K K K K K K K K Kk ok ok
call check(nf90_close(ncid))
end subroutine netcdf_close_ocean

subroutine check(status)
use netcdf
implicit none
integer, intent (in) status
if (status /= nf90_noerr) then
print *, trim(nf90_strerror (status))
stop "Stopped_ocean"
end if
end subroutine check

K K kK ok ok ok ok ok ok ok ok oK K K K K K K K K K KKK K Kk ok
to flush all buffers and make
written to disk.

K K K K ok ok ok ok ok ok ok ok ok ok oK K K K K K K K K K K K K K K ok ok

o8

